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Abstract  

Spatially distributed estimates of population 

provide commonly used demand surfaces in support 

of spatial planning. In many countries, spatially 

detailed population estimates in small areas are not 

available. For such cases a number of interpolation 

methods have been proposed to redistribute summary 

population totals over small areas to estimate locally 

nuanced demand surfaces. Population allocations to 

small areas are commonly validated by comparing 

the estimates with some known values for those areas. 

This paper explores different interpolation methods 

applied at different spatial scales in locations where 

the validation of estimated surfaces is possible in 

order to suggest appropriate interpolation 

parameters for locations where it is not. The results 

show binary dasymetric mapping applied at medium 

scales provide the best estimates of population, 

among the methods, areal weighting the worst at all 

scales and pycnophylactic interpolation shows 

significant improvement on areal weighting at all 

scales. This paper provides a comprehensive 

evaluation of these techniques, using different scales 

of input data and residual mappings to compare and 

evaluate the spatial distribution of errors in the 

estimated surfaces. The application of such methods 

for estimating spatially distributed demand 

population values in different types of spatial data 

analysis and in locations where validation data do 

not exist are discussed.  

 

Keywords areal interpolation, dasymetric mapping, 

areal weighting, pycnophylactic interpolation, 
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I. INTRODUCTION 

Population estimates for small areas are 

important for many types of spatial data analysis. 

They are especially important for accessibility studies 

and facility location-allocation analyses, both of 

which are commonly used to support spatial planning 

and policy development. Population censuses provide 

a reliable record of socioeconomic characteristics and 

the spatial distribution of residential population [1] 

and thereby support geodemographic analyses [2]. In 

the U.K. census, population counts are collected for 

each household and published as aggregate counts 

and statistics for fixed pre-defined spatial units with 

Output Areas (OA) being the most detailed. The OA 

is similar to a U.S. census block. The OA was 

designed to be as homogenous as possible and to 

have a similar population size [3,4]. The target size of 

an OA is 125 households or approximately 300 

people [3]. The main reason for aggregating 

population census counts in this way is to maintain 

confidentiality and respondent anonymity. In some 

countries census data are spatially aggregated only to 

very coarse summaries that limit their use in further 

spatial analysis. For example, in Nigeria, simple 

population totals are provided for each state and local 

government areas (LGAs), with the LGA providing 

the most spatially detailed information. An LGA is 

similar to the size of a county or Unitary Authority 

(UA) district in the U.K. This level of aggregation 

makes many types of spatial data analysis difficult 

because more detailed population estimates are often 

required than those provided [5]. 

 

II. BACKGROUND 

Areal interpolation is the process of 

transforming values of interest from source zones to 

provide estimates over a set of target zones with 

unknown values [6]. A number of areal interpolation 

techniques have been developed and their 

performance has been found to relate to specific 

characteristics of the input data including its errors, 

extent and spatial properties [7,8], as well as the 

characteristics of any ancillary data used, for example, 

to constrain the disaggregation [1]. 

  One of the simplest areal interpolation 

techniques is areal weighting. In this total data 

volumes are maintained under the assumption that 

population is uniformly distributed within the source 

zones [6]. In reality, population distributions are not 

uniform within source zones and assigning the same 

population density to every location may not 

represent the actual population distribution because of 

the presence of unpopulated areas (water bodies, 

parks, industrial areas, etc.). Point-based areal 

interpolation methods [9] have been used to 

overcome some of the errors associated with the 

assumption of uniform densities within source zones. 

These methods assign census zone populations to the 

centroid of each source zone, and then population 

counts are estimated by summing all points within the 

target zone. The major shortcoming of this method is 

that the polygon centroid is used to represent the total 

population within the polygon. When the source and 

target zones are spatially intersected, the total 

population is completely allocated (or not) to the 

target zone, depending on location of the centroid 
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[10]. This can cause errors when the populations 

allocated in this way are used as demand surfaces for 

measuring access to service facilities [11]. Tobler [12] 

proposed pycnophylactic interpolation as a technique 

to overcome this shortcoming. These generate 

spatially varying but smooth surfaces, whilst 

preserving the total data volumes and assign a non-

zero population density value to target zone. In reality, 

the target zones may have sudden changes in 

population density that coincide uninhabited areas. 

Thus approaches that make use of ancillary data to 

constrain areas within source zones have been 

suggested [13,14,15] and ancillary data on urban 

extent has been commonly used. 

Remotely sensed data such as aerial 

photographs have been used to map urban extent 

since the 1950s and estimate populations [16]. Lo [17] 

describes three main approaches used to visually 

interpret aerial photographs for population mapping: 

counting individual dwelling units, extracting the 

extent of urban settlement and measuring areas of 

different land use. Digital images and statistical 

classification of broad land use types are now 

common [18,19], and land cover derived in this way 

has been used as ancillary data in spatial interpolation 

[1,15,20].  

