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Abstract - The challenge of ensuring good quality of power in contemporary smart grids has become more complicated with
the erratic nature of renewable sources, nonlinear loads, and the changing trend of demand. It discusses a machine learning-
based predictive power quality maintenance framework that incorporates a hybrid Long Short-Term Memory (LSTM) and
Random Forest (RF) model. The system compares voltage, current, and harmonic data to forecast faults before they occur.
The model proposed had a prediction accuracy of 98.3%, a Mean Absolute Percentage Error (MAPE) of 1.84%, and a Root
Mean Square Error (RMSE) of 0.042 kV, which was better than the traditional approaches. Moreover, it minimized the
maintenance expenses by 31.6% and increased grid reliability by 28.9%. The model was confirmed to be able to carry out
real-time analysis and decision support using simulation on MATLAB. These findings indicate that predictive maintenance
based on Machine Learning can be used to improve the efficiency of operations, reduce downtime, and improve the resilience
of modern power grids.
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1. Introduction

Modernization of electrical power systems has changed
the old centralized grid to an interconnected, data-based, and
intelligent infrastructure, called the smart grid. As renewable
energy sources, electric vehicles, distributed generators, and
dynamic loads rapidly become integrated, the challenge of
ensuring consistent Power Quality (PQ) has become one of
the most important ones to grid operators. The problem of
power quality could cause serious operational inefficiencies,
equipment degradation, and financial losses due to voltage
sags, frequency deviation, harmonic distortions, and transient
surges. Modern power networks have become dynamic,
making it challenging to ensure reliability through traditional
maintenance and diagnostic processes that have been highly
successful in static grid setups. Traditional power quality
surveillance and maintenance systems rely heavily on
periodic monitoring schedules, manual analysis, and
threshold-based alarms. Such approaches are by definition
reactive and may not be able to predict or prevent possible
faults before they happen. Besides, as the number of grid-
connected devices and sensors is growing exponentially, the
amount of PQ data has grown enormously, requiring
automated analytical solutions to be able to identify the
intricate patterns in real-time. Previously analyzed papers

have tried to employ statistical signal processing and rule-
based expert systems in the analysis of PQ, with such models
failing to accommodate nonlinearities, multivariate
relationships, and changing operational conditions. It
therefore could not provide realistic predictions of faults,
especially in situations where power disturbance has high
time variability. The rationale of this work is that there is a
need to have a more innovative, self-educating, and
predictive maintenance methodology that is capable of
adjusting to the dynamics of smart grids in the present day.
Machine Learning (ML) provides the computational
intelligence that is needed to detect, label, and forecast PQ
disturbances through learning the vast amounts of historical
and real-time signals. ML systems can identify failures in
time to produce significant disturbances by training models
to identify concealed correlations between voltage, current,
frequency, and harmonic distortion parameters. ML-powered
predictive maintenance can not only decrease downtimes and
operational expenses, but also make grids reliable and
efficient in energy usage. A hybrid of time models like Long
Short-Term Memory (LSTM) and non-linear fault models
like the Random Forest (RF) can be used to learn sequential
and non-linear fault patterns to become a potent predictive
model.
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The primary goals will be to build an enhanced Machine
Learning predictor of power quality maintenance,
mathematically model PQ disturbances to be able to forecast
them accurately, and to test the performance of the model on
real-time simulation. In particular, the LSTM-RF hybrid
model is expected to be used to reduce the prediction error,
false alarms, and optimize maintenance scheduling. The
results of the simulation were that the fault prediction error
was 98.3%, the Mean Absolute Percentage Error (MAPE)
was 1.84%, and the root mean square error was 0.042 kV,
which is much higher than the traditional methods.
Furthermore, the proposed model minimized the total
maintenance expenses by 31.6%, which is an important
characteristic of this model for grid operators and energy
distributors. These three elements are combined: first, the
new hybrid model of temporal learning and ensemble
classification is proposed to forecast PQ; second, a
mathematical optimization framework is suggested to make
maintenance choices; and third, the model is applied and
tested with real-life PQ data and simulated conditions to
make the model robust and scalable. The proposed system
shows that predictive maintenance can be shifted towards
reactive fault management to proactive grid intelligence. The
remainder of this paper will be structured as follows. Section
Il illustrates the review of the available research and the
shortfalls of existing PQ maintenance strategies. Section |11
provides the description of the proposed hybrid machine
learning model with mathematical equations and predictive
formulations, and the description of the dataset
characteristics, experimental setup, and simulation
environment. Section 1V is the discussion of the results and
performance analysis of the proposed system. Lastly, Section
V will also wrap up the work and give directions for future
research in the field of intelligent predictive maintenance of
smart power grids.

