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Abstract - The challenge of ensuring good quality of power in contemporary smart grids has become more complicated with 

the erratic nature of renewable sources, nonlinear loads, and the changing trend of demand. It discusses a machine learning-

based predictive power quality maintenance framework that incorporates a hybrid Long Short-Term Memory (LSTM) and 

Random Forest (RF) model. The system compares voltage, current, and harmonic data to forecast faults before they occur. 

The model proposed had a prediction accuracy of 98.3%, a Mean Absolute Percentage Error (MAPE) of 1.84%, and a Root 

Mean Square Error (RMSE) of 0.042 kV, which was better than the traditional approaches. Moreover, it minimized the 

maintenance expenses by 31.6% and increased grid reliability by 28.9%. The model was confirmed to be able to carry out 

real-time analysis and decision support using simulation on MATLAB. These findings indicate that predictive maintenance 

based on Machine Learning can be used to improve the efficiency of operations, reduce downtime, and improve the resilience 

of modern power grids. 

Keywords - Long Short-Term Memory, Power Quality, Mean Absolute Percentage Error, Root Mean Square Error, Phasor 

Measurement Unit, Particle Swarm Optimization.  

1. Introduction  
Modernization of electrical power systems has changed 

the old centralized grid to an interconnected, data-based, and 

intelligent infrastructure, called the smart grid. As renewable 

energy sources, electric vehicles, distributed generators, and 

dynamic loads rapidly become integrated, the challenge of 

ensuring consistent Power Quality (PQ) has become one of 

the most important ones to grid operators. The problem of 

power quality could cause serious operational inefficiencies, 

equipment degradation, and financial losses due to voltage 

sags, frequency deviation, harmonic distortions, and transient 

surges. Modern power networks have become dynamic, 

making it challenging to ensure reliability through traditional 

maintenance and diagnostic processes that have been highly 

successful in static grid setups. Traditional power quality 

surveillance and maintenance systems rely heavily on 

periodic monitoring schedules, manual analysis, and 

threshold-based alarms. Such approaches are by definition 

reactive and may not be able to predict or prevent possible 

faults before they happen. Besides, as the number of grid-

connected devices and sensors is growing exponentially, the 

amount of PQ data has grown enormously, requiring 

automated analytical solutions to be able to identify the 

intricate patterns in real-time. Previously analyzed papers 

have tried to employ statistical signal processing and rule-

based expert systems in the analysis of PQ, with such models 

failing to accommodate nonlinearities, multivariate 

relationships, and changing operational conditions. It 

therefore could not provide realistic predictions of faults, 

especially in situations where power disturbance has high 

time variability. The rationale of this work is that there is a 

need to have a more innovative, self-educating, and 

predictive maintenance methodology that is capable of 

adjusting to the dynamics of smart grids in the present day. 

Machine Learning (ML) provides the computational 

intelligence that is needed to detect, label, and forecast PQ 

disturbances through learning the vast amounts of historical 

and real-time signals. ML systems can identify failures in 

time to produce significant disturbances by training models 

to identify concealed correlations between voltage, current, 

frequency, and harmonic distortion parameters. ML-powered 

predictive maintenance can not only decrease downtimes and 

operational expenses, but also make grids reliable and 

efficient in energy usage. A hybrid of time models like Long 

Short-Term Memory (LSTM) and non-linear fault models 

like the Random Forest (RF) can be used to learn sequential 

and non-linear fault patterns to become a potent predictive 

model.  

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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The primary goals will be to build an enhanced Machine 

Learning predictor of power quality maintenance, 

mathematically model PQ disturbances to be able to forecast 

them accurately, and to test the performance of the model on 

real-time simulation. In particular, the LSTM-RF hybrid 

model is expected to be used to reduce the prediction error, 

false alarms, and optimize maintenance scheduling. The 

results of the simulation were that the fault prediction error 

was 98.3%, the Mean Absolute Percentage Error (MAPE) 

was 1.84%, and the root mean square error was 0.042 kV, 

which is much higher than the traditional methods. 

