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ABSTRACT 

      Erodogic Markov chains have been popular technique 

to validate the presence of cyclic succession of facies, facies 

areas and corresponding environments. A review of 

published transition tally matrices of sedimentary sequences 

of different geological time reveals with a few exception the 

marginal homogeneity and symmetric implying that the 

underlying depositional  processes is a reversible Markov 

process. Unlike the symmetry model the quasi-symmetry 

model, a rigorous method implying marginal homogeneity 
using different parameters for row and column categories 

and defined as a purely mathematical property of a matrix 

and can be written as a product of a diagonal and a 

symmetric matrix. It can then be shown that a Markov 

sequence is reversible if and only if it has a quasi-symmetric 

tally matrix. A simple Chi-square (χ2) test for symmetry on 

the tally matrix is sufficient to determine if an observed 

matrix is symmetrical and hence whether the Markov 

cyclicity is reversible or a non-reversible in a sedimentary 

succession. A new method Kolmogorov criterion is 

introduced for checking transition matrices of reversible 

Markov process without requiring knowledge of the 
stationary probabilities of observed transition probability 

matrix. The present contribution analyses classical examples 

with geological data (sedimentary and igneous) of different 

geological ages around the world to determine if the 

sequence confirms to a reversible or non-reversible erodogic 

Markov process and possess quasi-symmetry.  

Keywords - Erodogic Markov Chain, Markov reversibility, 
Quasi Symmetry, Marginal Homogeneity, Geological 

Application 

I. INTRODUCTION 
      It is well established that many geological phenomenon 

can be measured as data sequences composed of discrete 

sates (lithology) taken along linear traverses or in drilled log 

profiles. It was suggested that these data sequences can be 

described mathematically as Markov chains, following the 
pioneer work of Vistelius (1949) and co-workers (Vistelius 

and Faas, 1966) and after a suggestion made by Griffiths 

(1967) on some application of Markov processes to 

sedimentation. Starting application was made principally in 

the field of stratigraphy (Vistelius and Faas, 1966) and these 

efforts are illustrated by the work of Schwarzacher (1975), 

Carr (1982), Power and Easterling (1982), and Harper 

(1984). Concurrently with the efforts in stratigraphy, 

Vistelius and his coworkers have been applying Markov 

chains to the texture of granite (Vistelius, 1987), and current 

applications of the method to sedimentary framework 
especially coal bearing successions (see Khan et al., 2020, 

and references therein). However, the approach is useful in 

that it can often point out crafty relationships in the 

stratigraphic succession that would not otherwise be noticed 

or instinctively sought out. More complex Markov processes 

are possible in which the nature of the Markov dependency 

includes reference to still earlier beds; or to changes in the 

dependency relationship with time.  

     Complex models for contingency table have received an 

increasing interest in recent years from researchers especially 

in biological and geological sciences. The general 

introduction to the statistical models for contingency table is 

given in Goodman (2002); Agresti (2013) and Ross (2019). 

Although most books on categorical data analysis in their 

discussion of two-way cross-classified variables described 

symmetry, marginal homogeneity and quasi-symmetry. The 

presence or absence of quasi-symmetry is usually discussed 

in terms of log-linear models for square contingency tables 

and there are number of well described examples of tables 
that have modeled as quasi-symmetric (Bishop et al., 1975; 

Haberman, 1979, p. 514; Plackett, 1981, p. 81; Sharp and 

Markham, 2000).  Starting from Caussinus (1965) several 

authors have considered such models from the point of view 

of both theory and applications (Goodman, 2002; and Kateri, 

2014). In the alternative view t, testing using a likelihood 

ratio or a chi-square statistics for the quasi-symmetric model 

and marginal homogeneity is carried out by comparing the 

original tallies with a set of values iteratively fitted to a log-

http://www.internationaljournalssrg.org/IJGGS/paper-details?Id=106
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linear model. In its simplest form, quasi-symmetry is a model 

for square contingency tables that states that certain odds 

ratios are symmetrical around the main diagonal. The model 

of quasi-symmetry requires that the expected marginal total 

of any one row of the table not the same as the expected 
marginal total for the corresponding column. A special case 

is complete symmetry, by which probabilities themselves are 

symmetric around the main diagonal. 