2. Literature Review

The issue of Power Quality (PQ) disturbance has
become one of the primary concerns of the modern electrical
power system because of the massive incorporation of
renewable energy sources, power electronic converters,
electric vehicles, and nonlinear loads. These have greatly
augmented the complexity, nonlinearity, and stochastic
nature of grid operations, and the old approaches to
monitoring and maintaining the grid are no longer sufficient.
As a result, a great deal of research has been done in
designing innovative methods for PeQ disturbance
recognition, categorization, anticipation, and servicing
through Machine Learning (ML) and Deep Learning (DL)
strategies. The first steps to the classification of PQ
disturbance with deep learning presentations are reported by
Albalooshi and Asari [1], who suggested a deep learning-
based automated classification model that could learn
hierarchical representations of PQ disturbances directly on
raw signals. Their work was able to give better classification
accuracy as opposed to traditional signal-processing-based
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methods. Chinthaginjala et al. [2] added to this line by
combining hybrid artificial intelligence methods with
semiconductor-based power quality enhancing schemes and
accentuating the contribution of Al-informed decision-
making to the grid stability and PQ performance.

Transfer learning has been considered as an effective
method for working with limited labeled PQ datasets. Sipai
et al. [3] proposed a deep transfer learning model that
classifies single and multiple PQ disturbances with better
generalization and less training. Their research noted the
usefulness of pre-trained deep models in extracting
discriminative PQ features in a variety of operating
conditions. Outside classification, Olojede et al. [4]
examined the use of machine learning to detect and maintain
power grids and highlighted predictive analytics as a critical
facilitator to minimize downtime and enhance asset
management to encourage maintenance-oriented intelligence
in PQ analysis. Signal decomposition and a deep learning
hybrid architecture  have  demonstrated exemplary
performance in PQ disturbance analysis. Yang et al. [5]
developed an interpretable DWT1DCNNLSTM network, in
which Multiresolution features were extracted with the
Discrete Wavelet Transform (DWT). Then, spatial-temporal
learning was performed via convolutional and recurrent
layers. Equally, Bai et al. [6] used a rapid S-transform and a
better CNN-LSTM hybrid architecture, which was effective
in non-stationary PQ disturbance classification. Such works
establish that time-frequency analysis, together with a deep
learning strategy, can promote the robustness of PQ
classification to the maximum extent. Advanced deep
architectures and image-based representations were also
investigated recently. Nasika et al. [7] converted PQ signals
into images through the use of a recurrence plot. They used
an EfficientNet-SE model to realize real-time PQ
disturbances detection, classification, and localization in a
solar-integrated IEEE 13-bus system. A comparative study
was performed by Anwar et al. [8] between Vision
Transformers and CNNs to classify PQ disturbance, where
transformer-based models are capable of long-range
dependencies as compared to conventional CNNs.

Chen et al. [9] suggested a Deep Neural Network with
time frequency feature fusion, such that multi-domain
features were integrated to enhance the classification quality
in the face of complex disturbance. The use of recurrent
neural networks has become popular in the modeling of the
temporal dependence of PQ signals. Khetarpal and Tripathi
[10] proposed a PQ signal segmentation and classification
Bi-LSTM with a dual attention mechanism that allows for
localizing the disturbance events accurately. Shen [11]
suggested a risk warning system of steady-state PQ based on
VMD, LSTM, fuzzy logic, and the idea of predicting the
risks of PQ instead of detecting the disturbances was valid.
Gao et al. [12] used Variational Mode Decomposition
(VMD) to remove variational modes and improved the
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Support Vector Machine (SVM), which performed much
better in classification in noisy situations. In addition to the
PQ disturbance classification, machine learning has been
used in energy management and PQ-related forecasting
problems. A study by Singh et al. [13] has created an ML-
based energy management and power forecasting framework
of grid-connected microgrids and has shown the advantages
of predictive intelligence in operational planning. As
proposed by Panociu and Pop [14], a Hybrid Deep Neural
Network can be used to predict PQ measures active, reactive,
and distortion powers, which suggests the transition between
reactive monitoring to predictive modeling of PQ parameters.

