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Abstract - In this article, we relax the assumption of a fully 

granular portfolio underpinning the Basel II risk weights for 

credit risk in determining capital requirements. To do so, we 

model losses under an adverse scenario that stems from both 

the systematic and idiosyncratic components.  The 

generalization requires the use of a numerically derived 

distribution function via simulation.  Unlike previous work, 

our method is sufficiently flexible to accommodate a fat-

tailed distribution in the idiosyncratic component. The 

idiosyncratic component is pertinent for a non-granular 

portfolio. 
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I. INTRODUCTION 

The main determinant of capital requirements is credit 

risk, which generally arises from a counterparty failing to 

meet a repayment commitment on its outstanding debt. Such 

credit events, however, tend to correlate with adverse 

macroeconomic (systematic) events.  The measurement of 

credit risk under adverse scenarios is thus the main objective 

in enterprise risk management. For example, regulators and 

senior management of major US banks rely on stress testing 

to guarantee that the bank holding company has sufficient 

capital to continue operations throughout times of economic 

and financial stress. 

The determination of capital requirements for credit risk 

hinges on loss forecasts. For example, the Probability of 

Default (PD) and loss given default (LGD) models provide 

the framework for the projection of losses under different 

adverse scenarios that include rare events. Such projections 

can then be used to determine capital levels that ensure the 

bank's solvency under different levels of stress.   

The use of agency ratings (e.g., Standard & Poor's) in 

determining capital requirements are common for projecting 

portfolio classes' losses with little or no default history. In 

these instances, each counterparty's credit rating can be 

mapped to an average probability of default per rating. Such 

data is available for over 30-years of data, and rating 

agencies report it (e.g., see S&P Global Ratings, 2020). 

Therefore, if a bank has a portfolio with few default events, it 

can assign a probability of default to each rated counterparty.  

An average probability of default, however, provides 

little help in the determination of capital requirements. In a 

seminal contribution, Vacisek (2002) solves the puzzle by 

mapping the unconditional (average) probability to a 

conditional probability of default. For example, the 

conditional probability of default can be defined at a stress 

event, a 99.9th percentile event for the systematic 

(macroeconomic) component that drives default. 

Vacisek's model's main assumption is that a default 

occurs if the stochastic component of the asset value of a 

given entity drops below a certain threshold. Vacisek's model 

uses information on asset correlation, and the PD's 

unconditional mean to derive the conditional PD under 

stress. However, the derivation of the conditional PD 

assumes a fully granular portfolio. Vacisek's model 

underpins the Basel framework (Basel II risk weights) for 

credit exposures. 

Yet, the idiosyncratic component is a major factor in 

explaining default (see Hilscher and Wilson, 2016). Gordy 

(2004) introduces concentration risk as the additional risk 

associated with a second-order Taylor expansion around the 

idiosyncratic component. Therefore, the approach 

incorporates the additional fraction of risk from the 

idiosyncratic component to Vacisek's formula. The Basel 

Committee on Banking Supervision (2014) defines 

applications in which such an add-on is needed for regulatory 

capital.  

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Camilo Sarmiento / IJEMS, 7(12), 43-46, 2020 

 

44 

In this paper, we relax the assumption of a fully granular 

portfolio by departing from the conditional PD's analytical 

representation and modeling losses that stem from both the 

systematic and idiosyncratic components. The generalization 

requires the use of a numerically derived distribution 

function via simulation.  The testing of the derived 

distribution illustrates the effects of modeling both the 

systematic and idiosyncratic components. Unlike previous 

work, our method is sufficiently flexible to accommodate a 

fat-tailed distribution for the idiosyncratic component.   

II. CONDITIONAL PROBABILITY OF DEFAULT 

UNDER STRESS 

Consider a portfolio of N sovereign assets with expected 

losses at time t that are defined as follows: 

(1)    𝐿𝑜𝑠𝑠(𝑆𝑡) = ∑ 𝑤𝑖𝑡
𝑁
𝑖=1 × 𝑃𝐷𝑖𝑡  ×  𝐿𝐺𝐷     

where  

𝑤𝑖𝑡 = weight of asset i in the portfolio; 

𝑃𝐷𝑖𝑡 = probability of default of asset i; and 

LGD = Loss given default. 