The dasymetric mapping approach is an 

areal interpolation technique that incorporates 

ancillary data sources as control variables in order to 

identify zones having different population densities 

[20,21]. It constrains the disaggregation of population 

values from source zones to specific target zones, 

which can be weighted by for example expected 

residential density [13,14,15,20,22,23]. Binary 

dasymetric approach [20] divides source zones into 

populated and unpopulated areas and allocates 

population only to the populated areas. Su et al. [24] 

extended this idea by further dividing the populated 

area into multiple classes using transportation layers, 

topography and land use zoning. A 3-class dasymetric 

model has been proposed [14,25], but has not been 

shown to provide any additional benefit to binary 

dasymetric approaches. Recent research has improved 

areal interpolation approaches by applying simple 

proportions as well as various forms of regression 

analysis [26], quantile regression [21] and through 

improved ancillary data such as LiDAR [27], open 

access vector map data [1] and household survey data 

[5].   

In many interpolation studies population 

totals are redistributed from an initial area, the source 

zone (e.g. MSOA in the U.K.) to smaller target zones 

such as OAs and the results are compared with 

known population counts at the lower level in order 

to validate the method. Additionally, much previous 

research has used multispectral imagery mainly of 

30m spatial resolution to redistribute aggregate 

census data to a lower level census unit as the target 

zones for which true populations are known 

[15,17,24,25]. Langford [1] draws attention to the 

implications of this practice: first, the performance of 

the most spatially detailed census data are not often 

measured because they are reserved for testing the 

performance of the interpolation methods; and second, 

it is difficult to evaluate the performance of target 

zones smaller than the lowest level census spatial unit 

because their true values are not known. He 

demonstrates the possibility of using unit postcodes 

(UPCs) in the UK as the target zones with an 

acceptable precision. The UPCs are smaller than the 

finest census zone division, the OA in the U.K. The 

population totals of the UPCs are not reported in the 

U.K. hierarchy of census units but are known and 

available at the Office of National Statistics (ONS) 

U.K.  

This study evaluated areal weighting, 

dasymetric mapping and pycnophylactic interpolation 

applied across different spatial scales and using 

ancillary land cover data classified from satellite 

imagery of differing spatial resolutions. Different 

interpolation methods and input parameters were 

applied to a U.K. case study to determine how well 

the populations reported in census small areas were 

estimated, and thus how well population values 

generated in this way could be used for accessibility 

studies, location-allocation analyses etc. It sought to 

address two specific research questions:  

 The relationship between estimated 

populations from different interpolations and 

the known census counts? 

 Which is the most appropriate interpolation 

method to apply in the absence of a 

universally accepted methodology in 

estimating population surfaces? 

 

III. MATERIALS AND METHODS 

A. Study area 

The study area was the city of Leicester in 

the UK, a location where the actual population 

distribution is known and where interpolation model 

output validation was possible. Leicester covers an 

area of about 73 km2. The population of Leicester has 

increased between 1990 and 2011 as shown in Table I. 

Figure 1 shows the location and extent of Leicester in 

the county of Leicestershire, in England. This 

location was chosen because of its proximity and the 

authors’ knowledge of the area. The 2001 population 

data were used in this study. 

Table I Percentage Change in Population for Leicester 

from 1951 to 2011 

Census Year Population 

1951 285200 

1961 288100 

1971 284200 

1981 280300 
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1991 272133 

2001 279921 

2011 329839 

 

 

Fig 1: The map of (a) England Showing Location of 

Leicestershire County; (b) Leicestershire County with 

Location of Leicester UA; (c) Leicester UA. The Digital 

Boundaries are © Crown Copyright and/or database 

right 2013. An Ordnance Survey/EDINA Supplied 

Service 

B. Data 

The aim of this research is to develop a 

novel and comprehensive analysis of the operation of 

three classic spatial interpolation approaches and how 

they interact with different target zone sizes, support 

grids and different scales of ancillary data. The 

source zone was the city of Leicester, a unitary 

authority administrative area and the target zones 

evaluated were, in order of increasingly granularity, 

MSOAs, LSOAs and OAs. Satellite imagery covering 

the study area was acquired to generate land cover 

data and support the dasymetric approaches. Medium 

resolution satellite imagery and fine resolution (25cm 

aerial photography) were used to generate ancillary 

data for the dasymetric analyses. Table II summarises 

the data used in this study.  

 

 

 

 

 

 

 

 

 

 

 

Table II Data for the city of Leicester 

C. Analysis 

An overview of the analysis is shown in 

Figure 2. Areal weighting and dasymetric methods 

were applied to Leicester unitary authority as the 

source zone. The pycnophylactic interpolation 

method was applied to census totals for Leicester 

unitary authority together with all the surrounding 

unitary authorities (Harborough, Blaby, Charnwood 

and Oadby and Wigston) to generate an interpolated 

gridded population surface at resolutions of 100m and 

30m which were then summed over MSOA, LSOA 

and OA target areas. This is because the 

pycnophylactic method cannot be applied to a single 

polygon such as the Leicester unitary authority. The 

estimated populations were then compared with the 

known census counts in each case, for validation.  

 

 

Fig 2: An Overview of the Method 

Data Format Date Source 

Landsat7 

(ETM) 30m 

spatial 

resolution 
Image 

16 April 

2003 

United States 

Geological 

Survey (USGS) 

website 

(http://www.usg

s.gov/) 

Ortho-

rectified 

aerial 

photograph 

25cm spatial 

resolution  

Image 22 May 

2010 

Ordnance 

Survey, U.K. © 

Crown 

copyright 

and/or database 

right 2013. All 

rights reserved. 

