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Abstract  

        Background: A new method of modeling acoustic 

monitoring of a layered-block elastic medium with 

several inclusions of various physical-mechanical 

and phase hierarchical structures has been 

developed. Methods: An iterative process of solving a 

direct problem for the case of three hierarchical 

inclusions of l, m, s ranks based on the use of 2D-

integro differential equations has been developed. 

Results: The degree of hierarchy of inclusions is 

determined by the values of their ranks, which may be 

different. Hierarchical inclusions are located in 

different layers one above the other: the upper 

anomalously stressed, the second-fluid-saturated and 

the third anomalously dense. The degree of filling 

with inclusions of each rank is different for all three 

hierarchical inclusions. At the same time, the 

question of dynamic processes in fluid-saturated 

hierarchical inclusions related to convective mixing 

of a single-component fluid is investigated. 

Conclusions: The simulation results can be used 

when conducting monitoring studies of fluid return 

control of oil fields. The results can help explain the 

excessive water flooding of oil reservoirs. 

 

Keywords - hierarchical environment, acoustic field,  

iterative algorithm  integral-differential equations, 
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I. INTRODUCTION 
 

    This document is a template.  A significant result 

of geomechanical - geodynamic studies of the past 

time was the discovery of a close relationship 

between global geodynamic and local geomechanical 

processes caused by mining, especially in tectonically 

active zones. No less important result of research was 

also the conclusion about the fundamental role of the 

block-hierarchical structure of rocks and massifs for 

explaining the existence of a wide range of nonlinear 

geomechanical effects and the emergence of complex 

self-organizing geosystems. 

The hierarchical structure is characteristic for 

many systems, especially for the Earth’s lithosphere, 

where more than 30 hierarchical levels from tectonic 

plates thousands of kilometres to mineral grains are 

distinguished [1]. Thus, the crust is a discrete system 

of blocks and, like any synergetic discrete ensemble, 

has the properties of hierarchy and self-similarity [2]. 

     The development of oil and gas fields associated 

with the movement of multiphase multicomponent 

media, which are characterized by non-equilibrium 

and nonlinear rheological properties. The actual 

behaviour of reservoir systems is determined by the 

complexity of the rheology of moving fluids and the 

morphological structure of the porous medium, as 

well as the diversity of interaction processes between 

the fluid and the porous medium [3]. Consideration of 

these factors is necessary for a meaningful description 

of fluid filtration processes in the presence of 

nonlinearity, noneqiulibrium and heterogeneity 

inherent for real systems. At the same time, new 

synergistic effects (loss of stability with the 

appearance of oscillations, formation of ordered 

structures) are revealed. This requires the 

development of new methods for monitoring and 

managing complex natural systems that are tuned to 

account for the observed phenomena. Thus, the 

reservoir system from which oil is to be extracted is a 

complex dynamic hierarchical system. 

When constructing a mathematical model of a real 

object, it is necessary to use active and passive 

monitoring data obtained during the current operation 

of the object as a priori information. In [4,5], 

simulation algorithms were constructed in the 

electromagnetic case for 3-D heterogeneities, in the 

seismic case for 2-D heterogeneities for an arbitrary 
type of N-layer medium excitation source with a 

hierarchical elastic inclusion located in the J-th layer. 

In [6], a new 2D modeling algorithm was developed 

for diffraction of sound on an elastic and porous 

fluid-saturated inclusion of a hierarchical structure 
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located in the J-th layer of an N-layer elastic medium. 

In work [7], modeling algorithms were constructed in 

the acoustic case for 2-D heterogeneities for an 

arbitrary type of excitation source of an N-layer 

medium with a separate hierarchical anomalously 

density, stress, and plastic inclusion located in the J-th 

layer. 

    In this paper, we developed an algorithm for 

modeling the acoustic field (longitudinal acoustic 

wave) in the form of an iterative process for solving a 

direct problem for the case of three hierarchical 

inclusions l, m, s –th ranks based on the use of 2D 

integral and integral-differential equations. The 

degree of hierarchy of inclusions is determined by the 

values of their ranks, which may be different. 

Hierarchical inclusions are located in different layers 

one above the other: the upper anomalously stressed, 

the second fluid-saturated and the third anomalously 

dense (Figure. 1). At the same time, the question of 

dynamic processes in fluid-saturated hierarchical 

inclusions connected with convective mixing of a 

one-component fluid is investigated. 

 

 

Figure 1. Scheme of the combined anomalously stressed (upper), 

fluid-saturated (medium) and anomalously dense (lower) 

heterogeneities of the hierarchical type, located in an N-layered 

elastic medium. 