For low default incidence portfolios, the PD is generally 

inferred from the rating of the counterparty. For example, the 

PD for a Ba rated exposure is the historical (through the 

cycle) default rate.  

Vacisek (2002) maps the unconditional (average) PD to a 

conditional probability.  To do so, Vacisek assumes that the 

asset value of a given obligator i has a stochastic 

component,𝑋𝑖𝑡 , that follows the stochastic process:  

(2)        𝑋𝑖𝑡 =  𝑆𝑡√𝑝 + 𝑍𝑖𝑡√1 − 𝑝  

and 

 𝑆𝑡~ N(0,1) and 𝑍𝑖𝑡~ N(0,1) 

where the systematic component is 𝑆𝑡; the idiosyncratic 

component is 𝑍𝑖𝑡; and the asset correlation between 

obligators is 𝑝.  Generally, 𝑆𝑡  relates to an economic index 

and will depend on the sector.  The asset correlation, 𝑝, 

determine the relative importance of the systematic 

component.1 Empirical estimates for asset correlation range 

from .10 to .25 (e.g., see Zhan, Zhu, and Lee, 2008).  

                                                             
1 The weights of the idiosyncratic versus systematic component depends on 

the asset class and these weights differs from those weights on explaining 

default. Reinhart and Rogoff (2005) underscore the role of a systematic 

factor in repeated sovereign default events. 

Consistent with Merton (1977), the default event occurs if 

the random component of the stochastic component 𝑋𝑖𝑡  falls 

below a threshold 𝐶.  Therefore, the unconditional PD is: 

(3) P(𝑋𝑖𝑡 <  𝐶) = [𝜑−1(C)]  = 𝑃𝐷 

where 𝜑 is the distribution function of 𝑆𝑡 . As a Corollary, the 

conditional probability of default for a given realization of 

the systematic component 𝑆𝑡  is: 

(4) 𝐶𝑃 = 𝑃(𝑋𝑖𝑡 <  𝐶|𝑆𝑡) = 

                      𝜑[(𝜑−1(PD) −  𝑆𝑡√𝑝)/√1 − 𝑝] 

where 𝐶𝑃 is the conditional PD.   

When setting the adverse event for 𝑆𝑡  in (4) to correspond to 

the 99.9th percentile of the systematic component's 

underlying distribution, then the conditional PD corresponds 

to the risk weights under the Basel II formula (see Bank of 

International Settlements, 2005).  

Yet, the analytical representation in (4) assumes a fully 

granular portfolio and, therefore, the idiosyncratic risk plays 

no role in determining unexpected losses. However, the 

idiosyncratic component plays a role if the portfolio is not 

fully granular. For example, Hilscher and Wilson (2016) 

estimate that the idiosyncratic component explains up to 80 

percent of the firm-level default probabilities. 

For a non-granular portfolio, we generalize Vacisek's 

analytical model by dints of a numerical procedure. That is, 

the random loss associated with the non-granular portfolio is:  

(5)    𝐿𝑜𝑠𝑠(𝑆𝑡) = ∑ 𝑤𝑖𝑡  ×𝑁
𝑖=1  𝐼𝑖𝑡 × 𝐿𝐺𝐷     

where  

𝐼𝑖𝑡 = 1, 𝑖𝑓 𝑋𝑖𝑡 < ∅−1(𝑃𝐷𝑖);  𝑎𝑛𝑑 𝐼𝑖𝑡 = 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.       

Draws of the stochastic process in (2) under (5) yield a loss 

distribution, which is numerically derived.  The distribution 

derived from (5) via simulation can then be used to project 

losses (expected shortfall) under different confidence 

intervals, analogously to the analytical formula in (4). For 

example, credit's capital requirements would correspond to 

the loss associated with a given percentile of the loss 

distribution in (5), e.g., 99.9th percentile.  