      Alternatively, quasi-symmetry will be considered purely 

as a mathematical property of a matrix. Specifically, any 

matrix whose entries are strictly positive, possess quasi-

symmetry if it can be written as a product of a diagonal and a 

symmetric matrix. Once this has been proven, it will be 
shown that for any quasi-symmetric matrix, a direct inverse 

solution can be obtained for both the symmetric and diagonal 

matrix. In addition to definition of quasi-symmetry based 

without requiring knowledge of the limiting probabilities 

introduced by Caussinus (1965, p.147) and which has since 

become widely accepted for the analysis of contingency 

tables are illustrated in this study. 

     An important feature of the erodogic Markov chain is the 

property of reversibility generally found in cyclical lithologic 

transitions in stratigraphic succession (Davis, 2002). A direct 

relationship between reversible Markov processes and quasi-

symmetry has been previously noted (McCullough, 1982; 

Richman and Sharp, 1990); the relationship is not easily 

understood until quasi-symmetry is considered as an explicit 

mathematical property. In other word, an erodogic Markov 

chain sequence is reversible if and only if the tally matrix of 

transition counts possesses quasi-symmetry or satisfies 

balance equation of Kolmogorov criterion. In the usual case 

where the tally matrix possesses marginal homogeneity, a 
simple chi-square test for symmetry is sufficient to determine 

the presence or absence of reversibility. 

      In this paper we illustrate the use of the quasi-symmetry 

model in the analysis of categorical data that summarized the 

constituents lithologic of cyclothems. The paper is organized 

as follows: 

1) We recall some definitions and theorem about reversible 

Markov process and quasi-symmetry 2) followed by the 

illustration of real geological cyclothymiacs data examples 

and most likely their origin. 

II. QUASI- SYMMETRY AND MARGINAL 

HOMOGENEITY 

A. Quasi-Symmetry 

      Quasi-symmetry defined as the probability that an 

observation falls in i and j cell of a square matrix is not the 

same as the probability that it falls in i, j cell. The model of 

quasi-symmetry requires that the expected marginal total of 

any row of the matrix not the same as the expected marginal 

total for the corresponding column. A special case is 

complete symmetry, by which probabilities themselves are 

symmetric around the main diagonal. 

     Suppose A is an n x n matrix, that is, n rows and n column 

with (i, j)th entry fij is quasi-symmetric if and only if 

  fij fjk fki= fik fkj fji   for any i, j , k   with 1≤ i, j, k ≤ n                                

(1) 

      This definition of quasi-symmetry initiated by Caussinus 

(1965, p.147) and which has since become widely accepted 

for the analysis of contingency tables (see: Bishop et al., 

1975, p.287; Agresti, 1990, p. 355; Sharp and Markham, 

2000, p. 562). The above inequality can be simply stated as a 

Markov sequence is reversible if and only if the tally matrix 

transition counts possess quasi-symmetry and conversely 

Markov sequence is irreversible. 

      In the case where the tally transition counts matrix (fij) 

possess marginal homogeneity and the entries in the table are 

subject to random error, a simple Chi- square test is available 

for testing for complete symmetry pij = pji, i ≠ j is tested by 

calculating the test statistic. The applicable Chi-square test 

(Caussinus, 1965, p. 142; Plackett, 1981, p. 79; Sharp and 

Markham, 2000, p. 567) is given by: 

 χ2= ∑ ∑ ( fij –fji )
2/  ( fij + fji )                                       (2) 

          i>j 

This is asymptotically distributed as χ2 with n (n-1) /2 
degrees of freedom. Following the convention of Fisher, 

acceptance of the null hypothesis will be assumed at the 5% 

confidence level and rejection of the null hypothesis at the 

1% confidence level. 

III. Marginal Homogeneity 

       A transition count matrix n x n, has marginal 

homogeneity if the row sums match the column sums, i.e. fi+ 

= f+i for all i. In fact marginal homogeneity must hold 
provided that the succession of sedimentary units forms a 

continuum in which each unit is accessible from at least one 

other unit, an erodogic process. This is a condition which is 

commonly encountered because most sedimentary sections 

are counted during detailed stratigraphic traverses or from 

long continuous lithological profiles. 

      If there is any doubt, a Chi-square test (χ2) can be used to 

check for identity between row and column sums, that is: 

    χ2 = ∑ (fi+- f+i)
2 / ( fi++f+i -2 fi+f+i)                                              

(3) 

    This statistics asymptotically distributed, under the 
assumption of marginal independence, as χ2 with n-1 degrees 

of freedom.  Acceptance of the null hypothesis at the 5 % 

confidence level is the same as rejection of quasi-symmetry. 
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If only transitions between litho-units have been counted, 

then the diagonal elements of the tally matrix are either 

absent or zero so that the test reduces to: 

 χ2 = ∑ (fi+- f+i)
2 / (fi++  f+i)                                                         

(4) 

 Stuart (1955) and Bhapkar (1966) were of the opinion that it 

is only approximation but Sharp and Markham (2000, p. 252) 

suggested that it would be adequate for most instances come 

across. 

