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Abstract - Non-Orthogonal Multiple Access (NOMA) is considered as one of the emerging multi-access technologies for 5G 

communication, and also can enhance the system’s performance. It is integrated with Cell-Free Massive Multiple Input Multiple 

Output (CF-MA-MIMO) to support multiple users, producing a high gain. Optimizing spectral and energy efficiencies is a 

challenging process due to the non-linear programming involved. The proposed model considered the downlink transmission of 

the Cell Free-Massive-Multiple Input Multiple Output- Non-Orthogonal Multiple Access (CF- MA-MIMO-NOMA). This work 

presents an enhanced approach for channel estimation and optimal power allocation in CF- MA-MIMO-NOMA. Initially, the 

user equipment estimates the channels for every user and then provides them to the MA-MIMO. Then, the Expectation 

Maximization (EM) is utilized for Channel Estimation (CE), and the metaheuristic algorithm Adaptive Squirrel Search 

Optimization (ASSO) is utilized for optimal power allocation. The proposed ASSO attained better spectral efficiency, energy 

efficiency, and sum rate by the power allocation at the different users and SNR values. 

Keywords - Cell Free-Massive-Multiple-Input Multiple-Output, Non-Orthogonal Multiple Access, Expectation Maximization, 

Adaptive Squirrel Search Optimization. 

1. Introduction 
Due to the development of emerging applications, there is 

a demand for ultra-high-speed connections for upcoming 

wireless communication. In the year 2020, there are 

approximately 20 billion devices linked to the Internet, and by 

the year 2025, it is predicted that it may exceed 23 billion 

devices [1, 2]. The conventional Orthogonal Multiple Access 

(OMA) approaches are reaching the fundamental limits, and 

they are not able to fulfill further requirements. NOMA is an 

emerging solution that increases the Spectral Efficiency (SE), 

Energy Efficiency (EE), and user fairness of Conventional 

Communications [3]. In NOMA, multiple User Equipment 

(UE) are utilized for transmitting and receiving the signals 

simultaneously using time, frequency, and code domains. 

Massive-Multiple Input Multiple Output (MA-MIMO) is an 

efficient model utilized in wireless communication, and it 

attains better bandwidth and maximum SE [4-6]. In MA-

MIMO systems, different antennas are employed on the 

transmitter as well as the receiver side. In the MIMO system, 

each antenna exploits the Radio Frequency (RF) chain to 

realize the processing of the signal in the digital format [7]. 

The MA-MIMO utilizes multiple RF chains to utilize 

excessive energy. NOMA achieves significant outcomes in 

the multi-access issues and satisfies the needs of 5G and 6G 

networks. Furthermore, it enhances the quality of service 

(Quality of Service), such as SE and mass connectivity [8]. 

The primary aim of the NOMA is to exploit the power 

effectively for multiple users and utilize the Successive 

Interference Cancellation (SIC). For increasing the SE, the 

MA-MIMO is integrated with NOMA, and it is proven that 

NOMA can enhance the SE significantly when compared to 

the traditional OMA [9]. In the NOMA system, many users 

are supported by the SIC and intra-beam superposition. The 

usage of power domains is carried out for the enhancement of 

SE with the users and several channel gains [10-12].  Further, 

due to the advancement of technology, there is a need for high 

data rates, high SE, and low latency. 

The utilization of distributed Access Points (APs) makes 

the effective spatial resource allocation [13]. But the inter-cell 

interference is basic in every cell-centric model, and it is 

becoming a main performance-limiting criterion. For 

addressing this issue, CF-MA-MIMO-NOMA systems are 

introduced. CF-MA-MIMO-NOMA is emerging in recent 

times due to the integration of MA-MIMO and the distributed 

antenna model, in which the APs are linked to the Central 

Processing Unit (CPU). This model simultaneously handles a 

larger number of small users [14]. The Power Allocation (PA) 

and precoding are carried out in the CPU, and the CF criteria 

provide high throughput, SE, and EE. The primary aim of this 

system is to allocate a larger number of spatially distributed 

APs to allocate different single antenna users in the same 
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frequency and time domain. Hence, every user is considered 

by every AP, and it does not undergo cell-free. As mentioned 

earlier, the MA-MIMO-NOMA provides a better potential for 

supporting large connection requirements of the upcoming 

generation [15, 16]. Hence, the integration of MA-MIMO-

NOMA with CF may provide better performance, and it has 

become a significant topic of research. The conventional PA 

models offer accurate computational allocation, but lack in 

allocating optimal power to the users. In some of the MA-

MIMO-NOMA, the users are split into clusters, and the users 

in intra clusters are split by the SIC. Then, the inter-cluster 

interference was minimized by the precoding approach. 

