SSRG International Journal of Electrical and Electronics Engineering
ISSN: 2348-8379/ https://doi.org/10.14445/23488379/IJEEE-V13I1P114

Volume 13 Issue 1, 142-153, January 2026
© 2026 Seventh Sense Research Group®

Original Article

Channel Estimation and Optimal Power Allocation using
Adaptive Optimizer in Cell Free Massive MIMO-NOMA

V Satya Kumar Kudipudit, S. Neeraja?
12Department of EECE, GITAM (Deemed to be University), Visakhapatnam, India.
ICorresponding Author : k.v.satyakumar@gmail.com

Received: 08 November 2025 Revised: 10 December 2025 Accepted: 09 January 2026 Published: 14 January 2026

Abstract - Non-Orthogonal Multiple Access (NOMA) is considered as one of the emerging multi-access technologies for 5G
communication, and also can enhance the system’s performance. It is integrated with Cell-Free Massive Multiple Input Multiple
Output (CF-MA-MIMO) to support multiple users, producing a high gain. Optimizing spectral and energy efficiencies is a
challenging process due to the non-linear programming involved. The proposed model considered the downlink transmission of
the Cell Free-Massive-Multiple Input Multiple Output- Non-Orthogonal Multiple Access (CF- MA-MIMO-NOMA). This work
presents an enhanced approach for channel estimation and optimal power allocation in CF- MA-MIMO-NOMA. Initially, the
user equipment estimates the channels for every user and then provides them to the MA-MIMO. Then, the Expectation
Maximization (EM) is utilized for Channel Estimation (CE), and the metaheuristic algorithm Adaptive Squirrel Search
Optimization (ASSO) is utilized for optimal power allocation. The proposed ASSO attained better spectral efficiency, energy
efficiency, and sum rate by the power allocation at the different users and SNR values.

Keywords - Cell Free-Massive-Multiple-Input Multiple-Output, Non-Orthogonal Multiple Access, Expectation Maximization,

Adaptive Squirrel Search Optimization.

1. Introduction

Due to the development of emerging applications, there is
a demand for ultra-high-speed connections for upcoming
wireless communication. In the year 2020, there are
approximately 20 billion devices linked to the Internet, and by
the year 2025, it is predicted that it may exceed 23 billion
devices [1, 2]. The conventional Orthogonal Multiple Access
(OMA) approaches are reaching the fundamental limits, and
they are not able to fulfill further requirements. NOMA is an
emerging solution that increases the Spectral Efficiency (SE),
Energy Efficiency (EE), and user fairness of Conventional
Communications [3]. In NOMA, multiple User Equipment
(UE) are utilized for transmitting and receiving the signals
simultaneously using time, frequency, and code domains.
Massive-Multiple Input Multiple Output (MA-MIMO) is an
efficient model utilized in wireless communication, and it
attains better bandwidth and maximum SE [4-6]. In MA-
MIMO systems, different antennas are employed on the
transmitter as well as the receiver side. In the MIMO system,
each antenna exploits the Radio Frequency (RF) chain to
realize the processing of the signal in the digital format [7].
The MA-MIMO utilizes multiple RF chains to utilize
excessive energy. NOMA achieves significant outcomes in
the multi-access issues and satisfies the needs of 5G and 6G
networks. Furthermore, it enhances the quality of service
(Quality of Service), such as SE and mass connectivity [8].

The primary aim of the NOMA is to exploit the power
effectively for multiple users and utilize the Successive
Interference Cancellation (SIC). For increasing the SE, the
MA-MIMO is integrated with NOMA, and it is proven that
NOMA can enhance the SE significantly when compared to
the traditional OMA [9]. In the NOMA system, many users
are supported by the SIC and intra-beam superposition. The
usage of power domains is carried out for the enhancement of
SE with the users and several channel gains [10-12]. Further,
due to the advancement of technology, there is a need for high
data rates, high SE, and low latency.