A. Geological Overview and Applications 

       To demonstrate the application of marginal homogeneity 

in geological data, an example has been taken from coal-

bearing strata in the Bochumer Formation, Ruhrgebiet, 

Germany (Upper Carboniferous). Earlier workers (Fiebig, 

1971 and many more) who studied these rocks have 

contended that these rocks consist of sedimentary 

successions and may be classified as cyclothems. Indeed, 
most of the early methods used in the study of cyclothems 

were essentially subjective in nature. Casshyap (1975) used 

simple mathematical and statistical model called a first order 

Markov chain model to determine lithologic transitions in 

vertical sequences (cyclicity) and compare the nature of 

cyclicity through space and time. The concept of cycles of 

sedimentation implies that the initial state (or lithology) 

determines to some degree the subsequent state (or 
lithology). Table 1 lists the tally count matrix of (A) 

siltstone, (B) shale, (C) sandstone, (D) coal, and (E) Rooty 

bed from Bochumer Formation (Westphal A-2) Ruhrgebiet, 

Germany (Casshyap, 1975, p. 243). Highest values of 

transition probability matrix (pij) link the lithologic states 

distinctly, and a strongly preferred upward transition path for 

litho-log changes that can be derived is:  D → B → A → C 

→ A → E → D suggesting symmetrical cycles.  The 

depositional environment that can be obtained consisted 

mainly of high–constructive delta plain, in which 

distributaries and tributary channels and their sub-

environments including natural levees and coal-forming 
swamps developed and migrated constantly across the plain 

to give rise interbedded symmetrical cyclic succession of 

Bochumer Formation.. In general, this order of lithologic 

transitions is closely comparable with that suggested for the 

Carboniferous coal measures of Scotland, and, likewise, fits 

suitably into the concept of deltaic cycles (Read, 1969).  

                                                                         TABLE 1 

Tally Count Matrix of Bochumer Formation (f ij) 

        A        B        C         D         E        f i+ 

       A         0       57        46         19         92      214 

       B       132        0        76        130         90      428 

       C        56       52          0          08         24      140 

       D        17      304         18           0         33      372 

       E        03        22         02        196             0      223 

       f+i        208       435        142        353        239     1377 

    

The inspection of the entries shows that the tally matrix 

possesses perfect marginal homogeneity indicating the litho-

unit profiles have been properly counted. So a test for 

marginal homogeneity is not required. Observe first of all 

that the tally matrix lacks symmetry and this is confirmed by 

testing with of χ2 = 294.54 where χ2 (1%) = 23.21 with 10 

degrees of freedom and is thus a case of quasi-symmetry. 

Consequently, the Bochumer Formation conforms to a non 
reversible Markov process, hence the succession possesses 

Markovian mechanism, and that the sequence represents 

cyclic sedimentation corroborating the inferences deduced by 

earlier workers on the basis of subjective approach. 

     Now consider a sedimentary sequence consists of three 
different litho-units of (A) sandstone, (B) shale, and (C) 

limestone from the Chester Series by Krumbein (Harbaugh 

and Bonham-Carter, 1970, p. 108). A traverse along such a 

sedimentary sequence of 309 counts will then yield the 

following tally matrix (Table 2). 

                                                                         TABLE 2 

Tally Count Matrix Chester Series (f ij) 

 

      

 

           A            B            C            f i+   

           A            58           18            02            78 

           B            15           86            39           140 

           C            05           35            51             91 

           f+i            78          139             92           309 
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As a properly counted sequence always possess marginal 

homogeneity, symmetry of the non diagonal entries in the 

tally matrix is sufficient to determine if the process conforms 

to that of a reversible Markov process and if there is any 

doubt, confirmation can be made using a simple Chi-square 

test as shown above. To be certain, a calculated test for 

symmetry (3) gives χ2 = 1.64 relative to a tabulated value of 

χ2 (1%) = 11.34 with v = 3. Consequently, the sedimentary 

sequence of Chester Series conforms to a reversible Markov 

process; hence the succession does not possess Markov 

cyclicity.  