However, these approaches minimized the power efficiency of 

the system. The optimal power allocation process is carried 

out by the Adaptive Squirrel Search Optimization (ASSO). 

This optimizer is selected because this algorithm enhances the 

convergence speed and performance. Further, this optimizer 

allocates the users with better Energy Efficiency (EE) and 

Spectral Efficiency (SE) for providing an efficient strategy for 

PA.  

One of the peculiarities of the suggested CF-MA-MIMO-

NOMA system is that it is connected to an adaptive ASSO-

based power allocation approach that will simultaneously 

maximize the spectral efficiency and energy efficiency. The 

collaboration between distributed access points and intelligent 

power management is helpful to suppress interference caused 

by NOMA as well as mitigate the residual error of less-than-

perfect successive interference cancellation. Also, the 

described architecture is resilient to imperfect knowledge of 

channel state information and is scalable because it avoids 

centralized control and inflexible distribution of resources. It 

provides better throughput, fairness, and energy efficiency 

compared to the current CF-MIMO and MIMO-NOMA 

designs. 

The rest of the work is sorted as follows: Section 2 states 

the recent literature works based on the CF-MA-MIMO-

NOMA networks; Section 3 shows the proposed CE and PA 

with a mathematical description; Section 4 analyzes the 

results' implications, and Section 5 ends with a conclusion. 

2. Related work  
Initial studies on Cell-Free Massive Multiple-Input 

Multiple-Output (CF-MIMO) systems have focused on 

reducing energy consumption by joint Power Allocation (PA) 

and load balancing, namely, of downlink transmit power as 

well as Access Point (AP) activation number. These methods 

were very power-saving and less complex algorithms; they did 

not consider user clustering and interference due to Non-

Orthogonal Multiple Access (NOMA) [17]. Machine-

learning-based clustering tools were introduced to CF-MIMO-

NOMA designs to deal with the lack of adaptive user 

segmentation, e.g., enhanced K-means. These techniques 

model intra-cluster pilot contamination, inter-cluster 

interference, and imperfect Successive Interference 

Cancellation (SIC) and optimize PA to Spectral Efficiency 

(SE), but at the cost of the clustering being kept constant [18]. 

PA investigations without instantaneous Channel State 

Information (CSI) had used backhaul combining and user 

grouping to enhance worst-case uplink Signal-To-

Interference-Plus-Noise Ratio (SINR), but not joint 

optimization with learning-based clustering and SE 

maximization [19]. In millimeter-wave MIMO-NOMA, it was 

suggested that user grouping based on channel correlation, 

along with a convex PA model, mitigates interferences; 

however, the capability to withstand imperfect CSI and 

dynamic mobility constraints was not quite strong [20]. The 

MIMO-NOMA architectures using hybrid-pre-coding and 

employing Simultaneous Wireless Information And Power 

Transfer (SWIPT) cluster-head selection and an iterative 

optimization scheme overcame non-convexity but at the cost 

of prohibitive computational complexity in real-time 

adaptability [21]. Strategies of fairness-oriented precoding 

and PA based upon Semi-Definite Relaxation (SDR), 

Successive Convex Approximation (SCA), and Minimum 

Mean-Square Error (MMSE)-equivalence provided better 

balancing of the rates in MIMO-NOMA types of systems; 

however, the scalability to large antenna-to-user ratios was not 

quite achieved [22]. Channel capacity was enhanced by the 

joint choice of user patterns and PA, based on a matching 

theory, but the system was not adaptable to cell-free 

topologies and changing traffic patterns [23]. 

The occurrence of the Concentration-Free Massive 

MIMO With Non-Orthogonal Multiple Access (CF-MA-

MIMO-NOMA) in scenarios where there is a space-correlated 

Rician fading has been explored with the formulation of 

closed equations of Spectral Efficiency (SE) and Energy 

Efficiency (EE). Such analyses have considered imperfect 

Successive Interference Cancellation (SIC) and pilot 

contamination; however, the reliance on statistical channel 

models has limited the generality of the conclusions [24]. In 

the second research, opportunities realized with the use of 

NOMA-based coexistence in CF-MA-MIMO architectures 

involved the opportunistic alignment of interference, which 

reduced the antenna overhead. The method, however, did not 

include adaptive power distribution and an innovative 

clustering algorithm [25]. The third body of work applied the 

deep-learning approaches, namely, Bidirectional Gated 

Recurrent Units (Bi-GRU) with ensemble learning models, to 

perform channel estimation. However, channel estimation was 

done without any joint resource optimization [26, 27]. 