The utilization of distributed Access Points (APs) makes
the effective spatial resource allocation [13]. But the inter-cell
interference is basic in every cell-centric model, and it is
becoming a main performance-limiting criterion. For
addressing this issue, CF-MA-MIMO-NOMA systems are
introduced. CF-MA-MIMO-NOMA is emerging in recent
times due to the integration of MA-MIMO and the distributed
antenna model, in which the APs are linked to the Central
Processing Unit (CPU). This model simultaneously handles a
larger number of small users [14]. The Power Allocation (PA)
and precoding are carried out in the CPU, and the CF criteria
provide high throughput, SE, and EE. The primary aim of this
system is to allocate a larger number of spatially distributed
APs to allocate different single antenna users in the same
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frequency and time domain. Hence, every user is considered
by every AP, and it does not undergo cell-free. As mentioned
earlier, the MA-MIMO-NOMA provides a better potential for
supporting large connection requirements of the upcoming
generation [15, 16]. Hence, the integration of MA-MIMO-
NOMA with CF may provide better performance, and it has
become a significant topic of research. The conventional PA
models offer accurate computational allocation, but lack in
allocating optimal power to the users. In some of the MA-
MIMO-NOMA, the users are split into clusters, and the users
in intra clusters are split by the SIC. Then, the inter-cluster
interference was minimized by the precoding approach.
However, these approaches minimized the power efficiency of
the system. The optimal power allocation process is carried
out by the Adaptive Squirrel Search Optimization (ASSO).
This optimizer is selected because this algorithm enhances the
convergence speed and performance. Further, this optimizer
allocates the users with better Energy Efficiency (EE) and
Spectral Efficiency (SE) for providing an efficient strategy for
PA.

One of the peculiarities of the suggested CF-MA-MIMO-
NOMA system is that it is connected to an adaptive ASSO-
based power allocation approach that will simultaneously
maximize the spectral efficiency and energy efficiency. The
collaboration between distributed access points and intelligent
power management is helpful to suppress interference caused
by NOMA as well as mitigate the residual error of less-than-
perfect successive interference cancellation. Also, the
described architecture is resilient to imperfect knowledge of
channel state information and is scalable because it avoids
centralized control and inflexible distribution of resources. It
provides better throughput, fairness, and energy efficiency
compared to the current CF-MIMO and MIMO-NOMA
designs.

The rest of the work is sorted as follows: Section 2 states
the recent literature works based on the CF-MA-MIMO-
NOMA networks; Section 3 shows the proposed CE and PA
with a mathematical description; Section 4 analyzes the
results' implications, and Section 5 ends with a conclusion.

2. Related work

Initial studies on Cell-Free Massive Multiple-Input
Multiple-Output (CF-MIMQ) systems have focused on
reducing energy consumption by joint Power Allocation (PA)
and load balancing, namely, of downlink transmit power as
well as Access Point (AP) activation number. These methods
were very power-saving and less complex algorithms; they did
not consider user clustering and interference due to Non-
Orthogonal Multiple Access (NOMA) [17]. Machine-
learning-based clustering tools were introduced to CF-MIMO-
NOMA designs to deal with the lack of adaptive user
segmentation, e.g., enhanced K-means. These techniques
model intra-cluster pilot contamination, inter-cluster
interference, and imperfect Successive Interference
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Cancellation (SIC) and optimize PA to Spectral Efficiency
(SE), but at the cost of the clustering being kept constant [18].
PA investigations without instantaneous Channel State
Information (CSI) had used backhaul combining and user

grouping to enhance worst-case uplink Signal-To-
Interference-Plus-Noise Ratio (SINR), but not joint
optimization with learning-based clustering and SE