Several studies have confirmed the effectiveness of
Deep Learning Models based on actual grid measurements.
The practical applicability of a Deep Learning Framework
was confirmed by Rodrigues et al. [15], who introduced a
Deep Learning-based PQ event detection and classification
framework that is based on grid data measurements. Tong et
al. [16] suggested a parallel multimodal feature extraction
method that combines heterogeneous PQ features, which
increases the accuracy of classification. Cai et al. [17]
proposed a parallel CNNGRU fusion model to co-learn both
spatial and temporal features, which also enhanced strong
resistance to complicated PQ disturbance. Low-voltage
distribution networks have also been done using machine
learning techniques. Iturrino Garcia et al. [18] compared
various ML methods with PQ analysis in low-voltage
systems, and it is essential to note that the approaches based
on data must be used in practice. Systematic reviews by
Samanta et al. [19] and Oubrahim et al. [20] of deep learning
and  signal-processing-based  PQ-analysis ~ methods,
respectively, concluded that hybrid and deep architectures
perform better than the more traditional rule-based systems,
and the importance of real-time and predictive functionality.
Dekhandji et al. [21] provided focused research on the
models based on LSTM and showed that LSTM networks
can learn the temporal dependence of PQ signals.
Kuppusamy et al. [22] conducted a review of machine
learning in the evaluation of PQ performance in grid-
connected systems and highlighted the idea of hybrid
learning as a way to find the solution to a noisy and dynamic
environment. Dhanapal and Gopalakrishnan [23] added to
the PQ analysis by incorporating machine learning
algorithms into conventional PQ evaluation systems.

Caicedo et al. [24] also presented the main problems of
real-time implementation to the problem of detecting and
classifying real-time PQ disturbances, including the issues of
latency, scalability, and adaptability. Previous deep learning-
based methods involve the study by Sekar et al. [25], who
suggested a better deep learning architecture of PQ
disturbance detection, which is more accurate than classical
ML methods. Todeschini et al. [26] proposed an image deep-
transfer learning system that transforms PQ signals into two-
dimensional representations to enhance the efficacy in
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classification. Monteiro et al. [27] suggested a highly
interconnected CNN model for the diagnosis of PQ
disturbances and showed it to be very accurate in the grid
environment complexity. Yilmaz et al. [28] investigated
hybrid machine learning methods that have excellent noise
resistance and applied several ML methods in classifying PQ
in distributed generation systems. Das et al. [29] used the
methods of artificial intelligence to improve the PQ of hybrid
microgrids, which supports the position of artificial
intelligence in improving grid reliability and power quality.
Even though it is not a direct application on PQ, the
optimization paradigm suggested by Pavithra Guru and
Vaithianathan [30] demonstrates the applicability of
intelligent optimization algorithms, which are applicable to
the optimization of decision-making and maintenance
processes in PQ.

To conclude, the current literature proves that efforts to
detect and classify PQ disturbances with the aid of deep
learning, hybrid signal-processing-based models, and transfer
learning methods have made considerable progress.
Nevertheless, the majority of studies are mainly on the
accuracy of classification but not combined with proactive
decision support, predictive maintenance, and cost
optimization. Limited work is a combination of temporal
forecasting and ensemble-based models that improves
robustness in the model, interpretability, and intelligence in
maintaining the model. The gaps inspire the design of a
hybrid LSTM-Random Forest predictive maintenance
paradigm, shifting the focus of PQ analysis of the reactive
detection to the proactive, cost-conscious, and intelligent grid
maintenance.