However, such systems failed to jointly optimize the 

clustering, power allocation, and spectral resource allocation 

[28]. 

Deep reinforcement learning models that combine 

improved K-means clustering, DQN-based sub-channel 

assignment, and DDPG-based power assignment have proven 

to be able to fast-track convergence rates and scale-up system 

capacity in millimeter-wave massive MIMO-NOMA systems, 
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although at a high training complexity cost [29]. Through 

battery optimization of energy harvesting and data 

transmission in SWIPT-enabled millimeter-wave massive 

MIMO-NOMA systems, a significant increase in the energy 

efficiency was realized through the implementation of hybrid 

precoding schemes and iterative convex optimization, but this 

methodology did not have an intrinsic adaptability through 

learning [30]. Hybrid machine-learning/deep-learning 

frameworks that combine LSTM-based spectrum prediction 

with attention-driven clustering have managed to increase 

spectral efficiency at the cost of power consumption. 

However, they are still not sufficient to implement NOMA-

specific interference and power allocation optimization [31]. 

Detection and channel estimation algorithms received the 

assistance of deep learning to provide energy and spectral 

efficiency gains in IoT-based MIMO-NOMA systems; 

however, power consumption versus scalability trade-offs 

were still present [32]. Federated meta-reinforcement learning 

enables quick adaptation of power distribution and sub-band 

allocation in multi-cell NOMA [33]. Optimization of 

beamforming and power assignment in IRS-aided massive 

MIMO networks maximized weighted sum-rate in both 

perfect and imperfect channel state information conditions, 

but did not consider NOMA or user-centric clustering [34]. 

Wavelet-based NOMA schemes with deep learning 

optimization specifically optimized to user-centric CF-

massive MIMO systems have recorded a reduction of bit-error 

rate and higher sum-rate achievable; nevertheless, the 

simultaneous optimization of clustering, power allocation, and 

spectral resource optimization was not achieved [35]. 

 
Fig. 1 Workflow of the proposed CF- MA-MIMO-NOMA model ASSO 

3. Proposed Method  
In this work, CF-MA-MIMO-NOMA, the CE and 

optimal power allocation are carried out by the EM and ASSO. 

Figure 1 represents the workflow of the proposed CF-MA-

MIMO-NOMA model. 

3.1. System Model 

In this work, the downlink transmission of CF-MA-

MIMO-NOMA and the model 𝑀number of 𝐴𝑃𝑠 𝐿𝑁 single 

antenna users are considered. The users are set into 𝑁a number 

of clusters and 𝐿users 𝐿 ≥ 2 per clusters and NOMA is 

provided between the users. 𝑀Antennas and every 𝐴𝑃are 

integrated with the CPU through a backhaul link for achieving 

coherence processing. This model has the payload data, and 

every 𝐴𝑃calculation is performed by the precoder on the basis 

of the channel medium among the users 𝐴𝑃. Figure 2 (a) 

shows the system model of CF-MA-MIMO-NOMA, and 

Figure 2 (b) shows the 𝐴𝑃transfer to 4 clusters, each of which 

has 3 users. The downlink medium among the 𝑚𝑡ℎ
-𝐴𝑃 is given 

as𝑚 = 1,2, . . . . . ,𝑀. The 𝑙𝑡ℎuser𝑙 = 1,2, . . . . . , 𝐿in the 

𝑛𝑡ℎcluster is represented as 𝑛 = 1,2, . . . . . , 𝑁. 

ℎ𝑚𝑛𝑙~𝑐𝑁(0, 𝛽𝑚𝑛𝑙𝐼𝑄) (1) 

Where 𝛽𝑚𝑛𝑙is the group of massive scale fading terms, 

and ℎ𝑚𝑛𝑙~𝑐𝑁(0,1) is the small scale fading term. 
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Fig. 2(a) CF-MA-MIMO-NOMA Model, and (b) 𝑨𝑷Transfer to 4-Clusters. 

3.2. Downlink Transmission Model 

The superposition coding data signal 𝑝𝑛𝑙for the 𝑙𝑡ℎuser 

having 𝑛𝑡ℎ
a cluster is given as: 

𝑅𝑛 = ∑ √𝑝𝑛𝑙
𝐿
𝑙=1 𝑅𝑛𝑙,  ∀𝑛 (2) 

 Where 𝑅𝑛𝑙is the power allocated to the 𝑙𝑡ℎuser having 

𝑛𝑡ℎ
a cluster. Here 𝑝𝑛𝑙 = 𝑝𝑡𝛼𝑛𝑙, in which 𝑝𝑡  is the overall 

power is transmitted to every 𝐴𝑃 𝛼𝑛𝑙 group of power terms. 