Furthermore, the proposed model minimized the total 

maintenance expenses by 31.6%, which is an important 

characteristic of this model for grid operators and energy 

distributors. These three elements are combined: first, the 

new hybrid model of temporal learning and ensemble 

classification is proposed to forecast PQ; second, a 

mathematical optimization framework is suggested to make 

maintenance choices; and third, the model is applied and 

tested with real-life PQ data and simulated conditions to 

make the model robust and scalable. The proposed system 

shows that predictive maintenance can be shifted towards 

reactive fault management to proactive grid intelligence. The 

remainder of this paper will be structured as follows. Section 

II illustrates the review of the available research and the 

shortfalls of existing PQ maintenance strategies. Section III 

provides the description of the proposed hybrid machine 

learning model with mathematical equations and predictive 

formulations, and the description of the dataset 

characteristics, experimental setup, and simulation 

environment. Section IV is the discussion of the results and 

performance analysis of the proposed system. Lastly, Section 

V will also wrap up the work and give directions for future 

research in the field of intelligent predictive maintenance of 

smart power grids. 

2. Literature Review  
The issue of Power Quality (PQ) disturbance has 

become one of the primary concerns of the modern electrical 

power system because of the massive incorporation of 

renewable energy sources, power electronic converters, 

electric vehicles, and nonlinear loads. These have greatly 

augmented the complexity, nonlinearity, and stochastic 

nature of grid operations, and the old approaches to 

monitoring and maintaining the grid are no longer sufficient. 

As a result, a great deal of research has been done in 

designing innovative methods for PeQ disturbance 

recognition, categorization, anticipation, and servicing 

through Machine Learning (ML) and Deep Learning (DL) 

strategies. The first steps to the classification of PQ 

disturbance with deep learning presentations are reported by 

Albalooshi and Asari [1], who suggested a deep learning-

based automated classification model that could learn 

hierarchical representations of PQ disturbances directly on 

raw signals. Their work was able to give better classification 

accuracy as opposed to traditional signal-processing-based 

methods. Chinthaginjala et al. [2] added to this line by 

combining hybrid artificial intelligence methods with 

semiconductor-based power quality enhancing schemes and 

accentuating the contribution of AI-informed decision-

making to the grid stability and PQ performance.  

Transfer learning has been considered as an effective 

method for working with limited labeled PQ datasets. Sipai 

et al. [3] proposed a deep transfer learning model that 

classifies single and multiple PQ disturbances with better 

generalization and less training. Their research noted the 

usefulness of pre-trained deep models in extracting 

discriminative PQ features in a variety of operating 

conditions. Outside classification, Olojede et al. [4] 

examined the use of machine learning to detect and maintain 

power grids and highlighted predictive analytics as a critical 

facilitator to minimize downtime and enhance asset 

management to encourage maintenance-oriented intelligence 

in PQ analysis. Signal decomposition and a deep learning 

hybrid architecture have demonstrated exemplary 

performance in PQ disturbance analysis. Yang et al. [5] 

developed an interpretable DWT1DCNNLSTM network, in 

which Multiresolution features were extracted with the 

Discrete Wavelet Transform (DWT). Then, spatial-temporal 

learning was performed via convolutional and recurrent 

layers. Equally, Bai et al. [6] used a rapid S-transform and a 

better CNN-LSTM hybrid architecture, which was effective 

in non-stationary PQ disturbance classification. Such works 

establish that time-frequency analysis, together with a deep 

learning strategy, can promote the robustness of PQ 

classification to the maximum extent. Advanced deep 

architectures and image-based representations were also 

investigated recently. Nasika et al. [7] converted PQ signals 

into images through the use of a recurrence plot. They used 

an EfficientNet-SE model to realize real-time PQ 

disturbances detection, classification, and localization in a 

solar-integrated IEEE 13-bus system. A comparative study 

was performed by Anwar et al. [8] between Vision 

Transformers and CNNs to classify PQ disturbance, where 

transformer-based models are capable of long-range 

dependencies as compared to conventional CNNs.  

Chen et al. [9] suggested a Deep Neural Network with 

time frequency feature fusion, such that multi-domain 

features were integrated to enhance the classification quality 

in the face of complex disturbance. The use of recurrent 

neural networks has become popular in the modeling of the 

temporal dependence of PQ signals. Khetarpal and Tripathi 

[10] proposed a PQ signal segmentation and classification 

Bi-LSTM with a dual attention mechanism that allows for 

localizing the disturbance events accurately. Shen [11] 

suggested a risk warning system of steady-state PQ based on 

VMD, LSTM, fuzzy logic, and the idea of predicting the 

risks of PQ instead of detecting the disturbances was valid. 