maximization [19]. In millimeter-wave MIMO-NOMA, it was
suggested that user grouping based on channel correlation,
along with a convex PA model, mitigates interferences;
however, the capability to withstand imperfect CSI and
dynamic mobility constraints was not quite strong [20]. The
MIMO-NOMA architectures using hybrid-pre-coding and
employing Simultaneous Wireless Information And Power
Transfer (SWIPT) cluster-head selection and an iterative
optimization scheme overcame non-convexity but at the cost
of prohibitive computational complexity in real-time
adaptability [21]. Strategies of fairness-oriented precoding
and PA based upon Semi-Definite Relaxation (SDR),
Successive Convex Approximation (SCA), and Minimum
Mean-Square Error (MMSE)-equivalence provided better
balancing of the rates in MIMO-NOMA types of systems;
however, the scalability to large antenna-to-user ratios was not
quite achieved [22]. Channel capacity was enhanced by the
joint choice of user patterns and PA, based on a matching
theory, but the system was not adaptable to cell-free
topologies and changing traffic patterns [23].

The occurrence of the Concentration-Free Massive
MIMO With Non-Orthogonal Multiple Access (CF-MA-
MIMO-NOMA) in scenarios where there is a space-correlated
Rician fading has been explored with the formulation of
closed equations of Spectral Efficiency (SE) and Energy
Efficiency (EE). Such analyses have considered imperfect
Successive Interference Cancellation (SIC) and pilot
contamination; however, the reliance on statistical channel
models has limited the generality of the conclusions [24]. In
the second research, opportunities realized with the use of
NOMA-based coexistence in CF-MA-MIMO architectures
involved the opportunistic alignment of interference, which
reduced the antenna overhead. The method, however, did not
include adaptive power distribution and an innovative
clustering algorithm [25]. The third body of work applied the
deep-learning approaches, namely, Bidirectional Gated
Recurrent Units (Bi-GRU) with ensemble learning models, to
perform channel estimation. However, channel estimation was
done without any joint resource optimization [26, 27].
However, such systems failed to jointly optimize the
clustering, power allocation, and spectral resource allocation
[28].

Deep reinforcement learning models that combine
improved K-means clustering, DQN-based sub-channel
assignment, and DDPG-based power assignment have proven
to be able to fast-track convergence rates and scale-up system
capacity in millimeter-wave massive MIMO-NOMA systems,
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although at a high training complexity cost [29]. Through
battery optimization of energy harvesting and data
transmission in SWIPT-enabled millimeter-wave massive
MIMO-NOMA systems, a significant increase in the energy
efficiency was realized through the implementation of hybrid
precoding schemes and iterative convex optimization, but this
methodology did not have an intrinsic adaptability through
learning [30]. Hybrid machine-learning/deep-learning
frameworks that combine LSTM-based spectrum prediction
with attention-driven clustering have managed to increase
spectral efficiency at the cost of power consumption.
However, they are still not sufficient to implement NOMA-
specific interference and power allocation optimization [31].
Detection and channel estimation algorithms received the
assistance of deep learning to provide energy and spectral

CF-MA- Channel

MIMO-NOMA

Y

estimation

efficiency gains in loT-based MIMO-NOMA systems;
however, power consumption versus scalability trade-offs
were still present [32]. Federated meta-reinforcement learning
enables quick adaptation of power distribution and sub-band
allocation in multi-cell NOMA [33]. Optimization of
beamforming and power assignment in IRS-aided massive
MIMO networks maximized weighted sum-rate in both
perfect and imperfect channel state information conditions,
but did not consider NOMA or user-centric clustering [34].
Wavelet-based NOMA schemes with deep learning
optimization specifically optimized to user-centric CF-
massive MIMO systems have recorded a reduction of bit-error
rate and higher sum-rate achievable; nevertheless, the
simultaneous optimization of clustering, power allocation, and
spectral resource optimization was not achieved [35].
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Optimal power allocation
using ASS0 algorithm

.

Optimal solution

Fig. 1 Workflow of the proposed CF- MA-MIMO-NOMA model ASSO

3. Proposed Method

In this work, CF-MA-MIMO-NOMA, the CE and
optimal power allocation are carried out by the EM and ASSO.
Figure 1 represents the workflow of the proposed CF-MA-
MIMO-NOMA model.