Let the 𝑚𝑡ℎ
-𝐴𝑃transmitting the signal is given as: 

𝑌𝑚 = ∑ 𝑈𝑚𝑛𝑅𝑛
𝑁
𝑛=1  (3) 

Where 𝑈𝑚𝑛is the signal’s spatial directivity provided to 

the user, presented in 𝑛𝑡ℎ
a cluster. The transmitted signals are 

preceded by a signal 𝐴𝑃 for every user in a similar cluster. The 

users𝐿𝑁 are distributed at the same time using 𝑀a number of 

𝐴𝑃𝑠. During the signal reception, 𝑙𝑡ℎa user having 𝑛𝑡ℎ
a cluster 

is represented as: 

𝑧𝑛𝑙 = ∑ √𝑝𝑛𝑙
𝑀
𝑚=1 ℎ𝑚𝑛𝑙

𝐻 𝑈𝑚𝑛𝑅𝑛𝑙 +

∑ ℎ𝑚𝑛𝑙
𝐻 𝑈𝑚𝑛 ∑ √𝑝𝑛𝑖

𝐿
𝑖=1

𝑀
𝑚=1 𝑅𝑛𝑖 +

∑ ℎ𝑚𝑛𝑙
𝐻 ∑ 𝑈𝑚𝑛′ + 𝜂𝑚𝑙

𝐿
𝑖=1

𝑀
𝑚=1   (4) 

Where ∑ √𝑝𝑛𝑙
𝑀
𝑚=1 ℎ𝑚𝑛𝑙

𝐻 𝑈𝑚𝑛𝑅𝑛𝑙 is the desired signal, 

∑ ℎ𝑚𝑛𝑙
𝐻 𝑈𝑚𝑛 ∑ √𝑝𝑛𝑖

𝐿
𝑖=1

𝑀
𝑚=1 𝑅𝑛𝑖 and ∑ ℎ𝑚𝑛𝑙

𝐻 ∑ 𝑈𝑚𝑛′ +𝐿
𝑖=1

𝑀
𝑚=1

𝜂𝑚𝑙are the inter- and intra-cluster interferences. The SIC is 

transmitted at the receiving side by every user to remove the 

interferences produced by the users having less gain.  

3.3. Channel Estimation 

In this work, the CE process is carried out using the EM. 

The EM is the iterative approach for finding Maximum 

Likelihood (ML) parameter estimation. There are two stages 
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carried out in the EM: (i) expectation of the Log Likelihood 

(LL) implemented by the present parameter estimation, and 

(ii) maximization of the LL obtained in the expectation stage 

for computing variables. Let the receiving signal have 

the𝑗𝑡ℎsubcarrier given as: 

𝑧𝑗 = 𝑦𝑗𝐵𝑗𝛼 + 𝑢𝑗 (5) 

Where 𝑦𝑗is the transmitting signal, 𝐵𝑗is the fundamental 

matrix, 𝛼is the basic coefficient, and 𝑢𝑗is the Gaussian noise. 

Hence, the conditional Probability Density Function (PDF) is 

represented as: 

𝑓(𝑧𝑗|𝑦𝑗; 𝛼) =
1

𝜋𝜎𝑢
2 𝑒𝑥𝑝 {−

|𝑧𝑗−𝑦𝑗𝐵𝑗𝛼|2

𝜎𝑢
2 } (6) 

Where 𝜎𝑢
2 is the variance. When there are 𝐺feasible 

transmitting symbol values, and 𝑦𝑔 the transmitting symbols 

are. Joint-PDF is summed with the 𝑓(𝑧𝑗𝑦𝑔; 𝛼) entire 𝑦𝑔 , and 

the PDF of 𝑧𝑗is computed as: 

𝑓(𝑧𝑗; 𝛼) = ∑ 𝑓(𝑧𝑗𝑦𝑔; 𝛼)𝑦𝑔
 (7) 

𝑓(𝑧𝑗|𝑦𝑗; 𝛼) =
1

𝐺𝜋𝜎𝑢
2 ∑ 𝑒𝑥𝑝 {−

|𝑧𝑗−𝑦𝑗𝐵𝑗𝛼|2

𝜎𝑢
2 }𝑦𝑔

 (8) 

The LL of 𝛼is given as: 

𝐿(𝛼) = 𝑙𝑛 𝑓 (𝑍; 𝛼) = 𝑙𝑛 𝑓 (𝑧𝑗; 𝛼) (9) 

= −𝐺𝜋𝜎𝑢
2 + 𝑙𝑛 ∑ 𝑒𝑥𝑝 {−

|𝑧𝑗−𝑦𝑗𝐵𝑗𝛼|2

𝜎𝑢
2 }𝑦𝑔

 (10) 