Gao et al. [12] used Variational Mode Decomposition 

(VMD) to remove variational modes and improved the 
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Support Vector Machine (SVM), which performed much 

better in classification in noisy situations. In addition to the 

PQ disturbance classification, machine learning has been 

used in energy management and PQ-related forecasting 

problems. A study by Singh et al. [13] has created an ML-

based energy management and power forecasting framework 

of grid-connected microgrids and has shown the advantages 

of predictive intelligence in operational planning. As 

proposed by Panoiu and Pop [14], a Hybrid Deep Neural 

Network can be used to predict PQ measures active, reactive, 

and distortion powers, which suggests the transition between 

reactive monitoring to predictive modeling of PQ parameters.  

Several studies have confirmed the effectiveness of 

Deep Learning Models based on actual grid measurements. 

The practical applicability of a Deep Learning Framework 

was confirmed by Rodrigues et al. [15], who introduced a 

Deep Learning-based PQ event detection and classification 

framework that is based on grid data measurements. Tong et 

al. [16] suggested a parallel multimodal feature extraction 

method that combines heterogeneous PQ features, which 

increases the accuracy of classification. Cai et al. [17] 

proposed a parallel CNNGRU fusion model to co-learn both 

spatial and temporal features, which also enhanced strong 

resistance to complicated PQ disturbance. Low-voltage 

distribution networks have also been done using machine 

learning techniques. Iturrino Garcia et al. [18] compared 

various ML methods with PQ analysis in low-voltage 

systems, and it is essential to note that the approaches based 

on data must be used in practice. Systematic reviews by 

Samanta et al. [19] and Oubrahim et al. [20] of deep learning 

and signal-processing-based PQ-analysis methods, 

respectively, concluded that hybrid and deep architectures 

perform better than the more traditional rule-based systems, 

and the importance of real-time and predictive functionality. 

Dekhandji et al. [21] provided focused research on the 

models based on LSTM and showed that LSTM networks 

can learn the temporal dependence of PQ signals. 

Kuppusamy et al. [22] conducted a review of machine 

learning in the evaluation of PQ performance in grid-

connected systems and highlighted the idea of hybrid 

learning as a way to find the solution to a noisy and dynamic 

environment. Dhanapal and Gopalakrishnan [23] added to 

the PQ analysis by incorporating machine learning 

algorithms into conventional PQ evaluation systems.  

Caicedo et al. [24] also presented the main problems of 

real-time implementation to the problem of detecting and 

classifying real-time PQ disturbances, including the issues of 

latency, scalability, and adaptability. Previous deep learning-

based methods involve the study by Sekar et al. [25], who 

suggested a better deep learning architecture of PQ 

disturbance detection, which is more accurate than classical 

ML methods. Todeschini et al. [26] proposed an image deep-

transfer learning system that transforms PQ signals into two-

dimensional representations to enhance the efficacy in 

classification. Monteiro et al. [27] suggested a highly 

interconnected CNN model for the diagnosis of PQ 

disturbances and showed it to be very accurate in the grid 

environment complexity. Yilmaz et al. [28] investigated 

hybrid machine learning methods that have excellent noise 

resistance and applied several ML methods in classifying PQ 

in distributed generation systems. Das et al. [29] used the 

methods of artificial intelligence to improve the PQ of hybrid 

microgrids, which supports the position of artificial 

intelligence in improving grid reliability and power quality. 

Even though it is not a direct application on PQ, the 

optimization paradigm suggested by Pavithra Guru and 

Vaithianathan [30] demonstrates the applicability of 

intelligent optimization algorithms, which are applicable to 

the optimization of decision-making and maintenance 

processes in PQ. 

To conclude, the current literature proves that efforts to 

detect and classify PQ disturbances with the aid of deep 

learning, hybrid signal-processing-based models, and transfer 

learning methods have made considerable progress. 

Nevertheless, the majority of studies are mainly on the 

accuracy of classification but not combined with proactive 

decision support, predictive maintenance, and cost 

optimization. Limited work is a combination of temporal 

forecasting and ensemble-based models that improves 

robustness in the model, interpretability, and intelligence in 

maintaining the model. The gaps inspire the design of a 

hybrid LSTM-Random Forest predictive maintenance 

paradigm, shifting the focus of PQ analysis of the reactive 

detection to the proactive, cost-conscious, and intelligent grid 

maintenance. 

3. Proposed Work 
3.1. Intelligent Grid Signal Acquisition and Normalization 

Model 

Predictive maintenance of power quality is based on 

modern smart grids and intelligent signal acquisition. 