Census data 

with 

boundaries of 

OAs, LSOAs 

and MSOAs 

Shapefile 2001 

Census 

Census Area 

Statistics on the 

Web (casweb) 

(http://casweb.

mimas.ac.uk/20

01/start.cfm). 
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1)  Areal Weighting 

Areal weighting is based on the assumption 

that the true population is uniformly distributed 

within source zones [6]. It uses the size (area) of each 

target zone to proportionally allocate the population. 

It was implemented in six steps: (1) the area of the 

source zone was calculated; (2) the population 

density was calculated using Equation 1; (3) the 

source zone and target zones were spatially 

intersected; (4) the intersect areas were calculated; (5) 

a population value for each intersected zone was 

calculated from its area and the population density as 

in Equation 2; and (6) The interpolated population 

estimate for each target zone was calculated by 

summing all intersected areas within each target zone. 

A flowchart describing these steps is shown in Figure 

3. The population density of the source zone is 

expressed mathematically as: 

 

 
 

Where  is the population density of the source zone, 

s,  is the total population of source zone s and  is 

the area of source zone s.  

 

The estimated population for the overlaid zones is 

expressed mathematically as: 

 

 
 

Where  is the estimated populations of overlaid 

zone, t;  is the number of source zones,  is the 

area of intersection between overlaid zone t and 

source zone s and as defined in Equation 1. 
 

 

 

 
 

Fig 3: Implementation Steps for Areal Weighting (Vector 

Mode) 

 

2)  Binary Dasymetric  

The binary dasymetric uses ancillary data to 

spatially constrain the disaggregation. It follows the 

same steps as above but the source zone and target 

zone areas are modified by removing non-populated 

areas from the analysis. The result is that the 

population density is calculated by dividing the 

population count of the source zone by the total size 

of all built-up areas within the source zone. In this 

case urban / non-urban areas were identified from 

Landsat7 (ETM) 30m spatial resolution data. This 

was classified into 3 classes Built-up, Water and 

Vegetation, with the first class forming the urban area 

and the last 2 the non-urban areas. The 25cm ortho-

rectified aerial photography was used to resample 

image pixels to 3m and 10m without altering the 

projected coordinate system. Cubic convolution 

resampling was used to compute each output cell 

value because this method reduces blurring and 

produces a smoother output image than other 

commonly used method such as nearest neighbour or 

bilinear interpolation. The resampled images were 

classified to derive land cover data of the Leicester 

area at 10m and 3m spatial resolution. A supervised 

maximum likelihood classification identified the 

built-up areas and was repeated several times and the 

data with the highest classification accuracy of 

87.89%, 83.20% and 82.03% for 30m, 10m and 3m 

resolution respectively were chosen. Accuracy of 

classification was assessed by comparing 256 

randomly chosen pixels for which the land cover 

class was known. Figure 4 shows the classified 

Landsat7 (ETM) data and Figure 5 shows the binary 

mask derived from the classified image. The 

application of the binary dasymetric method is 

summarised in Figure 6. 

 

Fig 4: The Classified Leicester Image Derived from 

Landsat7 (ETM). The Digital Boundaries are © Crown 

Copyright and/or Database Right 2013. An Ordnance 

Survey/EDINA Supplied Service. 
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Fig 5: A Binary Mask Derived from Land Cover Data 

Derived from Classified Landsat7 (ETM). The Digital 

Boundaries are © Crown Copyright and/or Database 

Right 2013. An Ordnance Survey/EDINA Supplied 

Service. 
 

 

 
Fig 6: Implementation of the Binary Dasymetric 

Method 
 

3)  Pycnophylactic Interpolation 

Pycnophylactic interpolation can only be 

applied to two or more areas. In this analysis the aim 

was to derive an interpolated surface of the 

population count for Leicester over 100m and 30m 

grids which were then aggregated up to the MSOA, 

LSOA and OA target units. The unitary authority of 

Leicester was represented by a single polygon and so 

data for adjacent county districts (Charnwood, 

Harborough, Blaby, Oadby and Wigston) were 

included in the analysis to generate a pycnophylactic 

surface with five source zones (as in Figure 7). The 

total population for each source zone is shown in 

Table III.    

Table III Population totals for source zones used to 

implement pycnophylactic interpolation 

Unitary Authority Total Population 

Blaby District 90252 

Charnwood District 153462 

City of Leicester 279921 

Harborough District 76559 

Oadby and Wigston District 55795 

 

 

 

 
Fig 7: Source Zones Used for the Pycnophylactic 

Interpolation Method With the City of Leicester (Study 

Area) Shaded in Grey. 

 

The basic principle of the pycnophylactic 

interpolation is to create a smooth surface across the 

study area with no sudden changes across target zone 

boundaries, such that the total value of target 

polygons must equal that of the source polygons with 

each source zone population being the same [12]. 

Figure 8 illustrates the general concept of the 

pycnophylactic interpolation. The method iteratively 

distributes populations, whilst seeking to smooth 

adjacent cells values and maintain total population 

volumes. It computes a continuous population density 

(per cell) in each source zone. The population density 

per cell is then smoothed repeatedly by replacing the 

value of each cell with the weighted average of its 

neighbours. The volume of the attributes within each 

source zone remains unchanged but varies smoothly 

at the boundaries. 