3.1. System Model

In this work, the downlink transmission of CF-MA-
MIMO-NOMA and the model Mnumber of APs LN single
antenna users are considered. The users are setinto N g number
of clusters and Lusers L =2 per clusters and NOMA is

provided between the users. MAntennas and every APare
integrated with the CPU through a backhaul link for achieving
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coherence processing. This model has the payload data, and
every APcalculation is performed by the precoder on the basis
of the channel medium among the users AP. Figure 2 (a)
shows the system model of CF-MA-MIMO-NOMA, and
Figure 2 (b) shows the APtransfer to 4 clusters, each of which
has 3 users. The downlink medium among the m*"_AP is given

asm =1,2,.....,M. The [Yuserl=1,2,.....,Lin the
ntcluster is represented asn = 1,2, ..... ,N.
hmnl~CN (0’ ﬁmnlIQ) (1)

Where B,,n:15 the group of massive scale fading terms,
and /,,,;~cN (0,1) is the small scale fading term.
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Fig. 2(a) CF-MA-MIMO-NOMA Model, and (b) 4 pTransfer to 4-Clusters.

3.2. Downlink Transmission Model APs. During the signal reception, I*"5 user having nfha cluster
The superposition coding data signal p,,for the [**user g represented as:
having nfha1 cluster is given as:

3 Znl = Z%:l P hrl-rlmlUmanl +
Rp = Xiz1y/Pi Ry V1 @) %:1 hinlumn ZiL=1 Pni Rni +
M i Sk U + 10 @)
Where R,,is the power allocated to the %user having et S=1 Fmn T m

th _ - - -
n**y cluster. Here p,; = p,ay,,, in which p, is the overall Where S™_ /o ki U R is the desired signal,

%:1 hgmlUmn Z%:l Pni Rni and Z%:l hfnnl Z%:l Umn' +
Nare the inter- and intra-cluster interferences. The SIC is

N transmitted at the receiving side by every user to remove the
m = 2n=1UmnRy @) interferences produced by the users having less gain.

power is transmitted to every AP a,,; group of power terms.
Let the m® _APtransmitting the signal is given as:

Where U,,,is the signal’s spatial directivity provided to 3 3 channel Estimation

the user, presented in n*" cluster. The transmitted signals are In this work, the CE process is carried out using the EM.
preceded by a signal AP for every user in asimilar cluster. The ~ The EM s the iterative approach for finding Maximum
usersLN are distributed at the same time using Mg number of ~ Likelihood (ML) parameter estimation. There are two stages

145



V Satya Kumar Kudipudi & S. Neeraja / IJEEE, 13(1), 142-153, 2026

carried out in the EM: (i) expectation of the Log Likelihood
(LL) implemented by the present parameter estimation, and
(if) maximization of the LL obtained in the expectation stage
for computing variables. Let the receiving signal have
thejt subcarrier given as:

Where y;is the transmitting signal, B;is the fundamental
matrix, ais the basic coefficient, and u;is the Gaussian noise.

Hence, the conditional Probability Density Function (PDF) is
represented as:

2 (6)

|zj-yjBjal?
oy

1
Fylyyi @) = exn |-
Where ¢2 is the variance. When there are Gfeasible
transmitting symbol values, and y, the transmitting symbols
are. Joint-PDF is summed with the f(z;y,; a) entire y, , and
the PDF of z;is computed as:

f(zj;a) =2y, f(2yg; @) ()

Faly@ = o3y e -2 g

The LL of ais given as:

L@) =Inf(Z;a) =Inf (z;a) 9)

= —Gno; +In Y, exp {— %} (10)

The ML estimation of «is represented as:

Q= argmax L(a) (11)
a

It is observed that the EM model uses iteration for
obtaining ML estimation, and the initial estimate of aby (11)
is aWand the mt"is o™

(i) E-stage (expectation-stage): Calculate the E-stage of
the LL function as:
Lg(a)a™) = Efyizamylinf (Z,Y, )] (12)