      Earlier workers who studied the sedimentary strata of the 

Chester Series have asserted that these rocks consist of cyclic 

sedimentary succession (Weller, 1930; Heckle, 1986). Apart 

from giving elaborate differences in composition and 

thickness, these workers discussed their significance with 

respect to sedimentation and tectonics. Indeed, most of the 

early methods used in the study of cyclothems were 

essentially subjective in nature. As of today, more objective 
methods using mathematical and statistical models are 

available; their application is rapidly growing in the analysis 

of sedimentary successions following the pioneer work of 

Vistelius (1949). It was therefore considered to be highly 

appropriate that the problem of sediment cyclicity in the 

Chester Series should be re-examined quantitatively using 

marginal homogeneity criterion. As illustrated above, formal 

testing on a set of observed transition counts did not support 

the Weller’s contention that the sequence being a 

cyclothymiacs. This possibly is apparently due to the fact 

that in naturally observed cyclothems, irregularities in 

transgressions and regressions obstruct in developing an 

ideal sequence. 

       In a another geological example the tally count matrix of 

four types of stratigraphic succession which occur in the 

Devonian rocks of Prince of Wales Island, Arctic Canada,  an 

ancient alluvial plain succession (Miall , 1973, p. 351) 

consisting of  (A) conglomerate,(B) pebbly sandstone,(C) 

coarse to medium sandstone, and (D) fine sandstone is 

considered (Table 3). Visual examination of the stratigraphic 

sections led Miall (1973, p. 356) to suggest that most of the 

fining upward cycles were originated by debris floods 

sweeping across the piedmont surface and creating new 
channels. Waning flow together with lateral accretion during 

normal periods deposited beds of successively finer grain 

size until the next flood altered the channel pattern once 

again.  

                                                                                        TABLE 3 

Transition Count Matrix of Devonian fluvial succession (f ij) 

         A         B         C         D          f i+   

       A         0         03          11         01        15 

       B         05          0          01         08         14 

       C         04         00          0         15         19 

       D         05         13         06          0         24 

         f+i         14         16         18         23         72 

       

     It is observed that the tally matrix table has nearly perfect 

marginal homogeneity indicating the section has been 

properly counted. So a test for marginal homogeneity is not 

required. If the table is then tested for symmetry by using 
Chi-square statistics (3), the result gives χ2 = 13.48 where χ2 

(5%) = 12.59 with 6 degrees of freedom. Thus, it can be 

concluded that this alluvial succession is a non-reversible 

Markov sequence; hence the succession possess Markov 

cyclicity. This statistical result further supported by 

Kolmogorov condition due to the existence of a non-

symmetric zero entry in the position (3, 2) which has a non-

zero in the (2, 3) position thereby the succession is non- 

reversible. Visual examination of the stratigraphic sections 

led Miall (1973, p. 356) to suggest that most of the fining-

upward cycles originated by debris floods sweeping across 
the piedmont surface and creating new channels. Waning 

flow in addition to lateral accretion acting during periods of 

normal and quieter run-off gave way to deposit beds of 

successively finer grained sandstones, until the next flood 

episode altered the channel pattern once again so that  once 

the flood has passed, the original fluvial pattern re-

established itself. To sum up, the statistical study strongly 
support that the sediments succession was deposited by 

Markovian mechanism and as a whole represent fluvial 

sedimentation in predictable cyclic arrangements of litho-

units. 

IV. REVERSIBLE AND NON REVERSIBLE MARKOV 

PROCESS 

     A Markov sequence is a series of possible events 
developed by a Markov process in which the probability of 

changing from each event to another depends solely on the 

state attained in the previous event. Markov processes are 

among the most important of all random processes. In a 

sense they are the   stochastic analogs in which the state of 

the system at time tn is influenced by or dependent on the 
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state of the system at time tn-1, but not the previous history 

that led to the state at time tn-1. The presence of an erodogic 

Markov process implies degree of order in a system, but it 

must be extended to a number of states so as to create a 

closed system to imply cyclicity. Markov chains have been 

used by several workers (e.g., Doveton, 1994; Khan and 

Tewari 2007; Hota et al., 2012; Tita and Djomeni, 2016; 

Khan et al., 2020; and many more) to validate the presence 

of ordered and cyclic succession of lithofacies. 

 Ross (2019) defined a stochastic process (X n, n = 0, 1, 2…) such that 

 P (X n+1 = j│ X n= i, X n-1 = in-1 …., X 1 = i1, X 0 =i0) = P (X n+1 = j│ X n = i)                  (5) 

is an erodogic Markov chain. 