 

The procedure for generating the 

pycnophylactic surface has been described by Qiu et 

al. [28] and involves the following steps: (1) 

converting the source zone data to raster grids; (2) 
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preserving the vector attributes in the raster; (3) 

computing the population density per grid cell; (4) 

calculating a new density by replacing the value of 

each cell with the weighted average of its neighbours; 

(5) estimating the density for each source zone using 

the new per cell density; (6) adjusting the new density 

by multiplying each cell value with the ratio between 

the original population and the estimated total 

population density of each source zone; (7) repeating 

steps 3-6 until no more adjustment is required for 

example when the maximum change in any pixel 

density values between iterations falls below a 

threshold level, such that zone total equals original 

value (the pycnophylactic condition); (8) obtaining 

the estimated interpolated gridded population of each 

target zone by summing the adjusted population 

density of each cell falling within each target zone. 

The implementation steps described above are 

illustrated in Figure 9. 

 

 
Fig 8: The Pycnophylactic Interpolation Method 

(Source: Tobler, W. R., 1992) 
 

 

 

 
Fig 9: The Implementation Steps for the Pycnophylactic 

Interpolation Method 

D. Evaluation of surfaces 

The interpolated gridded pycnophylactic 

surfaces, the areal weighting and the dasymetric 

population surfaces at 100m and 30m resolutions of 

the output grid were overlaid with the boundaries of 

MSOA, LSOA and OA target zones for Leicester and 

then aggregated to obtain estimates of the populations 

for these zones. These were assessed for accuracy by 

comparing the estimated populations with known 

census counts in each case. The boundaries of the 

target zones were spatially overlaid with the 

interpolated gridded population surfaces from which 

the target zone populations were calculated. Figure 

10 shows an example of the results, in this case from 

the pycnophylactic interpolation at 100m resolution. 

The estimated target zone populations were then 

compared with known census counts in that target 

zone. The same procedure was repeated to obtain 

population estimates for the three U.K. census units, 

MSOAs, LSOAs and OAs that were used as the target 

zones. 

 

 
Fig 10: Leicester LSOAs Intersect Interpolated Gridded 

Pycnophylactic Surfaces at Resolutions of 100m 

Support Grids. 
 

For each analysis residuals were calculated 

and mapped to visually explore the nature of the error 

[1,14,28,29]. The residual is calculated from the 

estimated population subtracted from the actual 

populations of each census unit. The accuracy of the 

interpolation is measured using the root mean squared 

error (RMSE) metric [1,14,23,29]. The RMSE metric 

gives a summary of the error within census units and 

was used to evaluate the different approaches. The 

error within a given source zone (RMSE) uses the 

absolute difference between estimated populations 

and the populations reported for the census units 

within each of the target zones and is calculated as in 

Equation 3. 
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Where:  is the known census count at zone i,  is the estimated 

population from the interpolation at zone i, and n is the number of 

target zones.  

 

The RMSE metric has been found to be ‘less 

useful for comparing between different sets of source 

and target units’ [1, p.337], particularly where 

resolution change is involved. This is because the 

RMSE metric is affected by the absolute size of 

estimated values (e.g. MSOA counts are as expected 

larger than LSOA counts and would have a larger 
RMSE values). Previous research [1,14,29] has 

considered the variation in actual population of the 

target zones (e.g. MSOA and OA). To account for 

these variations, the RMSE score is divided by the 

average known population of each target zone to 

obtain the coefficient of variance (CoV). The CoV 

provides a relative error metric suitable for 

comparing values across the target zones. This is a 

useful metric as this research seeks to test 

performance over census areas of differing 

resolutions and CoV is more appropriate for cross-

resolution comparisons. The CoV is calculated as in 

Equation 4.  
 

 
Where: x̄  is the mean population of the known census count for 

each target zone. 

 

 

IV. RESULTS AND DISCUSSIONS 

 

The accuracy of the various interpolations 

was measured using the RMSE metric and CoV. 

Tables IV to IX summarise the performance measures 

for the various analyses in order of increasing 

accuracy. Tables IV and V show the interpolation 

results using 30m and 100m support grids 

respectively, aggregated at MSOA. Tables VI and VII 

show the interpolation results using 30m and 100m 

support grids respectively, aggregated at LSOA, and 

Tables VIII and IX show the interpolation results 

using 30m and 100m support grids respectively, 

aggregated at OA. The areal weighting method 

provides a baseline against which to compare the 

other techniques [1]. As expected, areal weighting 

performs least well in all the experiments undertaken. 

 

Table IV shows the interpolation results 

using the 30m support grid, aggregated at MSOAs. 

The areal weighting method performed least well 

with RMSE score of 4486.9 and a CoV of 0.577. The 

pycnophylactic method slightly improves on areal 

weighting with a RMSE of 4233.4 and a CoV of 

0.544. Interpolations using binary dasymetric with 

classified land cover data used as the ancillary data 

input are better than the pycnophylactic method. The 

binary dasymetric methods using ancillary data input 

of differing spatial resolutions recorded slightly 

different CoV scores. The binary dasymetric model 

using land cover data derived from classified 

Landsat7 (ETM) 30m spatial resolution as the 

ancillary data input provided the best estimates 

among the methods tested with the lowest recorded 

RMSE of 2943.8 and a CoV of 0.379. The most 

striking feature in Table IV is that the binary 

dasymetric model using land cover data derived from 

classified resampled aerial photo data of 10m spatial 

resolutions as the ancillary data input achieved a 

RMSE values of 3314.4 which marginally improves 

to 3304.9 compared to a binary dasymetric model 

using land cover data derived from classified 

resampled aerial photo data of 3m spatial resolutions 

as the ancillary data input. This is surprising because 

higher resolution land cover data that offer greater 

spatial precision in the depiction of building locations 

does not automatically improves interpolation 

performance. One possible reason for this could be 

because they are both from the same source.  