(i) M-stage (Maximization-stage): Calculate the
variables of further iteration a™*Vthat increase Ly (a|a™).
a™D = argmaxLg(a|a™) (13)

a

The convergence criterion is given as:
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1L (@™) = Lg(a™D)| < T, (14)
Where T}, is the threshold value. The computation of
Lg(a]a™) is given as:

L (ax|a™) =Xy, f(glz; a™) — In(Gro2) +
{_ |Zj—yJ'Bj“|2}
o

3.4. Optimal Power Allocation

The primary aim of the proposed optimal power
allocation is to maximize the SE and EE of the model via the
proposed optimization model. The ASSO carries out this
process. It is an enhanced version of SSO, and it provides
better convergence performance when compared to the
standard SSO. The ASSO combines the SSO and IWA
(Invasive Weed Algorithm). The algorithm takes as inputs the
number of users and access points, transmit power constraints,
channel information, SE-EE fitness function, population size,
predator probability, and maximum iterations.

(15)

Unlike conventional optimization techniques and
standard SSO, ASSO introduces adaptive reproduction and
Lévy flight-based exploration, which helps avoid premature
convergence and ensures robustness in non-convex
optimization scenarios. The reproduction process in IWA is
included with the SSO for improving the convergence
performance. This optimizer allocates the power to the users
with high efficiency in a better way. For the network to be
efficient in the user’s optimal allocation on the basis of power
with high SE and EE, the fitness of the network should be
maximum.

F, = Max(SE,EE) (16)

This optimizer mimics the dynamic characteristics of
squirrels’ locomotion, which is known as sliding. The value of
fitness shows the Hickory tree FS},,, (optimal food source),
the acorn tree FS{,, (typical food), and the normal tree FSt,,
(no food source). During the exploration stage, based on the
value of fitness, some FS relocate to the optimal and normal
food source. During the exploitation stage, the probability of
predator occurrence is taken into account. Let us consider that
there are lgayergl FS in the forest, and the location of

jtsquirrel FS is defined by a vector, and it is indicated in a
matrix.

[Fsl,l Fo12 Fsyaim ]
Fsz,1 Fsz,z Fsz,dim

=l : (17)
lFsl,l Fsl,z Fsl,dim []J

Initializing every FS position is represented as:
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FS; = {FS,, + UP(0,1) x (FSy, — FSy;) (18)

Where FS;; FSy, are the lower and upper ranges of
jtsquirrel. Let us consider that there are Mgeyeral trees in a
forest. The fitness of the position for every FS is measured
using the solution vector, and values are set in the matrix
below:

fl([Fsl,l Fsl,z Fsl,dim
fZ([FSZ,l FsZ,Z Fsz,dim

f =|s : : (19)
lfm([Fsl,l Fsl,Z Fsl,dim []J

In the proposed ASSO, the reproduction process of IWA
is evaluated for producing new-spring. The iteration o;erqtion
is utilized to update the position on three different strategies.

Strategy 1:FS! . The FS on a regular food source (acorn
nut tree) is moved to the FS},.optimal food source (hickory
nut tree). When Rand1 > P,,the offspring of each FS on the

FS} ..is computed by:

(Iterationmpay (20)

o'. . =
iteration (Iterationmypqx[(oj—0op)+oF]

Where Iteration,,,is the maximum iteration, mis the
non-linear deviation, o;is the initial standard deviation, and
OFig the final standard deviation.

FS move from position of FS on theFSf,,, is expressed as:

FSiet + glaGL(FSfye — FSier) Randl = By,
elsewhere
(21)

F5t+1 — {
2t~ \random position

WhereFSttlis the new position of the squirrels, gl is the
glide distance, GL.is the gliding constant, Randlis the
random number, and P,,is the probability of predator
occurrence.

Strategy 2: When Rand2 > P,,the offspring of each FS
on the FS!.is computed by Equation (19), and the positions
are recomputed. The following expression is used for
computing the FS from a no food source relocated to the
regular food source FS}!,to obtain more energy.