Properly measured electrical parameters: Voltage V(t), 

Current I(t), and Frequency f(t) can be used to monitor grid 

stability and performance with much reliability. These 

parameters are always measured using distributed devices, 

including Phasor Measurement Units (PMUs), Smart Meters, 

and Intelligent Electronic Devices (IEDs) located at various 

nodes of the transmission and distribution system. The 

quality signal of the raw power can be modeled 

mathematically in Equation (1), 

𝑆(𝑡) = 𝑉(𝑡) sin(𝜔𝑡 + 𝜙) + 𝜖(𝑡)     (1) 

Where 𝜔 is the angular frequency, 𝜙 is the phase angle, 

and ϵ(t) is the noise of the stochastic measurements due to 

the inaccuracies of the sensors and the influence of the 

environment. This model describes the periodic behavior of 

Alternating Current (AC) signals and takes into consideration 
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the distortions of signals in the real world. Given the fact that 

the data obtained after acquisition are of heterogeneous 

origins, the discrepancy in measurement scales, sampling 

frequency, and the level of noise is likely to occur. To 

address this, it is necessary to preprocess the data with 

normalization. All the parameters measured are normalized 

using a Z-score to have all the parameters at the same level 

of statistical representation. The process of normalization is 

given in Equation (2), 

𝑋𝑛𝑜𝑟𝑚 =
𝑋−𝜇𝑋

𝜎𝑋
        (2) 

Where 𝜇𝑋, and 𝜎𝑋 Represent the mean and standard 

deviation of parameter X. This transformation brings all 

features to a mean of zero and unit variance, which in effect 

removes bias brought about by various magnitudes or units. 

The normalized data is the processed information that will be 

passed to the second phase of machine learning analysis, and 

some of the models, such as LSTM and Random Forest, can 

process signals effectively. Such standardization enhances 

the degree of convergence of training algorithms and 

prediction error on fault detection as well as the prediction of 

power quality. In addition, adaptive learning is also enabled 

by real-time normalization, whereby the adaptive learning 

can adapt dynamically to the varying grid conditions, such 

that the predictive maintenance system is immune to sensor 

drift and other measurement anomalies. The intelligent signal 

capture and normalization as a whole is applied to give the 

foundation of the robust and accurate predictive analysis that 

is scalable in the modern power grid paradigm. This scheme, 

as shown in Figure 1, represents the process of making 

voltage and frequency stability, load pattern monitoring, and 

distributed energy synchronization. The system is able to 

realize real-time PQ control and forecast, anomaly 

identification and correction, which ensures that the system 

is generally optimized and adjusted to improve reliability. 

 
Fig. 1 Intelligent power quality maintenance system for grid stability 

3.2. Adaptive Power Quality Feature Transformation 

Network 

The following very crucial step is used to acquire and 

normalize grid signals smartly; the raw time-domain 

measurements are converted into diagnostic features 

indicative of underlying disturbances with enough value. 

This transformation is done by the use of the Adaptive Power 

Quality Feature Transformation Network (APQFTN), which 

is premised on the integration of sophisticated signal 

decomposition and adaptive feature engineering to detect 

transient and steady-state anomalies. It begins with the 

Discrete Wavelet Transform (DWT), which decomposes the 

normalized Signal S(t) into time-frequency representations. 

DWT is more localized than the traditional Fourier methods, 

which offer the localization of abrupt voltage sag, swell, and 

high-quality temporal resolution of harmonics. 

Mathematically, it is provided in Equation (3), 

𝑊𝑗,𝑘 = ∫ 𝑆(𝑡)𝜓𝑗,𝑘(𝑡)𝑑𝑡
∞

−∞
       (3) 

In which (t) can refer to the mother wavelet at scale 𝑗 and 

translation 𝑘. The wavelet decomposition resolves the 

frequency components at various resolutions, and this allows 

the network to capture disturbance details. Depending on the 

signals that are deconstructed, feature vectors 𝐹 =
[𝑓1, 𝑓2, … , 𝑓𝑛] are created by calculating vital power quality 

characteristics of Total Harmonic Distortion (THD) and 

Voltage Unbalance Factor (VUF). These will be determined 

in Equations (4) and (5), 

𝑇𝐻𝐷 =
√∑ 𝑉ℎ

2𝐻
ℎ=2

𝑉1
× 100%         (4) 

𝑉𝑈𝐹 =
𝑉𝑛𝑒𝑔

𝑉𝑝𝑜𝑠
× 100%         (5) 