 

Table IV Table V Interpolation Results using the 30m 

Support Grids, Aggregated at MSOA 

Interpolation method RMSE CoV 

Areal weighting using zone boundaries 

only 

4486.9 0.577 

Pycnophylactic interpolation 4233.4 0.544 

Binary dasymetric using 10m resolution 

classified land cover 

 

3314.4 

 

0.426 

Binary dasymetric using 3m resolution 

classified land cover 

3304.9 0.425 

Binary dasymetric using 30m resolution 

classified land cover 

2943.8 0.379 

Note: Mean population of target units is 7776. 

 

 

Table V shows the interpolation results of 

the 100m support grids, aggregated to MSOAs in 

order of increasing accuracy. The results are similar 

to those in Table IV with the areal weighting method 

performing least well and the binary dasymetric 

model using land cover data derived from classified 

Landsat7 (ETM) 30m spatial resolution providing 

better target zone estimates. At MSOA, interpolations 

to 30m support grids are better compared to 100m 

support grids. Also, in contrast to Table IV, the 

RMSE value and CoV recorded for the binary 

dasymetric model using land cover data derived from 

10m data marginally improves those recorded for the 

binary dasymetric model with 3m spatial ancillary 

data. 
 

Table V Interpolation Results Using the 100m Support 

Grids, Aggregated at MSOA 

Interpolation method RMSE CoV 

Areal weighting using zone boundaries 

only 

4934.1 0.635 

Pycnophylactic interpolation 3974.9 0.511 
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Binary dasymetric using 3m resolution 

classified land cover 

3668.7 0.472 

Binary dasymetric using 10m resolution 

classified land cover 

3661.5 0.471 

Binary dasymetric using 30m resolution 

classified land cover 

3579.7 0.460 

Note: Mean population of target units is 7776.  

 

Tables VI and VII show the interpolation 

results using 30m and 100m support grids, aggregated 

to LSOAs in order of increasing accuracy. The results 

recorded have similar pattern to those in Table V. The 

areal weighting method performed least well with 

RMSE of 1497.8 and 1805.3 (using 30m and 100m 

support grids respectively). The binary dasymetric 

model using 30m land cover data provided the best 

target zone estimates with a RMSE of 1087.5 and 

1309.4 for the 30m and 100m support grids 

respectively. 
 

Table VI Interpolation Results Using the 30m Support 

Grids, Aggregated at LSOA 

Interpolation method RMSE CoV 

Areal weighting using zone boundaries 

only 

1497.8 1.001 

Pycnophylactic interpolation 1368.5 0.914 

Binary dasymetric using 3m resolution 

classified land cover 

1173.9 0.784 

Binary dasymetric using 10m resolution 

classified land cover 

1155.6 0.772 

Binary dasymetric using 30m resolution 

classified land cover 

1087.5 0.726 

Note: Mean population of target units is 1497. 

 

 

Table VII Interpolation Results using the 100m Support 

Grids, Aggregated at LSOA 

Interpolation method RMSE CoV 

Areal weighting using zone boundaries 

only 

1805.3 1.206 

Pycnophylactic interpolation 1517.7 1.014 

Binary dasymetric using 3m resolution 

classified land cover 

1467.5 0.980 

Binary dasymetric using 10m resolution 

classified land cover 

1436.1 0.959 

Binary dasymetric using 30m resolution 

classified land cover 

1309.4 0.875 

Note: Mean population of target units is 1497. 

 

 

Table VIII Interpolation Results Using the 30m Support 

Grids, Aggregated at OA 

Interpolation method RMSE CoV 

Areal weighting using zone boundaries 

only 

586.2 1.861 

Pycnophylactic interpolation 516.8 1.641 

Binary dasymetric using 3m resolution 

classified land cover 

458.1 1.454 

Binary dasymetric using 10m resolution 

classified land cover 

447.4 1.420 

Binary dasymetric using 30m resolution 

classified land cover 

429.6 1.364 

Note: Mean population of target units is 315.  

Tables VIII and IX show the interpolation 

results for the 30m and 100m support grids 

respectively, aggregated to OAs in order of increasing 

accuracy. The results show a similar pattern to the 

LSOA results. The areal weighting method performed 

least well with RMSE of 586.2 and 761.9 (using 30m 

and 100m support grids respectively) and CoV of 

1.861 and 2.419 (using 30m and 100m support grids 

respectively). The binary dasymetric model using 

30m land cover provided the best target zone 

estimates at this resolution of interpolation with a 

RMSE of 429.6 and 503.5 (for 30m and100m support 

grids respectively) and CoV of 1.364 and 1.598 (for 

30m and 100m support grids respectively).  

 

Table IX Interpolation Results using the 100m Support 

Grids, Aggregated at OA 

Interpolation method RMSE CoV 

Areal weighting using zone boundaries 

only 

761.9 2.419 

Pycnophylactic interpolation 664.3 2.109 

Binary dasymetric using 3m resolution 

classified land cover 

630.1 2.000 

Binary dasymetric using 10m resolution 

classified land cover 

614.4 1.950 

Binary dasymetric using 30m resolution 

classified land cover 

503.5 1.598 

Note: Mean population of target units is 315. 