FStoe + glyGL.(FSk.e — FSEor) Rand2 > Py
elsewhere
(22)

Fst+1 - {
"ot = lrandom position

Where FSt,, is FS on the no food source (normal tree),
and Rand2is the random number.

Strategy 3: When Rand3 = B,,the offspring of each FS

on the FS,.is computed by Equation (19). Then, the FS from
no food source relocates to the optimal food source, and it is
expressed as:

FSt,e + glyGL.(FS}, — FSLo:) Rand3 > By
elsewhere
(23)

F5t+1 — {
"ot = lrandom position

Where Rand3is the random number.

The gliding model of FS is stated as the total of the drag
force Dy , and the lift L generates the resulting force R.

Z=— (24)

Df - tan ¢

Where ¢is the gliding angle.

Variation in seasonal monitoring is developed for
maintaining the trade-off between the exploration and
exploitation capacity. This characteristic is defined as:

2

SC = (Fstgct - Fshtnt) (25)

During the winter season, the FS randomly relocated to
get the best resources, and it is expressed as:

FStor = FSjp + Levy + (FS,;, — FS),) (26)

Where Levy is the Lévy flight utilized for finding new
candidate solutions and enhancing the exploration capacity.
The output of the process (Algorithm 1) is the optimal power
allocation vector for all users, along with the corresponding
maximum SE and EE values, which are used to validate the
effectiveness.

Algorithm 1. ASSO for Optimal Power Allocation

Inputs: Number of users, number of Flying Squirrels
(FS), Power Constraints, SE-EE objective function,
Predator Probability, Maximum lterations

Output: Optimal Power Allocation Vector Maximizing
Spectral Efficiency (SE) and Energy Efficiency (EE)

1 Initialize FS positions randomly within power
bounds and classify them as hickory, acorn, or
normal trees based on fitness

2 Evaluate SE-EE fitness and identify the best FS
(hickory tree)

3 Move FS from acorn to hickory tree using gliding
behavior and IWA-based reproduction.
4 Relocate FS from a normal tree to an acorn tree

using random displacement.
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5 Directly relocate low-fitness FS from the normal
tree to the hickory tree.

6 Modify FS movement based on predator
occurrence probability.

7 Apply Lévy flight-based relocation during winter
to enhance exploration.

8 Recalculate fitness, update FS positions, and retain
the best solution

9 Stop at convergence or maximum iteration and

output optimal power allocation.

4. Results and Discussion

The following sections ensure experimental analysis and
discussion of the proposed CE and optimal power allocation.
The simulative analysis is carried out in the MATLAB
platform, which has 8GB RAM and a 64-bit operating system.
Table 1 shows the simulation parameters utilized for the
experimentation process.

Table 1. Simulation parameters

Parameters Values
No. of transmitting antennas 16
No. of receiving antennas 16
Users 40
No. of AP 100
Coherence time 100
bandwidth 20 MHz
Fading channel Raleigh fading
Maximum power allocated to clusters -30 dBm
Length of block 200 symbols

4.1 Evaluating Measures
The evaluation measures, like BER, achievable sum rate,
SE, and EE, are computed.

BER: It computes the errors in the receiving bits to the
communicating medium and is varied by the synchronization
errors, noise, interference, and distortion. It is the proportion
of the number of bits received without error, Ng, the Total
number of transmitted bits over a measurement interval of
time, Nt. Therefore,

BER = YE
N

T

(27)

Achievable Sum Rate: It is the most widely utilized
performance metric for computing the downlink CF-MA-
MIMO-NOMA. This measure computes the codes with high
maximum error probability.