       Whereas Stroock (2014) is of the opinion that a class of Markov processes said to be reversible if, on every time interval, 

the distribution of the process is the same when it is                                                                                                           run 

backward as when it is run forward  i.e., for any  n ≤ 0 and  (i0, i1…., in) Є S(n+1), in the discrete time, 

 P (Xm= im for 0 ≤ m ≤ n) = P (X (n-m) = im for 0 ≤ m ≤ n)                                              (6) 

And in the continuous time, 

 P [X (tm) = im   for 0 ≤ m ≤ n] = P [X (tn – tm) = im for 0 ≤ m ≤ n]                                   (7) 

Whenever 0 = t0 ≤ ….  ≤ tn. Indeed, depending on whether the setting is that of discrete or continuous time, we have 

  P (X0 = i, Xn = j) = P (X0 = j, Xn = i) 

                            or 

  P [X (0) = i, X (t) = j] = P [X (t) = i, X (0) = j] 

      In fact, reversibility says that, depending on the setting, the joint distribution of (X0, Xn) or [X (0), X (t)] is the same of (Xn, 

X0) or [X (t), X (0)]. 

      If P is the transition probability matrix and πi is the limiting probability, then, by taking n = 1 in above equation, we see that 

 πi pij = P (X0 = I ∩X1 =j) = P ( X0 = j ∩ X1 = i) = πj pji  

 πipij =πjpji     the condition of detailed balance                                                    (8) 

  That is, P satisfies that is a reversible and conversely, (8) implies non-reversibility. 

The above discussion can be summarized in the form of a theorem. 

Theorem 1: A stationary process if and only if there exists a positive collection of number (πi) to unity such that 

 πi pij = πj pji  for all i , j  Є S  

whenever such a collection does not exists, the stationary Markov process is reversible. 

       Rubinstein and Kroese (2007) suggest the Markov transition probability that state i to state j and πi and πj are the 

equilibrium probabilities of being in state i and j respectively. Moreover the detailed balance equation (πi pij = πj pji) means that 
the probability of seeing a transition from state i to state j equals as seeing a transition from state j to i. A transition from i to j 

for the original Markov chain is a transition from j to i for the non-reversible Markov chain. In simple words, for each pair of 

state i and j the long run rate at which the chain makes a transition from state i to state j equals the long -run rate at which the 

chain makes a transition from state j to state i. Thus, the detailed balance equation (8) derived above allows us to determine if a 

markov process is reversible or irreversible based on the transition probability matrix and the limiting probabilities. 

Theorem 2: A Markov chain with transition matrix P is reversible if П* P is symmetric where * means component-wise 

multiplication. 
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Proof:     Let R = П * P 

                      π1        π2      π3                                                                                                          p11       p12      p13  

    П =            π1        π2       π3                                 *                                P =                                             p21        p22      p23  

                      π1        π2       π3                                                                                                              p31       p32      p33  

                                                                        π1p11     π1p12     π1p13    

       П * P =                                                     π2p21     π2p22     π2p23    

                                                                        π3p31     π3p32     π3p33    

 

The П * P matrix is symmetric matrix i.e. πipij = πjpji for all i, j, then the balance equations are satisfied. Thus the transition 

matrix P is reversible otherwise, P is non - reversible i.e. the calculated transition matrix is non-symmetrical. 

A. Geological Overview and Application  
        To illustrate the geological use of detailed balance 

equation (8) an example is taken from the coal measures of 

Lower Gondwana coalfield of peninsular India. Coal 

measure cyclothems or fluvial fining-upward cycles are good 

examples of sedimentary succession laid down under the 

control of Markovian processes. It is possible to describe the 

process statistically and once this is done, to interpret the 

results in considerable detail in terms of the evolution 
through time of the depositional mechanisms occurring in the 

given sedimentary basin. Tewari et al., (2009) applied 

Markov chain and entropy analysis to the Barakar Formation 

of Bellampalli, Andhra Pradesh, India, a formation of Early 

Paleozoic age, comprising a spectrum of sedimentary facies, 

including gritty sandstone, sandstone, siltstone, shale 

including carbonaceous and coal.  The majority of cycles are 

symmetrical (type-B of Hattori) but asymmetrical cycles are 

present as well. Deposition of these various lithofacies was 

controlled by lateral migration of stream channels in 

response to varying discharge and rate of deposition across 

the alluvial plain. 