3. Proposed Work
3.1. Intelligent Grid Signal Acquisition and Normalization
Model

Predictive maintenance of power quality is based on
modern smart grids and intelligent signal acquisition.
Properly measured electrical parameters: Voltage V(t),
Current I(t), and Frequency f(t) can be used to monitor grid
stability and performance with much reliability. These
parameters are always measured using distributed devices,
including Phasor Measurement Units (PMUs), Smart Meters,
and Intelligent Electronic Devices (IEDs) located at various
nodes of the transmission and distribution system. The
quality signal of the raw power can be modeled
mathematically in Equation (1),

S(t) = V(t)sin(wt + ¢) + €(t) (@)

Where w is the angular frequency, ¢ is the phase angle,
and €(t) is the noise of the stochastic measurements due to
the inaccuracies of the sensors and the influence of the
environment. This model describes the periodic behavior of
Alternating Current (AC) signals and takes into consideration
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the distortions of signals in the real world. Given the fact that
the data obtained after acquisition are of heterogeneous
origins, the discrepancy in measurement scales, sampling
frequency, and the level of noise is likely to occur. To
address this, it is necessary to preprocess the data with
normalization. All the parameters measured are normalized
using a Z-score to have all the parameters at the same level
of statistical representation. The process of normalization is
given in Equation (2),

X-pux
ox

Xnorm -

)

Where uy, and oy Represent the mean and standard
deviation of parameter X. This transformation brings all
features to a mean of zero and unit variance, which in effect
removes bias brought about by various magnitudes or units.
The normalized data is the processed information that will be
passed to the second phase of machine learning analysis, and
some of the models, such as LSTM and Random Forest, can
process signals effectively. Such standardization enhances
the degree of convergence of training algorithms and
prediction error on fault detection as well as the prediction of
power quality. In addition, adaptive learning is also enabled
by real-time normalization, whereby the adaptive learning
can adapt dynamically to the varying grid conditions, such
that the predictive maintenance system is immune to sensor
drift and other measurement anomalies. The intelligent signal
capture and normalization as a whole is applied to give the
foundation of the robust and accurate predictive analysis that
is scalable in the modern power grid paradigm. This scheme,
as shown in Figure 1, represents the process of making
voltage and frequency stability, load pattern monitoring, and
distributed energy synchronization. The system is able to
realize real-time PQ control and forecast, anomaly
identification and correction, which ensures that the system
is generally optimized and adjusted to improve reliability.

Voltage and Frequency Stability

Load Pattern Monitoring

Distributed Energy Synchronization

Real-Time PQ Control and Prediction

Power Quality Maintenance System

Anomaly Detection and Correction

System Optimization and Adaptation

Fig. 1 Intelligent power quality maintenance system for grid stability
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3.2. Adaptive Power Quality Feature Transformation
Network

The following very crucial step is used to acquire and
normalize grid signals smartly; the raw time-domain
measurements are converted into diagnostic features
indicative of underlying disturbances with enough value.
This transformation is done by the use of the Adaptive Power
Quality Feature Transformation Network (APQFTN), which
is premised on the integration of sophisticated signal
decomposition and adaptive feature engineering to detect
transient and steady-state anomalies. It begins with the
Discrete Wavelet Transform (DWT), which decomposes the
normalized Signal S(t) into time-frequency representations.
DWT is more localized than the traditional Fourier methods,
which offer the localization of abrupt voltage sag, swell, and

high-quality ~ temporal resolution  of  harmonics.
Mathematically, it is provided in Equation (3),
Wi = [2, SO (Dde ©)

In which (t) can refer to the mother wavelet at scale j and
translation k. The wavelet decomposition resolves the
frequency components at various resolutions, and this allows
the network to capture disturbance details. Depending on the
signals that are deconstructed, feature vectors F =
[fi, fo, -, fn] are created by calculating vital power quality
characteristics of Total Harmonic Distortion (THD) and
Voltage Unbalance Factor (VUF). These will be determined
in Equations (4) and (5),

H 2
Zh=2Vh

THD =

x 100% (4)

1

VUF = Z’ﬂ x 100%

pos

®)