SE: It computes the mean number of information bits over
the communication channel, and it is expressed as:

__ Throughput
" Bandwidth

SE (28)
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EE: It is computed by the number of bits that are
transferred realistically per joules, and it is given as:

Throughput
EE = gnp

R ——— (29)
Power consumption

4.2. Comparative Analysis

The performance of the proposed CE and optimal power
allocation model is compared with the various methods. The
performance of CE is compared with methods like Least
Squares (LS) and Minimum Mean Squared Error (MMSE).
Further, the performance of the proposed optimal power
allocation model is compared with different optimization
approaches like SSO, Salp Swarm Algorithm (SSA), and
Particle Swarm Optimizer (PSO) with respect to the measures
like SE, EE, and achievable sum rate. Figure 3 shows the
comparative analysis of CE and the optimal power allocation
model of various approaches with respect to the SNR values.
Figure 3 evaluates BER performance across SNR values (1—
20 dB) for three CE methods. At 20 dB SNR, LS achieves
BER = 1.07 x 10!, MMSE achieves 2.01x1072, and the
proposed EM-based method achieves 2.75x1072. The
proposed CE demonstrates superior performance, achieving
38.9 times lower error than LS and 7.3 times lower than
MMSE, validating its effectiveness for channel estimation in
multi-user systems. Figure 4 evaluates the power allocation
performance in terms of SE, EE, and achievable sum rate.

At 20 dB SNR, the proposed ASSO scheme attains a
spectral efficiency of approximately 12 bits/s/Hz, which is
noticeably higher than SSO 10 bits/s/Hz and clearly above the
PSO baseline 7.5 bits/s/Hz. At 10 dB SNR, ASSO achieves an
energy efficiency of around 2.4 bits/Joule, whereas PSO
reaches only about 1.3 bits/Joule, indicating a substantial
advantage for the proposed method. These gains arise from the
hybrid SSO-IWA design, which combines fast convergence
with strong population diversity and global exploration
capability, enabling more effective power allocation than
conventional swarm optimizers. Figure 5 shows the analysis
of BER with respect to users for various approaches.

The performance of CE is compared with methods like
LS and MMSE. Here, the number of users considered is 1 to
40 users. It is observed from the graph that when the number
of users is increased, the performance of the BER is also
increased. Finally, it is proven that the proposed CE attained
better BER when compared to the other two conventional
approaches. Figure 6 evaluates the impact of user loading on
SE, EE, and achievable sum rate for 1-40 users under four
power allocation algorithms (ASSO, SSO, SSA, and PSO). As
the number of users increases, all three metrics gradually
decline because more users share the same radio resources and
generate stronger multi-user interference; however, ASSO
consistently maintains the highest performance across the
entire user range, followed by SSO, SSA, and PSO. At 40
users, ASSO achieves an SE of roughly 2 bits/s/Hz, compared
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with about 1.8 and 1.6 bits/s/Hz for SSO and SSA, while PSO
yields only around 1.4 bits/s/Hz. In terms of energy efficiency
at this loading point, ASSO attains approximately 3.8
bits/Joule, whereas SSO, SSA, and PSO provide about 3.5,
3.1, and 2.3 bits/Joule, respectively; the achievable sum rate
shows a similar ordering, with ASSO delivering around 3.6
bit/s at 40 users and the competing schemes converging to
lower values near 3.3, 3.1, and 2.8 bit/s. These results indicate
that ASSO scales more gracefully with user density,
preserving higher SE, EE, and sum rate even under heavily
loaded conditions, owing to its hybrid SSO-IWA design that
maintains population diversity, supports effective global
exploration, and still converges rapidly to energy and rate-
efficient power allocation patterns in CF-mMIMO NOMA
systems.
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5. Conclusion

The CF-MA-MIMO-NOMA model with the inclusion of
the EM-based channel estimation algorithm and the ASSO-
based optimal power allocation algorithm achieves a strong
performance improvement in spectral efficiency, energy
efficiency, and bit error rate. The model, however, has
idealised assumptions of networks and does not take into
account highly mobile users, impairment of hardware, and
complex inter-cell interference. Moreover, despite the fact that
compared to traditional algorithms, ASSO requires fewer
computational resources, its complexity can still be a limiting
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