The ML estimation of 𝛼is represented as: 

𝛼
∧

= 𝑎𝑟𝑔𝑚𝑎𝑥
𝛼

 𝐿(𝛼) (11) 

It is observed that the EM model uses iteration for 

obtaining ML estimation, and the initial estimate of 𝛼by (11) 

is 𝛼(1)and the 𝑚𝑡ℎis 𝛼(𝑚) 

(i) E-stage (expectation-stage): Calculate the E-stage of 

the LL function as: 

𝐿𝐵(𝛼|𝛼(𝑚)) = 𝐸𝑓(𝑌|𝑍;𝛼(𝑚))[𝑙𝑛 𝑓 (𝑍, 𝑌, 𝛼)] (12) 

(ii) M-stage (Maximization-stage): Calculate the 

variables of further iteration  𝛼(𝑚+1)that increase 𝐿𝐵(𝛼|𝛼(𝑚)). 

𝛼(𝑚+1) = 𝑎𝑟𝑔𝑚𝑎𝑥
𝛼

𝐿𝐵(𝛼|𝛼(𝑚)) (13) 

The convergence criterion is given as: 

|𝐿𝐵(𝛼(𝑚)) − 𝐿𝐵(𝛼(𝑚+1))| ≤ 𝑇ℎ (14) 

Where 𝑇ℎ is the threshold value. The computation of 

𝐿𝐵(𝛼|𝛼(𝑚)) is given as: 

)|( )(m

BL  ∑ 𝑓(𝑦𝑔|𝑧𝑗; 𝛼
(𝑚))𝑦𝑔

− 𝑙𝑛(𝐺𝜋𝜎𝑢
2) +

{−
|𝑧𝑗−𝑦𝑗𝐵𝑗𝛼|2

𝜎𝑢
2 } (15) 

3.4. Optimal Power Allocation 

The primary aim of the proposed optimal power 

allocation is to maximize the SE and EE of the model via the 

proposed optimization model. The ASSO carries out this 

process. It is an enhanced version of SSO, and it provides 

better convergence performance when compared to the 

standard SSO. The ASSO combines the SSO and IWA 

(Invasive Weed Algorithm). The algorithm takes as inputs the 

number of users and access points, transmit power constraints, 

channel information, SE–EE fitness function, population size, 

predator probability, and maximum iterations.  

Unlike conventional optimization techniques and 

standard SSO, ASSO introduces adaptive reproduction and 

Lévy flight–based exploration, which helps avoid premature 

convergence and ensures robustness in non-convex 

optimization scenarios. The reproduction process in IWA is 

included with the SSO for improving the convergence 

performance. This optimizer allocates the power to the users 

with high efficiency in a better way. For the network to be 

efficient in the user’s optimal allocation on the basis of power 

with high SE and EE, the fitness of the network should be 

maximum. 

𝐹𝑡 = 𝑀𝑎𝑥(𝑆𝐸, 𝐸𝐸) (16) 

This optimizer mimics the dynamic characteristics of 

squirrels’ locomotion, which is known as sliding. The value of 

fitness shows the Hickory tree 𝐹𝑆ℎ𝑛𝑡
𝑡  (optimal food source), 

the acorn tree 𝐹𝑆𝑎𝑐𝑡
𝑡  (typical food), and the normal tree 𝐹𝑆𝑛𝑜𝑡

𝑡  

(no food source). During the exploration stage, based on the 

value of fitness, some FS relocate to the optimal and normal 

food source. During the exploitation stage, the probability of 

predator occurrence is taken into account. Let us consider that 

there are 𝑙several FS in the forest, and the location of 

𝑗𝑡ℎsquirrel FS is defined by a vector, and it is indicated in a 

matrix. 

𝐹𝑠 =

[
 
 
 
 
𝐹𝑠1,1 𝐹𝑠1,2  ⋯ ⋯ 𝐹𝑠1,𝑑𝑖𝑚

𝐹𝑠2,1 𝐹𝑠2,2  ⋯ ⋯ 𝐹𝑠2,𝑑𝑖𝑚

⋮  ⋮   ⋮   ⋮  ⋮
⋮  ⋮   ⋮   ⋮  ⋮
𝐹𝑠𝑙,1 𝐹𝑠𝑙,2  ⋯ ⋯ 𝐹𝑠𝑙,𝑑𝑖𝑚[]]

 
 
 
 

 (17) 

Initializing every FS position is represented as: 
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𝐹𝑆𝑗 = {𝐹𝑆𝐿𝐿 + 𝑈𝑃(0,1) × (𝐹𝑆𝑈𝐿 − 𝐹𝑆𝐿𝐿) (18) 