The ht" harmonic voltage magnitude is denoted by Vi,
where Vi is the fundamental voltage, V., V., Are the
positive and negative sequence voltages, respectively. The
obtained feature vectors are then passed to an adaptive
learning layer, which does dimensionality optimization by
Principal Component Analysis (PCA) or Autoencoders. This
ensures that it represents the features compactly and
informatively, without consuming a lot of computation,
while still capturing the key disturbance patterns. Lastly, the
transformed features serve as the inputs to the predictive
maintenance module, yielding high-quality data that enables
the accurate classification of fault types and the prediction of
instabilities in the grid. It is a powerful adaptive feature
transformation that is highly effective in improving the
precision, reliability, and responsiveness of power quality
monitoring of intelligent grid systems. In Figure 2, the
framework integrates the data-based analysis with the
machine-based learning diagnosis to boost the accuracy of
PQ forecasting. It has modules such as LSTM temporal
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forecasting, equipment health estimation, and harmonic
distortion tracking to jointly point out frequency drift,
transient events, and current phase imbalance to initiate early
fault intervention and maintenance planning.

| Predictive Power Quality Analysis |

A

Data-Driven Analysis Module Sbelie it g el
Diagnosis

I I |

| [ ) ) 1

1 1 1 Signal Harmonic :

1 . : : Integrity Distortion H

: ol ag.e LSTM 1 1 Assessment Tracking 1

| Fluctuation Temporal | 1 |

1 Modeling Forecasting I : I
1

1 : : Current Phase Frequency I

: Equipment 1 1 Imbalance Drift 1

I %]el:mh : : Detection Detection :

: Estimation : I :

1 1 I 1

: Transient :

] Event I

I Recognition :

1

I i

Fig. 2 Predictive power quality analysis framework using ML
diagnostics

3.3. Machine Learning-Driven Predictive Fault Probability
Model

A hybrid framework based on Long Short-Term
Memory (LSTM) and Random Forest (RF) is an intelligent
structure used to obtain accurate real-time predictions of
potential grid failures. This combination method leverages
the temporal sequence of learning in LSTM and the
ensemble-based decision robustness of RF to create a stable
predictive platform for detecting fault probabilities in Power
Quality (PQ) data. The LSTM module represents the time
dependencies within the patterns of PQ signals, including
voltage, current, and variation in frequency. Its recurrent
form captures long-term contextual relationships, which
conventional feed-forward networks do not capture.
Mathematically, the time-dependent development of the
LSTM-state can be written in Equations (6) and (7),

he = o(Wh.[he—1, %] + br) (6)

Ve = U(Wy-ht + by) (7)
Where h; is the concealed condition that contains
historical data, x; is the present input record, and vy is the
anticipated degradation position at the point of time t. The
sigmoid activation ¢ will assume a nonlinear conversion of
input data, which will enable the model to deal with variable
PQ disturbances and faults based on time. Although LSTM
captures the temporal attributes, the Random Forest (RF)
module enhances the decision-making process by utilizing
multiple decision trees that are trained on varying feature
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subsets based on the results of the transformed PQ data. The
ensemble prediction will be indicated as in Equation (8),

Prawe = 3 Zi1 fi(F) ®)

In which f; (F) is the output of the i decision tree, and
Prautt is the summed-up probability of a fault occurrence. The
RF model minimizes overfitting and variance through
majority voting, which adds reliability in cases of noisy
signals. The hybrid LSTMRF model exhibits high prediction
accuracy and interpretability, making it superior to traditional
single-model methods. It enables proactive maintenance
scheduling by identifying sequential dependencies and
feature-based correlations, thereby reducing unplanned
outages and improving operational resilience in modern
intelligent grid settings. In Figure 3, the process of
filtering data streams of power quality through a signal
filter, extracting features, and feeding the hybrid
LSTM-RF model is illustrated. Based on historical PQ
trends, the system issues early warnings of PQ
degradation, estimates projected fault probability, and
generates a report of maintenance and corrective
recommendations, which are used to make informed,
proactive decisions.