Overall, the analytical solution is preferable in the context of 

a diversified portfolio. For concentrated portfolios, the tail 

event that corresponds to the 99.9th percentile should be 

associated with the joint distribution of the systematic and 

idiosyncratic component. The next section shows the 

relevance of the distribution derived from (5) via simulation 

for a non-granular portfolio. 
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III. PROBABILITY OF DEFAULT UNDER 

INFLUENCE OF BOTH SYSTEMATIC AND 

IDIOSYNCRATIC COMPONENTS UNDER STRESS 

To examine the impact of modeling both the 

idiosyncratic and systematic components in (5), we simulate 

under different assumptions on a hypothetical portfolio with 

different degrees of granularity. The reported loss for 

different granularity degrees relates to a tail of the 

distribution, an adverse event.  

The simulation shows the effect of the number of assets 

(or counterparties) in the portfolio under a baseline asset 

correlation assumption. In particular, the analysis uses the 

assumption of an asset correlation of 20%, 𝜌 = 0.2 (see Zhan 

Zhu, and Lee, 2008; the Bank of International Settlements, 

2005). For simplicity, all assets are assumed to have a rating 

of Baa2, and, for robustness, we also evaluate results under 

the assumption of a portfolio rating of Ba2.2   

Tables 1 and 2 reports the conditional loss for an adverse 

event for a portfolio rated Baa2 and Ba2, respectively. In the 

tables, all assets are equally distributed, i.e., a portfolio with 

40 assets pertains to a portfolio with 40 equally distributed 

counterparties in the portfolio. Also, for simplicity's sake, we 

assume an LGD of 100%. 

Reported loss estimates in the tables relate to the 

expected shortfall. Expected shortfall is calculated by 

averaging all losses in the distribution that are worse than 

the value at risk of the portfolio at a given level of 

confidence. For example, the expected shortfall for the 99.9th 

confidence interval (with an initial rating of Baa2) is 5.0% 

under a fully diversified portfolio (using Vacisek's analytical 

formula) and 7.3% under a portfolio that comprises only 40 

counterparties. Table 2 shows consistent results under an 

initial rating of Ba2. 

It is evident from the analysis that the probability of 

default for a concentrated portfolio is markedly larger under 

an adverse event. A portfolio comprised of only 15 

counterparties has approximately thrice the probability of 

default of a diversified portfolio at the tail of the distribution.  

The analysis also indicates that the effect of concentration is 

similar for more extreme events, 99.9% confidence interval 

(CI), relative to less extreme events, 99% CI. Thus, financial 

planning with a longer time horizon (e.g., 10-years) embeds 

                                                             
2 The PD for Baa2 and Ba2 ratings are extracted from Moody’s 

historical data set on the average unconditional default rate per 

rating for the period 1980 to 2019.  The average PD for Baa2 and 

Ba2 rated exposures are 0.17% and 0.7%, respectively.  

 

similar concentration risk in loss projections than a portfolio 

with a shorter time horizon (e.g., 3-years). 

Table 1.  Expected Shortfall Loss Associated with Different Degree of 

Portfolio Concentration for an Initial Rating of Baa2 

Number of 

Counterparties 

Expected 

Shortfall  

(CI 99.9%) 

Expected 

Shortfall 

 (CI 99%) 

Fully Granular 5.0% 2.1% 

60 5.4% 3.5% 

40 7.3% 4.2% 

20 11% 6.3% 

15 14% 7.7% 

10 17% 11% 

 

Table 2. Expected Shortfall Loss Associated with Different Degree of 

Portfolio Concentration for an Initial Rating of Ba2 

Number of 

Counterparties 

Expected 

Shortfall 

 (CI 99.9%) 

Expected 

Shortfall 

 (CI 99%) 

Fully Granular 10.9% 6.2% 

60 11.8% 6.8% 

40 13.6% 8.9% 

20 23.1% 13.3% 

15 24.5% 15.5% 

10 28.6% 17.1% 

 

Lastly, while portfolio concentration is critical, it is not 

as important as the portfolio's average rating. For example, 

from Tables 1 and 2, a three-notch downgrade from Baa2 

and Ba2 for the overall portfolio is equivalent to a mapping 

from a fully granular portfolio to a concentrated portfolio 

with 20 counterparties.   