     Table 4 is a geological example of the Transition count 

and Transition probability matrices from the Barakar 

Formation of Bellampalli coalfield, Pranhita Godavari 

Graben Gondwana basin, India (Tewari et al., 2009), 

comprising (A) coarse-medium sandstone, (B) Interbedded 

sequence of shale and sandstone (C) carbonaceous shale, and 

(D) coal illustrates the application of Theorem 1. 

                                                                            TABLE 4 

Transition count matrix of Barakar Formation (fij) 

 

 

 

Transition probability matrix of Barakar Formation (pij) 

           A            B              C              D 

           A            0           0.05             0.73            0.22 

           B         0.67             0             0.25            0.08 

           C         0.53           0.02                0            0.45 

           D         0.43             00              0.57               0 

 

The limiting distribution vector of transition probability matrix (pij) is π = (0.332, 0.016, 0.400, and 0.252). Now we compute R 

=   П * P 

 

            A            B            C            D 

            A            0           08           113            35 

            B           08            0             03            01 

            C           78           03              0            65 

            D           59           00             79             0 
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Reversibility matrix of Barakar Formation (R) 

 

        

 

 

Inspection of the rows and columns shows that the table is 

nonsymmetrical. By Theorem 1 if the transition count matrix 

represents counts from a Markov sequence, then acceptance 
of no symmetry implies acceptance of Markov non-

reversibility. To be certain, a chi-square test as given by 

Plackett, (1981) and applied by Sharp and Markham, (2000) 

as described above is used here, a calculated test for 

symmetry (3) for the above data gives χ2 = 15.89 on 5 

degrees of freedom which is large (Actually, n (n-1)/ 2 = 6, 

but because one pairs of frequencies equal zero, they were 

not counted). In fact, it is usually large because its falls 

above the lower 0.05 point on the (χ2) Chi-squared 

distribution with 5 degrees of freedom (χ2 =11.07). The 

matrix is non-symmetrical than could be due to chance hence 
this succession of the lithofacies is non-reversible Markov 

sequence, hence the succession possess Markov cyclicity. 

Thus the statistical results support the geological 

interpretation that the Barakar formation is a cyclothymiacs 

and is explained by the lateral migration of stream channels 

in response to varying discharges and rate of deposition 

across the alluvial plain. Factors related to tectonism may 

have controlled the channel pattern of depositing streams. 

Theorem 3: A transition matrix is not reversible if there 

exists any non-symmetric zero entry in the matrix. 

Proof: The proof is quite simple because the detailed 

equation or the Kolmogorov condition as described 

elsewhere is violated in such cases. 

B. Geological Overview and Application: 
       As an example the Lower Cretaceous and Tertiary 

Formations of the Kombe-Nsepe are southeastern part of the 

Douala sub-basin of Cameroon (Tita and Djomeni, 2016) is 

selected to illustrate the test for Markov reversibility and a 

practical application of Theorem 2. These formations are the 

main hydrocarbons bearing sedimentary successions of the 

Douala sub-basin. The observed tally count and transition 

probability matrices are listed below in Table 5. 

                                                                                   TABLE 5 

Transition count matrix of Lower Cretaceous Formation (fij) 

                                         A          B           C          D          E 

         A           0           33          59          07          02 

         B          22           0          30           0          01 

         C          75          18            0          09          09 

         D          05          01           09            0            0 

         E           0          02           11            0            0 

  

Transition probability matrix of Lower Cretaceous Formation (pij) 

          A           B           C           D           E 

         A           0         0.33          0.58          0.07         0.02 

         B         0.42           0          0.57           00         0.01 

         C         0.68         0.16           0          0.08         0.08 

         D         0.33         0.07          0.60           0           00 

         E           00         0.15          0.83           00           0 

 

Where A- Dark grey shale, B- Interbedded fine grained sandstone and shale, C- Medium   to coarse grained   sandstone, D- 

Coarse grained sandstone, and  E- Carbonate/ argillaceous shale. 

       

           A            B              C              D 

           A            0           0.016             0.242            0.073 

           B         0.012             0             0.004            0.001 

           C         0.232           0.008                0            0.180 

           D         0.108              0              0.143               0 
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Tita and Djomeni (2016) have made a detailed study of the 

lithofacies and paleo-environmental evolution of the Early 

Cretaceous to Tertiary series which are common in West 

Africa basins and identified five lithofacies (states) viz. 

Dark/grey shale, interbedded fine grained sandstone, 
conglomerate facies and carbonate and argillaceous shale. 