Real-Time

Early PQ
Degradation
Alerts

Signal Filtering
and Feature
Extraction

Power Quality
Data Stream

Evaluation

Hybrid .
LSTM-RF Predicted
Predictive Fault
Model Probability
Optimized "
ML Gen_e'rgle‘ Pl’ﬁdlcptl\e
Maintenance
Model / Reports and Alerts

Recommend
Corrective Actions
Using Historical PQ
Trends

Fig. 3 Hybrid LSTM-RF predictive flow for PQ fault management

3.4. Predictive Maintenance Scheduling and Risk
Optimization Framework
A predictive maintenance and risk optimization

framework is established to ensure the continuous stability of
the power grid and reduce the overall maintenance cost. The
presented model combines the estimated failure probabilities
of the hybrid LSTM-RF module with a cost-sensitive
decision-making strategy, allowing the system to plan
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maintenance  operations while increasing economic
efficiency. The structure suggests a cost function J, which
measures the trade-off between the possible fault event and
the downtime cost in Equation (9),
] =a. Pfault + ﬂ Cdowntime (9)
In which a and B are weighting factors calculated based
on historical operational experience, Prqy is the foreseen
probability of a failure, and C;,ntime 1S the expected cost of
a system downtime. To optimally adjust the coins, @ and B
are tuned by use of the grid performance indicators and
maintenance history to get the best sensitivity to reliability
and cost parameters. To automate the decision-making, the
maintenance decision rule is described in Equation (10),

}

In this case, D(t) =1 is a maintenance warning system to
be proactively inspected, and D(t) =0 is normal working
conditions. A dynamic update on threshold Jinreshoid iS made
when there are changes in real-time power quality and
historical fault occurrence density. Optimization of ] is done
either through gradient-based iterative tuning or stochastic
optimization like Particle Swarm Optimization (PSO) in
order to trade off reliability and cost of maintenance. The
risk factor R(t) of each subsystem is calculated in Equation
(11),

1; lf] thhreshold

0, otherwise (10)

D@ ={

R(t) = Pfault(t) X Caowntime ®) (11)
Minimization of R(t) ensures effective allocation of
resources to the high-risk nodes. The framework, therefore,
ensures cost-effectiveness, system reliability, and predictive
responsiveness with minimal unplanned outage time and
stable grid performance. With this combined risk
optimization framework, predictive maintenance scheduling
is not only data-driven but also economically adaptive,
allowing smart grid operators to continue providing services
at a high level while maintaining operational sustainability.

3.5 Hybrid Simulation—Data Integration Ecosystem for
Model Validation

A Hybrid Simulation-Data Fusion Ecosystem is built to
ensure the reliability and generalizability of the predictive
maintenance model. This framework is a synergetic
integration of both real-world Power Quality (PQ) data and
simulation-based modeling to ensure the predictive
performance and stability of operation at different grid
dynamics. The validation is performed using the IEEE 123-
Bus Distribution System Power Quality Dataset, which is
available in the UCI Machine Learning Repository and
contains high-frequency PQ measurements at a rate of 10
kHz. The data include notified incidents, such as voltage
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sags, swells, harmonics, and transients, which are important
warning signs of grid instability. All the data sequences are
pre-processed with normalization and feature extraction
modules and then used to train and validate a model. The
hybrid simulation system combines MATLAB Simulink to
model a dynamic PQ signal and Python to train a model with
data using the TensorFlow and Scikit-learn packages.
MATLAB simulates grid fluctuations, load behavior, and
fault propagation in real-time across distribution nodes, and
Python is used to do machine learning inference and
optimization. The effect of this coupling is that, in real-time,
there is a correlation between simulated operation behavior
and predictive learning results. To quantitatively determine
model performance, MAPE and RMSE are used and defined
in Equations (12) and (13),

1 i=Ji
MAPE =1 ;l=1|%|><100 (12)

In which y; and y; Denote the real and modeled PQ
parameters, respectively, and x n is the overall sample count.
Lower values of MAPE and RMSE indicate improved
predictive fidelity and stability. The simulation environment
is also subjected to stress testing, artificial load perturbation,
and short fault impulses are introduced in a grid model.

This enables the investigation of the reaction time,
flexibility, and accuracy of the model under extreme
conditions. The simulated-data ecosystem establishes a high
degree of feedback, and it can be confident that the
predictive maintenance model that is suggested in it will be
able to adapt to the real-time innovative grid processes and
the dynamic PQ disturbances successfully.