 

The binary dasymetric method shows 

significant improvement when compared with the 

pycnophylactic and areal weighting methods: it 

provides the best estimates among the models tested. 

This improved performance, quantified in this 

research, is because the technique uses land cover 

data to constrain the population distribution to only 

populated areas. The results presented show how the 

underlying assumptions of each interpolation 

technique and the scales of analysis interact to 

influence the target zone estimates. The dasymetric 

method was found to consistently provide better 

target zone estimates when compared to other areal 

interpolation techniques. 

 

The binary dasymetric model using land 

cover data derived from classified Landsat7 (ETM) 

30m spatial resolution as the ancillary data input 

provided the lowest recorded RMSE score for all the 

models tested, for the three target zones compared to 

land cover data derived from classified resampled 

aerial photo of 10m and 3m spatial resolutions. The 

expectation is that high resolution satellite image, 

which appears to offer greater spatial precision in 

identifying urban extent, could lead to reduction in 

land cover classification error. This is because the 

spectral signatures for each land cover type are likely 

to generate as little confusion as possible with a clear 

separation of land cover classes before classification. 

A possible reason for this result is the classification 

algorithm used in this study, the maximum likelihood 
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classifier. Maximum likelihood classification 

algorithm can provide reasonably good classification 

results for Landsat imagery [30,31]. The algorithm 

classifies land cover based on spectral signatures at 

per pixel level, while ignoring spatial features in an 

image. However, there are a number of issues related 

to using maximum likelihood classifier for medium 

and high resolution imagery. This is because a 

significant proportion of medium and high spatial 

resolution imagery in urban areas can be affected by 

shadows [32]. In this study, extracting urban land 

cover from resampled aerial photo data was more 

difficult compared to using the Landsat (ETM) source. 

Lu et al. [33] have shown how the use of spatial 

features improves land cover classification, especially 

when high spatial resolution images are used. Object-

based classification provides an alternative for 

classifying remotely-sensed images into thematic 

map. Lu et al. [30] compared object-based 

classification with maximum likelihood and found 

object-based classification to be especially valuable 

for higher spatial resolution images. The object-based 

classification algorithm was not applied in this study. 

Also, the performance of 10m and 3m resampled 

aerial photo data can be attributed to using land cover 

information of different resolutions of the same 

source. 

 

The interpolation results aggregated at 

MSOAs have larger RMSE values than those 

aggregated at LSOAs, which are also larger than 

those aggregated at OAs. This is expected because 

the RMSE metric is affected by the absolute size of 

estimated values and the target size population for an 

OA is less than that of an LSOA, which is also less 

than that of an MSOA. The CoV scores, which are 

appropriate for comparison across target zones, show 

interpolation results from Leicester unitary authority 

to 30m support grids, aggregated at MSOAs provided 

the lowest CoV score among the solutions tested and 

for the three census areas used as the target zones. 

This indicates that larger census units are more likely 

to produce better results as it shows improvements in 

RMSE and the values of CoV as the size of the 

spatial aggregation increases. This result is not 

surprising as one would expect higher accuracies 

when values are disaggregated over coarser spatial 

units. This result is similar to findings of Comber et 

al. [34] where a combination of pycnophylactic 

interpolation with the dasymetric method was used to 

create the National Agricultural Land Use Dataset. 

They reported improvement in R2 and RMSE values 

for Arable and Grass land uses for Kent, U.K. as the 

size of the spatial aggregation increases by the plots 

from 1 km2 to 25 km2. 

 

The residuals in all the census units tested 

were calculated and mapped to show the spatial 

distribution of the error (Figures 11, 12 and 13). The 

class intervals are shown by standard deviation from 

the mean error for each target zone. Standard 

deviations are the best way to symbolise normally 

distributed quantitative data on maps, as it makes 

classes easier to interpret. From the residual maps 

presented in Figures 11 to 13, some patterns persist 

across scales. It becomes increasingly clear that a 

degree of spatial ‘smoothing’ is present in the 

estimates. That is, the very densely populated inner 

city OAs are underestimated, the less dense band 

running alongside the river north-south through 

Leicester is overestimated, and many large rural OAs 

are overestimated. Evidently, the residual maps show 

more census areas are subject to overestimation, as 

compared to underestimation, at greater than one 

standard deviation. The residual maps show that 

relatively large rural census units tend to be 

overestimated while relatively small urban census 

units tend to be underestimated. This is because they 

are designed to have a common target population 

count [3]. Similar patterns have been found by other 

researchers e.g. [14,29], where relatively large rural 

blocks tend to be overestimated while relatively small 

urban blocks tend to be underestimated. The 

underestimated units are mainly the smaller census 

areas in the more densely populated areas such as the 

city centre while the overestimated units are the 

larger spatial areas in the less densely populated areas 

away from the city centre. A possible reason for this 

is that the satellite data being used as the ancillary 

data input may be more likely to identify houses and 

other built-up areas but not how many people live 

inside them. It is also likely in some areas there may 

be socioeconomic or cultural reasons why some 

houses have greater occupancy rates than the others. 