The hth harmonic voltage magnitude is denoted by Vh, 

where Vi is the fundamental voltage, 𝑉𝑝𝑜𝑠, 𝑉𝑛𝑒𝑔  Are the 

positive and negative sequence voltages, respectively. The 

obtained feature vectors are then passed to an adaptive 

learning layer, which does dimensionality optimization by 

Principal Component Analysis (PCA) or Autoencoders. This 

ensures that it represents the features compactly and 

informatively, without consuming a lot of computation, 

while still capturing the key disturbance patterns. Lastly, the 

transformed features serve as the inputs to the predictive 

maintenance module, yielding high-quality data that enables 

the accurate classification of fault types and the prediction of 

instabilities in the grid. It is a powerful adaptive feature 

transformation that is highly effective in improving the 

precision, reliability, and responsiveness of power quality 

monitoring of intelligent grid systems. In Figure 2, the 

framework integrates the data-based analysis with the 

machine-based learning diagnosis to boost the accuracy of 

PQ forecasting. It has modules such as LSTM temporal 
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forecasting, equipment health estimation, and harmonic 

distortion tracking to jointly point out frequency drift, 

transient events, and current phase imbalance to initiate early 

fault intervention and maintenance planning. 

 
Fig. 2 Predictive power quality analysis framework using ML 

diagnostics 

3.3. Machine Learning–Driven Predictive Fault Probability 

Model 

A hybrid framework based on Long Short-Term 

Memory (LSTM) and Random Forest (RF) is an intelligent 

structure used to obtain accurate real-time predictions of 

potential grid failures. This combination method leverages 

the temporal sequence of learning in LSTM and the 

ensemble-based decision robustness of RF to create a stable 

predictive platform for detecting fault probabilities in Power 

Quality (PQ) data. The LSTM module represents the time 

dependencies within the patterns of PQ signals, including 

voltage, current, and variation in frequency. Its recurrent 

form captures long-term contextual relationships, which 

conventional feed-forward networks do not capture. 

Mathematically, the time-dependent development of the 

LSTM-state can be written in Equations (6) and (7), 

ℎ𝑡 = 𝜎(𝑊ℎ . [ℎ𝑡−1, 𝑥𝑡] + 𝑏ℎ)     (6) 

𝑦𝑡 = 𝜎(𝑊𝑦 . ℎ𝑡 + 𝑏𝑦)       (7) 

Where ht is the concealed condition that contains 

historical data, xt is the present input record, and yt is the 

anticipated degradation position at the point of time t. The 

sigmoid activation 𝜎 will assume a nonlinear conversion of 

input data, which will enable the model to deal with variable 

PQ disturbances and faults based on time. Although LSTM 

captures the temporal attributes, the Random Forest (RF) 

module enhances the decision-making process by utilizing 

multiple decision trees that are trained on varying feature 

subsets based on the results of the transformed PQ data. The 

ensemble prediction will be indicated as in Equation (8), 

𝑃𝑓𝑎𝑢𝑙𝑡 =
1

𝑁
∑ 𝑓𝑖(𝐹)𝑁

𝑖=1        (8) 

In which fi (F) is the output of the ith decision tree, and 

Pfault is the summed-up probability of a fault occurrence. The 

RF model minimizes overfitting and variance through 

majority voting, which adds reliability in cases of noisy 

signals. The hybrid LSTMRF model exhibits high prediction 

accuracy and interpretability, making it superior to traditional 

single-model methods. It enables proactive maintenance 

scheduling by identifying sequential dependencies and 

feature-based correlations, thereby reducing unplanned 

outages and improving operational resilience in modern 

intelligent grid settings. In Figure 3, the process of 

filtering data streams of power quality through a signal 

filter, extracting features, and feeding the hybrid 

LSTM-RF model is illustrated. Based on historical PQ 

trends, the system issues early warnings of PQ 

degradation, estimates projected fault probability, and 

generates a report of maintenance and corrective 

recommendations, which are used to make informed, 

proactive decisions. 