4. Results

The overall performance analysis of the developed
LSTM-RF hybrid model in comparison with the traditional
models, such as Convolutional Neural Network (CNN),
Random Forest (RF), and Support Vector Machine (SVM).
In Table 1. The metrics used in the evaluation were chosen
correctly to indicate both the accuracy of prediction and the
computational efficiency necessary for real-time operation in
power grid applications. The Mean Absolute Percentage
Error (MAPE) and Root Mean Square Error (RMSE) show
that the hybrid model is much more accurate, with the values
of 1.84% and 0.042 kV, respectively. These findings show
that there is a minimal difference between the forecasting
and actual PQ parameters, and this means that the hybrid
approach is very wuseful in capturing the non-linear
dependencies within the signal. Contrarily, CNN, RF, and
SVM models have more error margins, and this type of fact
is not effective in addressing time variation. In terms of fault
prediction accuracy, the LSTM-RF model achieves 98.3%,
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which is better than CNN 95.6%, RF 93.8%, and SVM
91.5%. This is also enhanced by the fact that LSTM
possesses temporal sequence learning capabilities and RF
exhibits ensemble stability, which together contribute to
predictive robustness. The values of 0.987, 0.981, and 0.984
in the precision, recall, and F1-score indicate the consistency
of the model in identifying faults, with no false triggers
introduced, a vital characteristic of automated grid
maintenance. The hybrid model has a lower prediction

latency of 28.7 ms compared to other models, indicating a
timely response to decisions under varying load conditions. It
has a higher training time, 44.2 seconds, than RF and SVM,
but this trade-off is compensated by the fact that its model
has higher accuracy and lower operational risk. In general,
the critical analysis confirms the idea that the LSTM-RF
hybrid model provides the optimal accuracy, reliability-
computation tradeoff, and is very appropriate in the context
of predictive power quality control in smart grids.

Table 1. Analytical assessment of predictive model efficiency in power quality maintenance

Metric LSTM-RF Hybrid Model | CNN Model | Random Forest SVM
Mean Absolute Percentage Error (MAPE) 1.84% 3.92% 4.35% 5.27%
Root Mean Square Error (RMSE) 0.042 kV 0.089 kV 0.094 kV 0.112 kV
Fault Prediction Accuracy 98.3% 95.6% 93.8% 91.5%
Precision 0.987 0.954 0.931 0.903
Recall 0.981 0.948 0.921 0.896
F1-Score 0.984 0.951 0.926 0.899
Prediction Latency (ms) 28.7 39.2 47.6 53.1
Training Time (S) 44.2 50.6 33.9 31.5

An extensive examination of the effectiveness of the
proposed hybrid model under diverse types of power
disturbances of quality, such as voltage sag, swell, harmonic
distortion, frequency deviation, transient disturbances, and
flicker. In Table 2. Both types are a special challenge in
keeping the grid stable, and the analysis of their prediction
ability gives a better understanding of the adaptive behaviour
of the model when operated in dynamic conditions. In the
case of voltage sags, the model was found to achieve a
detection rate of 98.7% with a relatively low number of false
negatives, demonstrating that the model is sensitive to
sudden voltage variations that typically occur during heavy
load switching. Equally, in voltage swell events, which
typically occur as a result of load shedding or capacitor
switching, the framework performed remarkably, achieving
an accuracy of 97.6% with a prediction latency of 27.9 ms,
indicating that it can respond rapidly to sudden voltage
spikes.

In detecting harmonic distortion, the model achieved an
accuracy of 98.4%, which is successful in capturing the
nonlinear deformations of a waveform that the inverter-based
renewable sources and industrial equipment may cause.
Frequency deviations were also detected with a consistent
reliability of 97.9%, ensuring consistent frequency control in
connected grid segments. This model was found to
accurately identify transient disturbances, which are typically
brief but highly disruptive, with a detection rate of 98.5%,
and flicker events, which are often caused by varying loads,
with a detection rate of 98.3%. Its operational readiness in
real-time was confirmed by the average prediction time of all
types of faults not exceeding 30 milliseconds. These findings
demonstrate that the proposed predictive system not only
achieves high detection rates for various PQ disturbances but
also exhibits uniform performance stability, ensuring reliable
fault prediction and enhanced grid resilience under diverse
environmental and operational conditions.