Where 𝐹𝑆𝐿𝐿 𝐹𝑆𝑈𝐿  are the lower and upper ranges of 

𝑗𝑡ℎsquirrel. Let us consider that there are 𝑀several trees in a 

forest. The fitness of the position for every FS is measured 

using the solution vector, and values are set in the matrix 

below: 

𝑓 =

[
 
 
 
 
𝑓1([𝐹𝑠1,1 𝐹𝑠1,2  ⋯ ⋯ 𝐹𝑠1,𝑑𝑖𝑚

𝑓2([𝐹𝑠2,1 𝐹𝑠2,2  ⋯ ⋯ 𝐹𝑠2,𝑑𝑖𝑚

⋮  ⋮   ⋮   ⋮  ⋮
⋮  ⋮   ⋮   ⋮  ⋮
𝑓𝑚([𝐹𝑠𝑙,1 𝐹𝑠𝑙,2  ⋯ ⋯ 𝐹𝑠𝑙,𝑑𝑖𝑚[]]

 
 
 
 

 (19) 

In the proposed ASSO, the reproduction process of IWA 

is evaluated for producing new-spring. The iteration 𝜎𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛  

is utilized to update the position on three different strategies. 

Strategy 1:FSact
t  The FS on a regular food source (acorn 

nut tree) is moved to the FShnt
t optimal food source (hickory 

nut tree). When Rand1 ≥ Ppothe offspring of each FS on the 

FShnt
t is computed by: 

𝜎𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 =
(𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑚𝑚𝑎𝑥

(𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑚𝑚𝑎𝑥[(𝜎𝐼−𝜎𝐹)+𝜎𝐹]
 (20) 

Where 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑚𝑎𝑥is the maximum iteration, 𝑚is the 

non-linear deviation, 𝜎𝐼is the initial standard deviation, and 

𝜎𝐹is 
the final standard deviation. 

FS move from position of FS on the𝐹𝑆ℎ𝑛𝑡
𝑡  is expressed as: 

𝐹𝑆𝑎𝑐𝑡
𝑡+1 = {

𝐹𝑆𝑎𝑐𝑡
𝑡 + 𝑔𝑙𝑑𝐺𝐿𝑐(𝐹𝑆ℎ𝑛𝑡

𝑡 − 𝐹𝑆𝑎𝑐𝑡
𝑡 ) 𝑅𝑎𝑛𝑑1 ≥ 𝑃𝑝𝑜

𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛      𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒
 (21) 

Where𝐹𝑆𝑎𝑐𝑡
𝑡+1is the new position of the squirrels, 𝑔𝑙𝑑 is the 

glide distance, 𝐺𝐿𝑐is the gliding constant, 𝑅𝑎𝑛𝑑1is the 

random number, and 𝑃𝑝𝑜is the probability of predator 

occurrence. 

Strategy 2: When Rand2 ≥ Ppothe offspring of each FS 

on the FSact
t is computed by Equation (19), and the positions 

are recomputed. The following expression is used for 

computing the FS from a no food source relocated to the 

regular food source FSnot
t to obtain more energy.  

𝐹𝑆𝑛𝑜𝑡
𝑡+1 = {

𝐹𝑆𝑛𝑜𝑡
𝑡 + 𝑔𝑙𝑑𝐺𝐿𝑐(𝐹𝑆𝑎𝑐𝑡

𝑡 − 𝐹𝑆𝑛𝑜𝑡
𝑡 ) 𝑅𝑎𝑛𝑑2 ≥ 𝑃𝑝𝑜

𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛      𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒
 (22) 

Where 𝐹𝑆𝑛𝑜𝑡
𝑡  is FS on the no food source (normal tree), 

and 𝑅𝑎𝑛𝑑2is the random number. 

Strategy 3: When 𝑅𝑎𝑛𝑑3 ≥ 𝑃𝑝𝑜the offspring of each FS 

on the 𝐹𝑆ℎ𝑛𝑡
𝑡 is computed by Equation (19). Then, the FS from 

no food source relocates to the optimal food source, and it is 

expressed as: 

𝐹𝑆𝑛𝑜𝑡
𝑡+1 = {

𝐹𝑆𝑛𝑜𝑡
𝑡 + 𝑔𝑙𝑑𝐺𝐿𝑐(𝐹𝑆ℎ𝑛𝑡

𝑡 − 𝐹𝑆𝑛𝑜𝑡
𝑡 ) 𝑅𝑎𝑛𝑑3 ≥ 𝑃𝑝𝑜

𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛      𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒
 (23) 

Where 𝑅𝑎𝑛𝑑3is the random number.  