The lithofacies sequence and association suggest that the 

study area formed a part of a northward-flowing fluvial 

system. Statistical analysis of the lithofacies sequence reveals 

cyclicity (fining upward) and prefentially asymmetrical 

cyclical deposition of the post-rift Cretaceous and Tertiary 

Formations. Auto-cyclic causes, such as in-channel, point 

bar, crevassing and stream avulsion generated the cyclic 

deposit within a framework of fluvial-alluvial environments. 

     Evidently, the transition probability table is non- 

symmetric and therefore the (pij) is not reversible since there 

are zero (00) entries in the position (2, 4), (4, 5) and (5, 1) 

and (5, 4) positions which has a non- zero in the (4, 2), (5, 4), 

(1, 5) and (4, 5) positions. Consequently, the sedimentary 

sequence conforms to a reversible Markov process; hence the 

sedimentary sequence does not possess Markov cyclicity. As 

illustrated above (theorem 2), formal testing on a set of 

observed transition counts did not support the suggestion that 

the lower Cretaceous formation, Douala sub-basin is a 
cyclothymiacs. To verify and strengthen above conclusion 

the chi-square (χ2) statistics is calculated for symmetry (3) 

with a χ2 = 17.06 relative to a tabulated value of χ2 (1%) = 

23.21 with 10 degrees of freedom. The sedimentary sequence 

of Douala sub-basin, thus, conforms to a reversible Markov 

process and hence formal testing on a set of observed 

transition counts did not support cyclothymiacs sequence and 

hence the conclusions drawn by Tita and Djomeni (2016) 

that the observed asymmetrical cyclothems of the post-rift 

Cretaceous and Tertiary Formations are not justified. 

Definition 1: An n x n stationary Markov chain matrix with 

(i, j) th entry pij is reversible if and only if, any path starting 

from state i and back to i has the same probability as the path 

going in the reverse direction. This is the definition of 
reversibility introduced by Andrei Kolmogorov and known 

as Kolmogorov criterion. Kolmogorov gives a necessary and 

sufficient condition for a Markov chain to be reversible 

directly from the transition matrix probabilities. The criterion 

requires that the products of probabilities around the loop i to 

j to l to k returning to i must be equal i.e., transition matrix P 

is reversible if and only if its transition probabilities satisfy: 

  pi j pj l pl k pk i = pi k pkl pl j pj i 

C. Geological Overview and Example:  

     A practical application of the Kolmogorov criterion is 

illustrated by Le- Roux (1992, p. 176) for alluvial sediments 

for which  a transition count matrix of five  sandstone 

lithofacies namely Mudstone-clast conglomerate (A), 

structure-less sandstone (B), plane-bedded sandstone (C), 

cross-bedded sandstone (D) and mudstone (E) within the 

Banksgaten sandstone forming the Beaufort Group of the 

Karoo basin, South Africa (Table 6). 

                                                                              TABLE 6 

Transition count matrix of Beaufort Group (fij) 

                                                                            

 

 

 

A= Mudstone-clast conglomerate, B = structure-less sandstone,   C = plane-bedded sandstone,   D = cross-bedded sandstone, E 

= mudstone 

Transition probability matrix of Beaufort Group (pij) 

          A         B         C         D         E  

        A         0       0.573       0.073      0.309      0.044 

        B      0.317         0      0.341      0.329     0.012 

       C      0.024       0.731         0      0.146     0.097 

       D      0.172       0.448       0.276         0     0.103 

       E      0.125       0.500        00        0.375        0 

 

 

        A        B        C        D        E 

       A         0        39         05         21         03 

       B       26         0         28         27         01 

       C       01        30          0         06        04 

       D       10        26         16          0        06 

       E       01        04         00         03         0 
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Thus, we have 

 pijpjlplkpki = 0.573x0.341x0.146x0.103x0.125     pikpklpljpji = 0.375x0.276x0.731x0.317x0.044 

     

For a 5 x 5 transition probability matrix, it turns out that only 

one detailed balance equation has to be checked and found to 
be non-equal suggesting that P is non-reversible which in 

turn supports the geological interpretation of cyclical 

deposition within the Banksgaten sandstone Karoo Group as 

discussed in detail by Le Roux (1992). 

       Another assessment made by using Theorem 2 That ‘A 

transition probability matrix is not reversible if there exists 

any non-symmetric zero entry in the matrix’. According to 

this Pi j is not reversible since there is a 00 entry in the (5, 3) 
position has a non-zero in the (3, 5) position further 

strengthen the Le-Roux’s geological interpretation. 