 
 

Fig 31: The spatial Distribution of Residuals at MSOA 

from a 100m Gridded Pycnophylactic Population 

Surface. The Mean Count Error is 0 and a Standard 

Deviation of 3975. The Digital Boundaries are © Crown 

Copyright and/or Database right 2013. An Ordnance 

Survey/EDINA Supplied Service. 
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Fig 42: The spatial distribution of residuals at LSOA 

from a 30m gridded dasymetric population surface 

using land cover data derived from classified resampled 

aerial photo data of 3m spatial resolutions as the 

ancillary data input. The mean count error is -233 and a 

standard deviation of 1151. The digital boundaries are 

© Crown Copyright and/or database right 2013. An 

Ordnance Survey/EDINA supplied service. 

 

 
Fig 53: The spatial distribution of residuals at OA from 

a 30m Gridded Dasymetric Population Surface using 

Land Cover Data Derived from Classified Resampled 

Aerial Photo Data of 10m Spatial Resolutions as the 

Ancillary Data Input. The Mean Count Error is -107 

and a Standard Deviation of 434. The Digital 

Boundaries are © Crown Copyright and/or Database 

right 2013. An Ordnance Survey/EDINA Supplied 

Service. 
 

 

V. CONCLUSION 

 

This study has developed a novel and 

comprehensive analysis of the operation of three 

classic spatial interpolation approaches and how they 

interact with different target zone sizes, support grids 

and different scales of ancillary data. The results 

show how the underlying assumptions of each 

interpolation technique and the scales of analysis 

interact to influence the target zone estimates. The 

dasymetric method was found to consistently provide 

better target zone estimates when compared to other 

areal interpolation techniques. Much previous 

research using dasymetric methods have used land 

cover information derived from classified satellite 

imagery as the ancillary data input [1,7,15]. However, 

deriving such information from satellite imagery 

requires specialized skills and such data cannot 

determine population density levels, providing a 

potential source of error associated in analyses using 

such data as the ancillary data input. This study 

evaluated land cover data classified at different 

spatial resolutions (30m, 10m and 3m) as ancillary 

data input to the dasymetric method and found the 

coarsest resolution data generated the best results, 

with the lowest values of RMSE and CoV for all the 

models tested. These results, along with the free 

availability of 30m spatial resolution remote sensing 

data (Landsat etc.) and the ease with which it can be 

classified into urban and non-urban areas suggests its 

suitability as input for the dasymetric method. Thus 

this research suggests that additional costs and 

computational effort associated with finer scale 

remote sensing imagery (e.g. 10m and 3m resolution) 

has no analytical advantage and that the quality of the 

land cover data is not as important as its ability to 

predict the population estimates. 

 

This study provides an important 

contribution to knowledge, with respect to estimating 

population surfaces. Fine scale estimates of spatial 

population have relevance for a broad range of 

applications, and therefore the findings of this 

research are of value beyond the field of 

Geographical Information Science. Research in the 

field of small area population estimates remains 

relevant because of the absence of a universally 

accepted methodology in estimating population 

surfaces. There is the need to apply areal 

interpolation techniques to different areas to be able 

to understand why a particular method consistently 

provides better target zone estimates. 

 

ACKNOWLEDGEMENT 

This work was undertaken as part of a PhD 

funded by the Petroleum Technology Development 

Fund (PTDF) under the Federal Government of 

Nigeria [PTDF/E/OSS/PHD/MIJ/316/10]. The 

authors would like to express gratitude to Ordnance 

Survey, U.K. for providing 25cm Ortho-rectified 

aerial photograph covering Leicester area.   

 

 



SSRG International Journal of Geo informatics and Geological Science (SSRG-IJGGS) – Volume 4 Issue 2 May to Aug 2017 

ISSN: 2393 - 9206                     www.internationaljournalssrg.org                              Page 22 

REFERENCES  

 

[1] Langford, M. An Evaluation of Small Area Population 

Estimation Techniques Using Open Access Ancillary Data. 

Geographical Analysis 2013, 45, 324-344. 

[2] Harris, R. J.; Longley, P. A. Creating small area measures 

of urban deprivation. Environment and Planning A 2002, 34, 

1073-1093. 

[3] Martin, D. From enumeration districts to output areas: 

Experiments in the automated creation of a census output 

geography. Population Trends 1997, 88, 36-42. 

[4] Martin, D. Optimizing census geography: The separation of 

collection and output geographies. International Journal of 

Geographical Information Science 1998, 12, 673-685. 

[5] Leyk, S.; Nagle, N. N.; Buttenfield, B. P. Maximum 

Entropy Dasymetric Modeling for Demographic Small Area 

Estimation. Geographical Analysis 2013, 45, 285-306. 

[6] Goodchild, M. F.; Lam, N. Areal interpolation: A variant of 

the traditional spatial problem. Geo-Processing 1980, 1, 

297-312. 

[7] Zandbergen, P. A.; Ignizio, D. A. Comparison of 

Dasymetric Mapping Techniques for Small-Area Population 

Estimates. Cartography and Geographic Information 

Science 2010, 37, 199-214. 

[8] Wu, S.; Qiu, X.; Wang, L. Population estimation methods in 

GIS and remote sensing: a review. Geographic Information 

Science and Remote Sensing 2005, 42, 80-96. 