 
Fig. 3 Hybrid LSTM–RF predictive flow for PQ fault management 

3.4. Predictive Maintenance Scheduling and Risk 

Optimization Framework 

A predictive maintenance and risk optimization 

framework is established to ensure the continuous stability of 

the power grid and reduce the overall maintenance cost. The 

presented model combines the estimated failure probabilities 

of the hybrid LSTM-RF module with a cost-sensitive 

decision-making strategy, allowing the system to plan 
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maintenance operations while increasing economic 

efficiency. The structure suggests a cost function 𝐽, which 

measures the trade-off between the possible fault event and 

the downtime cost in Equation (9), 

𝐽 = 𝛼. 𝑃𝑓𝑎𝑢𝑙𝑡 + 𝛽. 𝐶𝑑𝑜𝑤𝑛𝑡𝑖𝑚𝑒        (9) 

In which α and β are weighting factors calculated based 

on historical operational experience, 𝑃𝑓𝑎𝑢𝑙𝑡 is the foreseen 

probability of a failure, and 𝐶𝑑𝑜𝑤𝑛𝑡𝑖𝑚𝑒  is the expected cost of 

a system downtime. To optimally adjust the coins, 𝛼 and β 

are tuned by use of the grid performance indicators and 

maintenance history to get the best sensitivity to reliability 

and cost parameters. To automate the decision-making, the 

maintenance decision rule is described in Equation (10), 

𝐷(𝑡) = {
1,   𝑖𝑓 𝐽 ≥ 𝐽𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 }       (10) 

In this case, D(t) =1 is a maintenance warning system to 

be proactively inspected, and D(t) =0 is normal working 

conditions. A dynamic update on threshold 𝐽threshold is made 

when there are changes in real-time power quality and 

historical fault occurrence density. Optimization of 𝐽 is done 

either through gradient-based iterative tuning or stochastic 

optimization like Particle Swarm Optimization (PSO) in 

order to trade off reliability and cost of maintenance. The 

risk factor R(t) of each subsystem is calculated in Equation 

(11), 

𝑅(𝑡) = 𝑃𝑓𝑎𝑢𝑙𝑡(𝑡) × 𝐶𝑑𝑜𝑤𝑛𝑡𝑖𝑚𝑒(𝑡)      (11) 

Minimization of R(t) ensures effective allocation of 

resources to the high-risk nodes. The framework, therefore, 

ensures cost-effectiveness, system reliability, and predictive 

responsiveness with minimal unplanned outage time and 

stable grid performance. With this combined risk 

optimization framework, predictive maintenance scheduling 

is not only data-driven but also economically adaptive, 

allowing smart grid operators to continue providing services 

at a high level while maintaining operational sustainability. 

3.5 Hybrid Simulation–Data Integration Ecosystem for 

Model Validation 

A Hybrid Simulation-Data Fusion Ecosystem is built to 

ensure the reliability and generalizability of the predictive 

maintenance model. This framework is a synergetic 

integration of both real-world Power Quality (PQ) data and 

simulation-based modeling to ensure the predictive 

performance and stability of operation at different grid 

dynamics. The validation is performed using the IEEE 123-

Bus Distribution System Power Quality Dataset, which is 

available in the UCI Machine Learning Repository and 

contains high-frequency PQ measurements at a rate of 10 

kHz. The data include notified incidents, such as voltage 

sags, swells, harmonics, and transients, which are important 

warning signs of grid instability. All the data sequences are 

pre-processed with normalization and feature extraction 

modules and then used to train and validate a model. The 

hybrid simulation system combines MATLAB Simulink to 

model a dynamic PQ signal and Python to train a model with 

data using the TensorFlow and Scikit-learn packages. 

MATLAB simulates grid fluctuations, load behavior, and 

fault propagation in real-time across distribution nodes, and 

Python is used to do machine learning inference and 

optimization. The effect of this coupling is that, in real-time, 

there is a correlation between simulated operation behavior 

and predictive learning results. To quantitatively determine 

model performance, MAPE and RMSE are used and defined 

in Equations (12) and (13), 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑦𝑖−𝑦̂𝑖

𝑦𝑖
| × 100𝑛

𝑖=1       (12) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛

𝑖=1        (13) 

In which 𝑦𝑖  and 𝑦̂𝑖 Denote the real and modeled PQ 

parameters, respectively, and x n is the overall sample count. 

Lower values of MAPE and RMSE indicate improved 

predictive fidelity and stability. The simulation environment 

is also subjected to stress testing, artificial load perturbation, 

and short fault impulses are introduced in a grid model.  

This enables the investigation of the reaction time, 

flexibility, and accuracy of the model under extreme 

conditions. The simulated-data ecosystem establishes a high 

degree of feedback, and it can be confident that the 

predictive maintenance model that is suggested in it will be 

able to adapt to the real-time innovative grid processes and 

the dynamic PQ disturbances successfully. 