The gliding model of FS is stated as the total of the drag 

force 𝐷𝑓 , and the lift 𝐿 generates the resulting force 𝑅. 

𝐿

𝐷𝑓
=

1

𝑡𝑎𝑛 𝜙
 (24) 

Where 𝜙is the gliding angle.  

Variation in seasonal monitoring is developed for 

maintaining the trade-off between the exploration and 

exploitation capacity. This characteristic is defined as: 

𝑆𝑐 = √(𝐹𝑆𝑎𝑐𝑡
𝑡 − 𝐹𝑆ℎ𝑛𝑡

𝑡 )

2

 (25) 

During the winter season, the FS randomly relocated to 

get the best resources, and it is expressed as: 

𝐹𝑆𝑛𝑜𝑡
𝑡 = 𝐹𝑆𝑙𝑜 + 𝐿𝑒𝑣𝑦 + (𝐹𝑆𝑢𝑝 − 𝐹𝑆𝑙𝑜)

 
(26) 

Where 𝐿𝑒𝑣𝑦 is the Lévy flight utilized for finding new 

candidate solutions and enhancing the exploration capacity.  

The output of the process (Algorithm 1) is the optimal power 

allocation vector for all users, along with the corresponding 

maximum SE and EE values, which are used to validate the 

effectiveness. 

Algorithm 1: ASSO for Optimal Power Allocation 

Inputs: Number of users, number of Flying Squirrels 

(FS), Power Constraints, SE–EE objective function, 

Predator Probability, Maximum Iterations 

Output: Optimal Power Allocation Vector Maximizing 

Spectral Efficiency (SE) and Energy Efficiency (EE)  

1 Initialize FS positions randomly within power 

bounds and classify them as hickory, acorn, or 

normal trees based on fitness 

2 Evaluate SE–EE fitness and identify the best FS 

(hickory tree) 

3 Move FS from acorn to hickory tree using gliding 

behavior and IWA-based reproduction. 

4 Relocate FS from a normal tree to an acorn tree 

using random displacement. 
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5 Directly relocate low-fitness FS from the normal 

tree to the hickory tree. 

6 Modify FS movement based on predator 

occurrence probability. 

7 Apply Lévy flight–based relocation during winter 

to enhance exploration. 

8 Recalculate fitness, update FS positions, and retain 

the best solution 

9 Stop at convergence or maximum iteration and 

output optimal power allocation. 

 

4. Results and Discussion  
The following sections ensure experimental analysis and 

discussion of the proposed CE and optimal power allocation. 

The simulative analysis is carried out in the MATLAB 

platform, which has 8GB RAM and a 64-bit operating system. 

Table 1 shows the simulation parameters utilized for the 

experimentation process. 

Table 1. Simulation parameters 

Parameters Values 

No. of transmitting antennas 16 

No. of receiving antennas 16 

Users 40 

No. of 𝐴𝑃 100 

Coherence time 100 

bandwidth 20 MHz 

Fading channel Raleigh fading 

Maximum power allocated to clusters -30 dBm 

Length of block 200 symbols 

 

 

4.1 Evaluating Measures 

The evaluation measures, like BER, achievable sum rate, 

SE, and EE, are computed.  

BER: It computes the errors in the receiving bits to the 

communicating medium and is varied by the synchronization 

errors, noise, interference, and distortion. It is the proportion 

of the number of bits received without error, NE, the Total 

number of transmitted bits over a measurement interval of 

time, NT. Therefore,  

𝐵𝐸𝑅 =
𝑁𝐸

𝑁𝑇
 (27) 

Achievable Sum Rate: It is the most widely utilized 

performance metric for computing the downlink CF-MA-

MIMO-NOMA. This measure computes the codes with high 

maximum error probability.  

SE: It computes the mean number of information bits over 

the communication channel, and it is expressed as: 

𝑆𝐸 =
𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡

𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ
 (28) 

EE: It is computed by the number of bits that are 

transferred realistically per joules, and it is given as: 

𝐸𝐸 =
𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡

𝑃𝑜𝑤𝑒𝑟 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛
 (29) 

4.2. Comparative Analysis 

The performance of the proposed CE and optimal power 

allocation model is compared with the various methods. The 

performance of CE is compared with methods like Least 

Squares (LS) and Minimum Mean Squared Error (MMSE). 

Further, the performance of the proposed optimal power 

allocation model is compared with different optimization 

approaches like SSO, Salp Swarm Algorithm (SSA), and 

Particle Swarm Optimizer (PSO) with respect to the measures 

like SE, EE, and achievable sum rate. Figure 3 shows the 

comparative analysis of CE and the optimal power allocation 

model of various approaches with respect to the SNR values. 