[9] Lam, N. S. Spatial Interpolation Methods: A Review. The 

American Cartographer 1983, 10, 129-149. 

[10] Langford, M.; Higgs, G. Measuring Potential Access to 

Primary Healthcare Services: The Influence of Alternative 

Spatial Representations of Population. The Professional 

Geographer 2006, 58, 294-306. 

[11] Hewko, J.; Smoyer-Tomic, K. E.; Hodgson, M. J. 

Measuring neighbourhood spatial accessibility to urban 

amenities: does aggregation error matter? Environment and 

Planning A 2002, 34, 1185-1206. 

[12] Tobler, W. Smooth Pycnophylactic Interpolation for 

Geographical Regions. Journal of the American Statistical 

Association 1979, 74, 519-530. 

[13] Langford, M.; Maguire, D. J.; Unwin, D. J. The area 

transform problem: Estimating population using remote 

sensing in a GIS framework. In: Masser, I. and Blakemore, 

M. (eds) Handling Geographical Information: Methodology 

and Potential Applications. London: Longman 1991, 55-77. 

[14] Eicher, C.; Brewer, C. Dasymetric mapping and areal 

interpolation: Implementation and evaluation. Cartography 

and Geographic Information Science 2001, 28, 125-138. 

[15]  Mennis, J. Generating surface models of population using 

dasymetric mapping. The Professional Geographer 2003, 55, 

31-42. 

[16] Green, N. E. Aerial photographic analysis of residential 

neighbourhoods’: An evaluation of data accuracy. Social 

Forces 1956, 35, 142-147. 

[17] Lo, C. P. Population Estimation Using Geographically 

Weighted Regression. GIScience and Remote Sensing 2008, 

45, 131-148. 

[18] Lillesand, T. M.; Kiefer, R. W., Eds.; In Remote sensing 

and image interpretation; John Wiley and Sons.: New York, 

1987. 

[19] Lo, C. P. Estimating Population and Census Data. American 

Society for Photogrammetry and Remote Sensing 2006, 

337-377. 

[20] Langford, M.; Unwin, D. Generating and mapping 

population density surfaces within a geographical 

information system. The Cartographic Journal 1994, 31, 21-

26. 

[21] Cromley, R. G.; Hanink, D. M.; Bentley, G. C. A Quantile 

Regression Approach to Areal Interpolation. Annals of the 

Association of American Geographers 2011, 102, 763-777. 

[22] Mennis, J. Dasymetric Mapping for Estimating Population 

in Small Areas. Geography Compass 2009, 3, 727-745. 

[23] Tapp, A. F. Areal Interpolation and Dasymetric Mapping 

Methods Using Local Ancillary Data Sources. Cartography 

and Geographic Information Science 2010, 37, 215-228. 

[24] Su, M.; Lin, M.; Hsieh, H.; Tsai, B.; Lin, C. Multi-Layer 

Multi-class Dasymetric Mapping to Estimate Population 

Distribution. Science of the Total Environment 2010, 408, 

4807-4816. 

[25] Langford, M. Obtaining population estimates in non-census 

reporting zones: An evaluation of the 3-class dasymetric 

method. Computers, Environment and Urban Systems 2006, 

30, 161-180. 

[26] Qiu, F.; Cromley, R. Areal Interpolation and Dasymetric 

Modeling. Geographical Analysis 2013, 45, 213-215. 

[27] Sridharan, H.; Qiu, F. A Spatially Disaggregated Areal 

Interpolation Model Using Light Detection and Ranging-

Derived Building Volumes. Geographical Analysis 2013, 45, 

238-258. 

[28] Qiu, F.; Zhang, C.; Zhou, Y. The Development of an Areal 

Interpolation ArcGIS Extension and a Comparative Study. 

GIScience and Remote Sensing 2012, 49, 644-663. 

[29] Mennis, J.; Hultgren, T. Intelligent dasymetric mapping and 

its application to areal interpolation. Cartography and 

Geographic Information Science 2006, 3 3, 179-194. 

[30] Lu, D.; Li, G.; Moran, E.; Freitas, C. C.; Dutra, L.; Anna, S. 

J. S. In In A Comparison of Maximum Likelihood Classifier 

and Object-Based Method Based on Multiple Sensor 

Datasets for Land-Use/Cover Classification in the Brazilian 

Amazon; Proceedings of the 4th GEOBIA; Rio de Janero, 

Brazil, 2012; pp 20. 

[31] Blaschke, T. Object based image analysis for remote 

sensing. ISPRS Journal of Photogrammetry and Remote 

Sensing 2010, 65, 2-16. 

[32] Zhou, W.; Huang, G.; Troy, A.; Cadenasso, M. L. Object-

based land cover classification of shaded areas in high 

spatial resolution imagery of urban areas: A comparison 

study. Remote Sensing of Environment 2009, 113, 1769-

1777. 

[33] Lu, D.; Hetrick, S.; Moran, E. Land cover classification in a 

complex urban-rural landscape with QuickBird imagery. 

Photogrammetric Engineering and Remote Sensing 2010, 

76, 1159-1168. 

[34] Comber, A.; Proctor, C.; Anthony, S. The Creation of a 

National Agricultural Land Use Dataset: Combining 

Pycnophylactic Interpolation with Dasymetric mapping 

technique. Transactions in GIS 2008, 12, 775-791. 

 

 

 

 

 