4. Results 
The overall performance analysis of the developed 

LSTM-RF hybrid model in comparison with the traditional 

models, such as Convolutional Neural Network (CNN), 

Random Forest (RF), and Support Vector Machine (SVM). 

In Table 1. The metrics used in the evaluation were chosen 

correctly to indicate both the accuracy of prediction and the 

computational efficiency necessary for real-time operation in 

power grid applications. The Mean Absolute Percentage 

Error (MAPE) and Root Mean Square Error (RMSE) show 

that the hybrid model is much more accurate, with the values 

of 1.84% and 0.042 kV, respectively. These findings show 

that there is a minimal difference between the forecasting 

and actual PQ parameters, and this means that the hybrid 

approach is very useful in capturing the non-linear 

dependencies within the signal. Contrarily, CNN, RF, and 

SVM models have more error margins, and this type of fact 

is not effective in addressing time variation. In terms of fault 

prediction accuracy, the LSTM-RF model achieves 98.3%, 
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which is better than CNN 95.6%, RF 93.8%, and SVM 

91.5%. This is also enhanced by the fact that LSTM 

possesses temporal sequence learning capabilities and RF 

exhibits ensemble stability, which together contribute to 

predictive robustness. The values of 0.987, 0.981, and 0.984 

in the precision, recall, and F1-score indicate the consistency 

of the model in identifying faults, with no false triggers 

introduced, a vital characteristic of automated grid 

maintenance. The hybrid model has a lower prediction 

latency of 28.7 ms compared to other models, indicating a 

timely response to decisions under varying load conditions. It 

has a higher training time, 44.2 seconds, than RF and SVM, 

but this trade-off is compensated by the fact that its model 

has higher accuracy and lower operational risk. In general, 

the critical analysis confirms the idea that the LSTM-RF 

hybrid model provides the optimal accuracy, reliability-

computation tradeoff, and is very appropriate in the context 

of predictive power quality control in smart grids. 

Table 1. Analytical assessment of predictive model efficiency in power quality maintenance 

Metric LSTM–RF Hybrid Model CNN Model Random Forest SVM 

Mean Absolute Percentage Error (MAPE) 1.84% 3.92% 4.35% 5.27% 

Root Mean Square Error (RMSE) 0.042 kV 0.089 kV 0.094 kV 0.112 kV 

Fault Prediction Accuracy 98.3% 95.6% 93.8% 91.5% 

Precision 0.987 0.954 0.931 0.903 

Recall 0.981 0.948 0.921 0.896 

F1-Score 0.984 0.951 0.926 0.899 

Prediction Latency (ms) 28.7 39.2 47.6 53.1 

Training Time (s) 44.2 50.6 33.9 31.5 
 

An extensive examination of the effectiveness of the 

proposed hybrid model under diverse types of power 

disturbances of quality, such as voltage sag, swell, harmonic 

distortion, frequency deviation, transient disturbances, and 

flicker. In Table 2. Both types are a special challenge in 

keeping the grid stable, and the analysis of their prediction 

ability gives a better understanding of the adaptive behaviour 

of the model when operated in dynamic conditions. In the 

case of voltage sags, the model was found to achieve a 

detection rate of 98.7% with a relatively low number of false 

negatives, demonstrating that the model is sensitive to 

sudden voltage variations that typically occur during heavy 

load switching. Equally, in voltage swell events, which 

typically occur as a result of load shedding or capacitor 

switching, the framework performed remarkably, achieving 

an accuracy of 97.6% with a prediction latency of 27.9 ms, 

indicating that it can respond rapidly to sudden voltage 

spikes. 

 

 In detecting harmonic distortion, the model achieved an 

accuracy of 98.4%, which is successful in capturing the 

nonlinear deformations of a waveform that the inverter-based 

renewable sources and industrial equipment may cause. 

Frequency deviations were also detected with a consistent 

reliability of 97.9%, ensuring consistent frequency control in 

connected grid segments. This model was found to 

accurately identify transient disturbances, which are typically 

brief but highly disruptive, with a detection rate of 98.5%, 

and flicker events, which are often caused by varying loads, 

with a detection rate of 98.3%. Its operational readiness in 

real-time was confirmed by the average prediction time of all 

types of faults not exceeding 30 milliseconds. These findings 

demonstrate that the proposed predictive system not only 

achieves high detection rates for various PQ disturbances but 

also exhibits uniform performance stability, ensuring reliable 

fault prediction and enhanced grid resilience under diverse 

environmental and operational conditions. 