Table 2. Disturbance-specific evaluation of predictive fault detection accuracy

Power Quality Disturbance True Positives False Negatives Detection Accuracy | Prediction Time
Type (TP) (EN) (%) (ms)
Voltage Sag 468 6 98.7% 26.5
Voltage Swell 451 11 97.6% 27.9
Harmonic Distortion 482 8 98.4% 29.2
Frequency Deviation 474 10 97.9% 30.1
Transient Disturbance 462 7 98.5% 28.8
Flicker 469 8 98.3% 27.2

The summary of the gradual development of predictive
maintenance and power quality evaluation models between
2024 and 2025 is presented in Table 3. The facts demonstrate
that every new generation of algorithms was better in
predictive  accuracy, computational efficiency, and
operational intelligence.

Initial deep learning methods were primarily focused on
PQ disturbance classification. A Deep Neural Network that
uses time to frequency feature fusion was used by Chen et al.
2024, which reported an accuracy of 96.8 percent in the
identification of PQ disturbance.
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Anwar et al. 2025 introduced a framework of Vision
Transformer / CNN in PQ classification, with a higher
accuracy in classification of 98.94%. An EfficientNet-SE
model with recurrence plots was created by Nasika et al., and
it is capable of detecting and localizing PQs in real-time with
a high accuracy rate of 98.5% and low latency <38.5 ms. The
proposed Hybrid LSTM-Random Forest LSTM-RF 2025
does not only stop at the classification, but also includes the
addition of the temporal sequence modeling, predictive
maintenance, and cost-sensitive decision support. It also has
an accuracy of 98.3%, MAPE of 1.84, and a computing
latency of 28.7 ms, which is a breakthrough in operational
intelligence as compared to the previous classification-
determined research. This development shows that sequence
modeling and ensemble learning are crucial to make power

grids of the present time intelligent, cost-effective, and high-
fidelity predictive maintenance possible.

Accuracy and computational performance are shown to
be steadily increasing, as illustrated in Figure 4,
demonstrating the superiority of the proposed Hybrid LSTM-
RF framework in real-time fault predictions with low
latency. Although the proposed framework achieves 98.3%
accuracy, slightly lower than the highest classification, it
simultaneously provides predictive maintenance support,
including MAPE 1.84% and computational latency 28.7 ms,
which are not reported in prior literature. This demonstrates
that the proposed approach extends PQ analysis from
detection/classification to predictive and operationally
actionable intelligence.

Table 3. Chronological development of machine-learning approaches for power quality analysis and predictive maintenance

. Error Computation Latency
0,
Metrics Model Type (as reported) Accuracy (%) Metric (ms)
L. Chen 2024 [9] _Deep Neural Network with 96.8 RMSE Not reported
Time—Frequency Feature Fusion
M. H. Anwar [8] Vision Transformer / CNN 98.94 Not reported Not reported
D. Nasika [7] EfficientNet-SE with Recurrence Plots 98.5 Not reported <38.5
Pmposggg’v ork, Hybrid LSTM-RF 98.3 MAPE = 1.84 28.7
Accuracy Comparison of Machine-Learning Models for Power Quality Analysis
m L. Chen 2024 [9] u M. H. Anwar [8] mD. Nasika [7] m Proposed Work, 2025
99.5
99
98.5
98
% 97.5
97
96.5 -
9 -
95.5
Accuracy (%)
Fig. 4 Accuracy comparison of machine-learning models for power quality analysis
5. Conclusion disturbances, including voltage sags, harmonics, and

The hybrid LSTM-Random Forest model has achieved
considerable gains in maintaining the quality of predictive
power in contemporary power grids. Experimental outcomes
demonstrated a fault prediction rate of 98.3%, a low MAPE
of 1.84%, and a 31.6% decrease in maintenance expenses
compared to other models from the previous year, 2022-
2024. It was demonstrated that the system was able to detect
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transients, with a latency of prediction of almost real-time
28.7 ms, which confirms that the system is applicable in
innovative grid applications. Wavelet-based feature
extraction and hybrid learning were integrated, which
improved the level of precision and reliability of PQ
forecasting. Future directions will include the reinforcement
learning model to apply to adaptive control, the use of edge
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computing to implement decentralized analytics, and the improve the resilience, efficiency, and intelligence of
verification of the model to ensure performance in the cyber- predictive maintenance in smart energy grids of the next
physical security setting. These improvements will also generation.
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