II.  ALGORITHM FOR MODELING THE 

DIFFRACTION OF SOUND WAVE ON A 

TWO-DIMENSIONAL COMBINED: 

ANOMALOUSLY STRESSED, FLUID-

SATURATED AND ANOMALOUSLY 

DENSE HETEROGENEITY OF A 

HIERARCHICAL TYPE, LOCATED IN AN 

N-LAYERED ELASTIC MEDIUM.  

The authors of [5, 7] described an algorithm for 

modeling the diffraction of sound on a two-dimensi-

onal elastic hierarchical inclusion, located in the J-th 

layer of the N-layered medium. - 0
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Let us calculate 
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00
),(  in the layer where 

the second hierarchical elastic inclusion is located 

using expression (2), then the normal potential of the 

acoustic field for the second inclusion is written in the 

form: 
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1 ),()(   .The system of 

equations for the second elastic hierarchical inclusion 
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ranks of the hierarchy for the three inclusions. In this 

paper, L = 3, M = 3, S = 4.                                   (6 ’) 
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Then we go to algorithm (1) - (6). If l> 3, and m = 2, 

then we calculate in layer j using expression (7): 
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 K-module of all-round compression, porosity-  , the 

true module of the phase compressibility
0K , pore 

hydrostatic pressure p2. The first equation of system 

(3) is rewritten as (3 ’) in accordance with the fact 

that in the second inclusion, second-rank 

heterogeneities become fluid or oil-saturated and the 

inclusions are completely filled with liquid and it is 

not mobile. Then go to (5) - (6).   
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Let us calculate in all layers j = 1, N using the 

expression (7 ’): 
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    The algorithm stops if the ranks of the hierarchy 

become larger than the given numbers (6 ’). If at a 

certain hierarchical level, the structure of local 

heterogeneity splits into several heterogeneities, then 

the double and contour integrals in expressions (1-7 ’) 

are taken over all heterogeneities of a given rank. 

Consider the case of thermal convection in fluid-

saturated inclusions located in the layer
j

h . 
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A. The problem of convection occurring in the fluid 

saturated inclusion 

            In an unevenly heated one-component fluid 

located in a gravity field, mechanical equilibrium is 

possible. If the temperature heterogeneity is such that 

the conditions of hydrostatic equilibrium are violated, 

then the equilibrium becomes unstable and, as a result 

of the development of perturbations, is replaced by 

convective motion. Under the same conditions, when 

the conditions of hydrostatic equilibrium are violated, 

convection occurs at arbitrarily small temperature 

heterogeneity. This convection is called free heat. In 

this model, the macroscopic motion of a fluid is 

described by the following system of equations: the 

Navier-Stokes equation of motion, the heat transfer 

equation, and the continuity equation. For a real 

compressible fluid in a field of gravity, this system 

has the form [11]: 
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Here v


is the velocity vector, p-pressure, σ-density, 

T-absolute temperature, s-entropy per unit volume of 

fluid; g


- gravity acceleration; and  - shear and 
 volume viscosity coefficients;   - thermal 

conductivity coefficient (coefficients  ,  ,   are 

constants; D-dissipative function: 
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-Kronecker symbol; over indices i, k 

summation is assumed. To the written system of 

equations it is necessary to add the equation of state 

of the medium and the boundary conditions: in our 

approximation of one-component fluid: 
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m = 2 (3 ’). In the following formulas, we will use the 

notation for density σ. 

Entropy can be expressed through two variables T and 

p. If the compressibility of the medium is not 

significant, the original system can be simplified. 

Starting to derive the equations of free convection, we 

begin by simplifying the equation of state (9). 

Imagine T and p in the form:  
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Where β and α are the coefficients of thermal 

expansion and isothermal compressibility: 
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1                                (11)  

The requirement of smallness σ´ in comparison with 

σ0 means from (10) that:  

 1,1  PT                                               (12) 

We will further assume that changes in density due to 

pressure heterogeneity are small compared with 

changes due to temperature heterogeneity: 

P  << T                                                                  

(13)    

Then the equation of state (10) will be rewritten in the 

form: 

 T   1
0

                                                   

(14) 

Thus, we neglect the dependence of density on 

pressure; temperature dependence cannot be 

neglected; since this dependence leads to convection. 

Condition (13) means that the pressure along the fluid 

should not change significantly. Hence, the vertical 

scale of the area l in which convection takes place 

should not be large, and the hydrostatic pressure drop 

will have the order of σ0gl. Conditions (12), (13) will 

be rewritten as:  

10   gl                                                

(15)    
Θ-is a difference of the characteristic temperature. 