Figure 3 evaluates BER performance across SNR values (1–

20 dB) for three CE methods. At 20 dB SNR, LS achieves 

BER = 1.07 × 10⁻¹, MMSE achieves 2.01×10⁻², and the 

proposed EM-based method achieves 2.75×10⁻³. The 

proposed CE demonstrates superior performance, achieving 

38.9 times lower error than LS and 7.3 times lower than 

MMSE, validating its effectiveness for channel estimation in 

multi-user systems. Figure 4 evaluates the power allocation 

performance in terms of SE, EE, and achievable sum rate.  

At 20 dB SNR, the proposed ASSO scheme attains a 

spectral efficiency of approximately 12 bits/s/Hz, which is 

noticeably higher than SSO 10 bits/s/Hz and clearly above the 

PSO baseline 7.5 bits/s/Hz. At 10 dB SNR, ASSO achieves an 

energy efficiency of around 2.4 bits/Joule, whereas PSO 

reaches only about 1.3 bits/Joule, indicating a substantial 

advantage for the proposed method. These gains arise from the 

hybrid SSO–IWA design, which combines fast convergence 

with strong population diversity and global exploration 

capability, enabling more effective power allocation than 

conventional swarm optimizers. Figure 5 shows the analysis 

of BER with respect to users for various approaches.  

The performance of CE is compared with methods like 

LS and MMSE. Here, the number of users considered is 1 to 

40 users. It is observed from the graph that when the number 

of users is increased, the performance of the BER is also 

increased. Finally, it is proven that the proposed CE attained 

better BER when compared to the other two conventional 

approaches. Figure 6 evaluates the impact of user loading on 

SE, EE, and achievable sum rate for 1–40 users under four 

power allocation algorithms (ASSO, SSO, SSA, and PSO). As 

the number of users increases, all three metrics gradually 

decline because more users share the same radio resources and 

generate stronger multi-user interference; however, ASSO 

consistently maintains the highest performance across the 

entire user range, followed by SSO, SSA, and PSO. At 40 

users, ASSO achieves an SE of roughly 2 bits/s/Hz, compared 
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with about 1.8 and 1.6 bits/s/Hz for SSO and SSA, while PSO 

yields only around 1.4 bits/s/Hz. In terms of energy efficiency 

at this loading point, ASSO attains approximately 3.8 

bits/Joule, whereas SSO, SSA, and PSO provide about 3.5, 

3.1, and 2.3 bits/Joule, respectively; the achievable sum rate 

shows a similar ordering, with ASSO delivering around 3.6 

bit/s at 40 users and the competing schemes converging to 

lower values near 3.3, 3.1, and 2.8 bit/s. These results indicate 

that ASSO scales more gracefully with user density, 

preserving higher SE, EE, and sum rate even under heavily 

loaded conditions, owing to its hybrid SSO–IWA design that 

maintains population diversity, supports effective global 

exploration, and still converges rapidly to energy and rate-

efficient power allocation patterns in CF-mMIMO NOMA 

systems. 

 
Fig. 3 Analysis of BER with respect to SNR for various approaches 
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(c) 

Fig. 4 Analysis of (a) SE, (b) EE, and (c) Achievable sum rate with respect to SNR For various approaches. 

 
Fig. 5 Analysis of BER with respect to users for various approaches 
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(b) 

 
(c) 

Fig. 6 Analysis of (a) SE, (b) EE, and (c) Achievable sum.  

5. Conclusion 
The CF-MA-MIMO-NOMA model with the inclusion of 

the EM-based channel estimation algorithm and the ASSO-

based optimal power allocation algorithm achieves a strong 

performance improvement in spectral efficiency, energy 

efficiency, and bit error rate. The model, however, has 

idealised assumptions of networks and does not take into 

account highly mobile users, impairment of hardware, and 

complex inter-cell interference. Moreover, despite the fact that 

compared to traditional algorithms, ASSO requires fewer 

computational resources, its complexity can still be a limiting 

factor in its application to real-time in large-scale networks. 

Further studies should be conducted on the future of the more 

advanced deep-learning methods of channel estimation to 

alleviate estimation error further in dynamically changing 

conditions. Also, the efficacy and adaptability of power 

allocation schemes may be enhanced by the utilisation of 

hybrid or metaheuristic optimisation methods. Expanding the 

analytical model to integrate a multi-cell, multi-service, and 

heterogeneous networking environment would provide a more 

detailed evaluation of system operation in the realistic 5G and 

beyond environment. 
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