Overall, expected tail loss events are significantly larger 

in more concentrated portfolios.  Therefore, for a profit-

maximizing institution, a non-granular portfolio is generally 

too expensive in terms of capital expense, and portfolio 

diversification is the main task for risk managers. However, 

for a non-profit lending institution (e.g., a multilateral bank), 

the presence of a non-granular portfolio is (in some 

instances) an intrinsic component of the institution's mission. 

Larger capital requirements are thus generally needed in 

these institutions. 

IV. INCORPORATION OF A MORE FLEXIBLE 

DISTRIBUTION -- THE T-DISTRIBUTION 

The finance literature has explored alternative 

distributions to the Gaussian distribution (e.g., Sarmiento, 
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2020). The most commonly used distribution to capture fat 

tails in finance is the Student t distribution (see Blattberg and 

Gonedes, 1974).  We next explore the use of a t-distribution 

for the idiosyncratic component of the stochastic process in 

(2).  

In the context of the stochastic process in (2), it is to be 

expected that the systematic component (e.g., an aggregate 

macroeconomic indicator) is normally distributed due to the 

Central Limit Theorem. However, the idiosyncratic process 

could be expected to feature fatter tails.   

Our flexible numerical procedure easily relaxes the 

assumption of a Gaussian distribution for the idiosyncratic 

component.  To do so, the stochastic process in (2) is 

generalized as follows: 

(6)        𝑋𝑖𝑡 =  𝑆𝑡√𝑝 + 𝑍𝑖𝑡√1 − 𝑝  

and 

 𝑆𝑡~N(0,1) and 𝑍𝑖𝑡~t(DF). 

Draws of the stochastic process in (6) under (5) yield a 

loss distribution, which is numerically derived.  The 

distribution derived from (6) via simulation can then be used 

to project losses (expected shortfall) under different 

confidence intervals, analogously to the analytical formula in 

(4).  The use of the stochastic process in (6) in lieu of (2) 

incorporates a more flexible distribution that subsumes fatter 

tails associated with a t-distribution with low degrees of 

freedom.  

The tail of the numerically derived distribution under the 

stochastic process in (6) is presented in Table 3 for a t-

distribution with 10 degrees of freedom. As in Table 1, Table 

3 assumes a Baa rated portfolio and an asset correlation of 

0.2.   

 
Table 3. Tail Loss Associated with Different Distributions and Degree of 

Portfolio Concentration for an Initial Rating of Baa2 

Number of 

Counterparties 

Expected 

Shortfall  

(CI 99.9%) 

Normal 

Distribution 

Expected 

Shortfall  

(CI 99.9%) 

t-distribution 

with 10 DF 

60 5.4% 6.2% 

40 7.3% 8.3% 

20 11% 13% 

15 14% 16% 

10 17% 21% 

From Table 3, the effects of portfolio concentration are larger 

if the idiosyncratic component has a fatter tail than the 

Normal distribution. However, for a t-distribution with 10 

DF, the effect of a fatter tail on projected losses (in an 

adverse scenario) is less punitive than portfolio 

concentration.  

V. CONCLUDING REMARKS 

In this article, we relaxed the assumption of a fully 

granular portfolio that underpins Basel II risk weights for 

credit risk in determining capital requirements. To do so, we 

modeled losses under an adverse scenario that stems from 

both the systematic and idiosyncratic components.  The 

generalization requires the use of a numerically derived 

distribution function via simulation.  Unlike previous work, 

our method is sufficiently flexible to accommodate a fat-

tailed distribution for the idiosyncratic component. The 

idiosyncratic component is pertinent for a non-granular 

portfolio, and the issue of portfolio concentration is more 

severe for assets with fatter tails.   Future work should 

consider using the numerically derived distribution for 

capital requirements combined with empirically derived 

measures of degrees of freedom for the idiosyncratic 

component that varies across asset classes and applications. 
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