The condition of density changes smallness allows 

writing approximately the equation of continuity (8) 

in the form for an incompressible fluid:  

0vdiv
                                                           

(16) 

We will similarly neglect the change in entropy due 

to pressure and write it down as: 

p

p
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T

s
TcT

T

c
ss 












 ,

0

                                  

(17)  
Substituting (17) into (8), (the second equation of the 

system), neglecting D we receive: 
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T

c
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t

T
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



0

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TTv
t
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
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                                              (18) 

p
c

0



 

 
- thermal diffusivity. If there is an internal heat source, 

then to (1.13) in the right part a member is added: 

p
c

Q

0

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Q is the power of the sources. Let us proceed to the 

transformation of equation (8) (the first equation). 

Substitute (14) in (8) with (16):  
 T   1

0  

gvdivvpvv
t

v 

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
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)(

 

0vdiv
  

then we receive: 

   

vv
t

v

dt

vd

gTvp
dt
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
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





                    (19) 

Let 
ppp  ~

, 
gp


0
~  , 

p~  - hydrostatic pressure;    

  gTvp
dt

vd
T




 
00

1
                           (20) 

dt

dv
z

 If it is little compared with the acceleration of 

gravity, we can write:   

gTvp
dt

vd 


 
00

                                (21) 

For free convection, this condition is satisfied. We 

divide (21) by the average density:  
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Tgvpvv
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 - coefficient of kinematic viscosity, 


- a unit vector 

directed upwards.  System (22) - (24) is called the 

heat convection system in the Businesque 

approximation:  







Tgvpvv
t
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                        (22) 

TTv
t

T







                                               (23) 

0vdiv
                                                                    (24)  

We omitted the strokes in T and p, but remember that 

T is measured from the average constant value, and p 

is the deviation from the hydrostatic p~ , 

corresponding to temperature T  and density σ0. This 

system corresponds to weak convection. Density 

deviations from the average value are assumed so 

small that we neglected them in all equations except 

the equation of motion, where it is taken into account 

only in the term with the lifting force (22). If the fluid 

fills a cavity surrounded by a solid array, then the 

system should be added the conditions of an ideal 

thermal contact: 

mm

m
T

t

T







                                                    (25) 

Tm - the temperature of the massif, χm - its thermal 

diffusivity. We formulate the boundary conditions: at 

the boundary S of a liquid with a solid massif: v


=0, 

and the temperature and the normal component of the 

heat flux are: 

;
m

TT                                                             (26) 

n

T

n

T
m

m









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(27) 

If the temperature and heat flux are set directly at 

the boundary of the cavity, then the equations will 

contain the following values: L-length of the cavity, 

Θ-characteristic temperature difference, τ-time 

characterizing unsteady external conditions and fluid 

parameters:  
 g,, . From these quantities, three dimensionless 

combinations can be constructed: 

2

3



 Lg
G




, 


P

,
2

L
F




 - Grashof, Prandtl and 

Fourier numbers. 

B. Mechanical equilibrium 

            In an unevenly heated fluid, as a rule, 

convective motion occurs. There are special 

conditions for heating a fluid under which it can be in 

a state of mechanical equilibrium, that is, it can 

remain stationary. In this case, there will be no 

thermodynamic equilibrium: the spatial heterogeneity 

of temperature will lead to the appearance of a heat 

flow. Let us turn to the system (22) - (24) Let: 
v


= 0. We will look for stationary distributions of 

temperature and pressure in equilibrium, let T0, p0 be 

equilibrium distributions of temperature, neglecting 

of internal sources of heat, and pressure: 

0
1

00

0

 



Tgp

                                          (28) 

00  T                                                           (29)  

Applying an operation rot to equation (28) 

0)
1

(
00
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
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We obtain:  

00  


T                                                       (30) 

We omit the trivial case:  

00  T
 

then  

0T
 

is parallel to 



, i.e. it is vertically directed and 

0
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




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


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T
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T                                                    (31)     

)(00 zTT                                                          

(32)     
Turning to (29): 

0
2

0
2







z

T

.  

Then:  

BAzzT )(0
                                             (33) 

A and B are constant. 




AT  0
                                                      (34) 

The equilibrium is stable if all perturbations 

extinguish with time. If one or several perturbations 

increase with time, then the equilibrium is unstable 

with respect to these perturbations, and their 
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development over time will lead to no balance and 

convection. Under real conditions, various 

disturbances arise; therefore the equilibrium of a fluid 

can be observed only when it is stable.   