Table 2. Disturbance-specific evaluation of predictive fault detection accuracy 

Power Quality Disturbance 

Type 

True Positives 

(TP) 

False Negatives 

(FN) 

Detection Accuracy 

(%) 

Prediction Time 

(ms) 

Voltage Sag 468 6 98.7% 26.5 

Voltage Swell 451 11 97.6% 27.9 

Harmonic Distortion 482 8 98.4% 29.2 

Frequency Deviation 474 10 97.9% 30.1 

Transient Disturbance 462 7 98.5% 28.8 

Flicker 469 8 98.3% 27.2 
 

The summary of the gradual development of predictive 

maintenance and power quality evaluation models between 

2024 and 2025 is presented in Table 3. The facts demonstrate 

that every new generation of algorithms was better in 

predictive accuracy, computational efficiency, and 

operational intelligence.  

 

Initial deep learning methods were primarily focused on 

PQ disturbance classification. A Deep Neural Network that 

uses time to frequency feature fusion was used by Chen et al. 

2024, which reported an accuracy of 96.8 percent in the 

identification of PQ disturbance.  
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Anwar et al. 2025 introduced a framework of Vision 

Transformer / CNN in PQ classification, with a higher 

accuracy in classification of 98.94%. An EfficientNet-SE 

model with recurrence plots was created by Nasika et al., and 

it is capable of detecting and localizing PQs in real-time with 

a high accuracy rate of 98.5% and low latency <38.5 ms. The 

proposed Hybrid LSTM-Random Forest LSTM-RF 2025 

does not only stop at the classification, but also includes the 

addition of the temporal sequence modeling, predictive 

maintenance, and cost-sensitive decision support. It also has 

an accuracy of 98.3%, MAPE of 1.84, and a computing 

latency of 28.7 ms, which is a breakthrough in operational 

intelligence as compared to the previous classification-

determined research. This development shows that sequence 

modeling and ensemble learning are crucial to make power 

grids of the present time intelligent, cost-effective, and high-

fidelity predictive maintenance possible.  

Accuracy and computational performance are shown to 

be steadily increasing, as illustrated in Figure 4, 

demonstrating the superiority of the proposed Hybrid LSTM-

RF framework in real-time fault predictions with low 

latency. Although the proposed framework achieves 98.3% 

accuracy, slightly lower than the highest classification, it 

simultaneously provides predictive maintenance support, 

including MAPE 1.84% and computational latency 28.7 ms, 

which are not reported in prior literature. This demonstrates 

that the proposed approach extends PQ analysis from 

detection/classification to predictive and operationally 

actionable intelligence. 

Table 3. Chronological development of machine-learning approaches for power quality analysis and predictive maintenance 

Metrics Model Type (as reported) Accuracy (%) 
Error 

Metric 

Computation Latency 

(ms) 

L. Chen 2024 [9] 
Deep Neural Network with  

Time–Frequency Feature Fusion 
96.8 RMSE Not reported 

M. H. Anwar [8] Vision Transformer / CNN 98.94 Not reported Not reported 

D. Nasika [7] EfficientNet-SE with Recurrence Plots 98.5 Not reported <38.5 

Proposed Work, 

2025 
Hybrid LSTM–RF 98.3 MAPE = 1.84 28.7 

 

 
Fig. 4 Accuracy comparison of machine-learning models for power quality analysis 

5. Conclusion 
The hybrid LSTM-Random Forest model has achieved 

considerable gains in maintaining the quality of predictive 

power in contemporary power grids. Experimental outcomes 

demonstrated a fault prediction rate of 98.3%, a low MAPE 

of 1.84%, and a 31.6% decrease in maintenance expenses 

compared to other models from the previous year, 2022-

2024. It was demonstrated that the system was able to detect 

disturbances, including voltage sags, harmonics, and 

transients, with a latency of prediction of almost real-time 

28.7 ms, which confirms that the system is applicable in 

innovative grid applications. Wavelet-based feature 

extraction and hybrid learning were integrated, which 

improved the level of precision and reliability of PQ 

forecasting. Future directions will include the reinforcement 

learning model to apply to adaptive control, the use of edge 
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computing to implement decentralized analytics, and the 

verification of the model to ensure performance in the cyber-

physical security setting. These improvements will also 

improve the resilience, efficiency, and intelligence of 

predictive maintenance in smart energy grids of the next 

generation.
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