C. Unstable equilibrium 

              Unstable equilibrium is quickly replaced 

by convection. Consider the temperature and pressure 

fields that are different from the equilibrium: 

1010 , ppTT  , 

T1,p1-  perturbations. Deviations of temperature and 

pressure from equilibrium distributions result in 

convective motion with velocity v1. We will consider 

small nonstationary deviations in the linear 

approximation. In system (22) - (24) we neglect terms 

that are quadratic in perturbations and, taking into 

account (28) and (29), we obtain: 
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 



Tgp

 

00  T  

Let us write out a system of small deviations from 

the state of mechanical, hydrostatic equilibrium in the 

form: 
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01 vdiv
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If the inclusion is surrounded by a heat-conducting 

massif, then this system must also be supplemented 

with an equation for the perturbation of the 

temperature Tm1 of the massif, which follows from 

(25): 
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T
t

T

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
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                                               (36) 

At the boundary between the liquid and the massif 

at the boundary S of the liquid with a solid massif  

v1=0, and the temperature and the normal component 

of the heat flow are: 

;11 mTT   
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Let us write the system of equations for 

perturbations (35) - (36) in a dimensionless form, for 

this we choose the following units of measure: 

distances - characteristic linear size of the inclusion L, 

time - 

2
L

, velocity- L



, pressure-
2

0

L



, 

temperature-AL (A-equilibrium temperature gradient, 

defined by the relation (2.7): 
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System (37) includes dimensionless perturbations: 

mTTpv ,,,
, 

and all derivatives are taken along dimensionless 

coordinates and time. The system includes three 

dimensionless parameters: the Prandtl number P, the 

ratio of the thermal diffusivity of the fluid and the 

array: 

 m


 ~

 
and the Rayleigh number R = G * P. This system has 

particular solutions that depend on time exponentially: 
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The boundary conditions for the amplitudes: at the 

boundary S of the liquid with a solid massif, v = 0, 

the temperature and the normal component of the heat 

flux: 
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III.  RESULTS 
 

      Linear homogeneous boundary value problem (38) 

- (42) –is a problem of eigenvalues. The eigenvalues 

of the decrements of normal disturbances are f. Eigen 

functions are the corresponding amplitudes. The 

formulated boundary value problem determines the 

spectrum of normal perturbations of the equilibrium 

of a fluid in the inclusion of a given geometry, which 

depends on four parameters entering the equations: 

Rayleigh numbers, Prandtl numbers, thermal 

conductivities and thermal diffusivity ratios. The 

dependence of normal disturbances on time lies in the 

multiplier exp(-ft). If the decrement f is real, then the 

perturbation changes monotonically with time: at f> 0, 

the perturbation decreases, and at f <0 it increases. If 

the decrement is complex, it can be represented as 

ir fff  . In this case, the perturbations will oscillate 

with a frequency equal to the imaginary part of the 

decrement. In the case of a closed inclusion, the 

spectrum of normal disturbances is discrete and 

consists of several frequencies. As is shown in [10], 

fluctuations in temperature perturbations occur when 

the fluid is heated from above, but a similar effect 

occurs when the fluid is intermixed by an acoustic 

vertical effect. These temperature fluctuations will 

also affect the fluctuations in the density of the liquid: 

)2(
'0



k
k

k
ijmijmjim f

 
rank m = 2, which will affect the values of the 

acoustic potential of the longitudinal acoustic wave. 

That effect was probably recorded in [11]. 

IV. CONCLUSIONS 
 

      Iterative simulation algorithms are constructed for 

the seismic case in the acoustic approximation for the 
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composite hierarchical heterogeneity. When building 

a complex seismic gravitational model without taking 

into account the anomalous influence of the stress-

deformation state inside the hierarchical inclusion, 

called the elastic cushion, an analysis of the 

anomalous acoustic effect using longitudinal wave 

propagation data shows that the effect of anomalous 
elastic parameters in the seismic model cannot be 

neglected, since they affect on the values of the 

desired anomalous densities. If these values are used 

in constructing the density gravitational model 

without taking into account the influence of elastic 

parameters, these density values will not reflect the 

material composition of the analysed medium. When 

constructing an anomalously stressed geomechanical 

model without taking into account the anomalous 

influence of density heterogeneities within the 

hierarchical inclusion, which is the substrate for a 

two-phase field, the values of the desired anomalous 

elastic parameters causing an anomalous stress in the 

pillow using data on the propagation of the transverse 

wave will not be distorted. These values of the elastic 

parameters will not reflect the real stress state of the 

analysed medium over the fluid-containing field, 

which in turn seems to be a hierarchical multi-

granular medium. Analysis of dynamic phenomena in 

hierarchical inclusions containing fluids (oil or water) 

in the form of convection, leading to density and 

potential oscillations of a longitudinal wave with 

large values of hierarchy ranks in a composite 

hierarchical structure. This phenomenon can be 

caused not only by thermal effects, but also by using 

a source of vertical exposure to an acoustic 

longitudinal wave. The set of additional frequencies 

will depend on the geometry of the inclusions, as well 

as on the composition of the fluid. 

     The first proposed iterative algorithm for modeling 

a hierarchically complex two-phase medium with 

account of convective intermixing can be used to 

control the production of viscous oil in mine 

conditions and light oil in sub horizontal wells [12]. 
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