Theorem 4: A stationary Markov chain is reversible if and 

only if the matrix of transition probabilities can be written as 
the product of a symmetric and a diagonal matrix i.e. P is the 

observed transition probability matrix for a reversible 

Markov chain if and only if  P = SD where S is a symmetric 

matrix and D a diagonal matrix such that ∑j pij =1 

Proof: Let P be the transition matrix of a reversible Markov 

chain. We will show that P can be written as a product of a 

symmetric matrix (S) and a diagonal matrix (D) i.e., P = SD, 

where S is an n x n symmetric matrix whose (i, j) th entry is 
sij and D is a diagonal matrix whose i th diagonal entry is di . 

Since pij = sij dij and sij = sji             for all i, j . 

                                    s11         s12       s13                                                      d11        0          0      

  Let P =    SD =         s21         s22       s23                                                      0           d22       0     

                                   s31         s32       s33                                                        0          0          d33   

                                                

                                                         s11d11       s12d22       s13d33    

                                                         s21d11        s22d22      s23d33    

                                                        s31d11        s32d22       s33d33    

Multiply both sides by (d11, d22, d33 …); then we have 

(d11, d22, d33 …)  

                                                             s11d11       s12d22      s13d33    

         P =           (d11, d22, d33 …)          s21d11        s22d22      s23d33   

                                                             s31d11        s32d22      s33d33               

 on multiplication we get 

= (s11d11 d11 + s21d22 d11 +s31d33 d11 + ….., s12d11 d22+ s22d22 d22 +s32d33 d22 +….., 

= [d11 (s11d11+ s21d22+ s31d33) +…..,  d22 (s12d11+ s22d22+s32d33) +……,) ] 

= [d11(s11d11+ s12d22+ s13d33) +…..,  d22 (s21d11+ s22d22+s23d33) +……,) ] 

= [d11∑ pi j , d22∑ pi j,  d33∑ pi j    …..]         Since ∑j pij =1 the above identity can be written as 

         j              j 

= (d11, d22, d33 …) 

Thus we have 
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 (d11, d22, d33 …) P = (d11, d22, d33 …) 

We can rewrite this as 

 1/∑k dkk  (d11, d22, d33 …) P = 1/∑k dkk  (d11, d22, d33 …)  

From this we can calculate stationary distribution π as 

 π = [d11/ ∑k dkk , d22 / ∑k dkk , d33 /∑k dkk , …] 

 π pij = dii / ∑k dkk si j dj j 

since (pij) = (sij djj) and  si j = sj i  for all i, j as assume in proof, we get  

 πj pj i = dj j/ ∑k dkk sj idi i  =   πi pi j 

     Thus we get the detailed balance equation (Kolmogorov condition) for the Markov chain defined by P = SD, therefore the 

Markov chain is reversible. 

D. Geological Overview and Example 

      The following examples illustrate how Theorem 4 can be 

applied to determine reversibility in geological studies. 

Vistelius and Faas (1973) observed grain sequences in 

Pacolet Mills Pluton in South Carolina. The Pacolet Mills 

Pluton as described by Secor et al., (1983) is a fine to 

medium grained metamorphosed granite, which appears in 
places to be intermixed with biotitic gneiss. Fracturing and 

shearing possibly associated with metamorphism, have 

allowed weathering of the granite. Vistelius (1987, p. 592) 

described an important feature of the texture of Pacolet 

granite, an observed sequence of microcline, plagioclase, 

quartz and biotite should be a  property of Markov 

reversibility i.e., along any linear traverse through a 

specimen of granite, there will be no statistical difference in 

the number of observed grain transitions between the forward 

and the reverse direction. This develop for an important 

distinction between reversible Markov grain transitions in 

granite and the generally nonreversible or cyclical lithologic 
transitions found in stratigraphic sections (Davis, 2002).The 

following Transition count matrix (Table 7) as observed in 

grain sequence in Pacolet Mills granite which consist of (M) 

microcline, (P) plagioclase, (Q) quartz and (B) biotite: 

                                                                                    

 TABLE 7 

Transition Count Matrix (N)  

               M          P           Q          B 

        M          20         42           47          25 

         P          53         27           47          23 

        Q          40         52           58          32 

        B          25         26           26          16 

 

 Replacement Matrix (N) to Symmetric Transition Count Matrix (S)  

           M          P           Q          B 

        M          20         47           43          24 

         P          47         27           52          24 

        Q          43         52           58          29 

         B          24         24           29          16 
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 Transitional Probability Matrix (P)                     

           M          P           Q          B 

        M         0.149        0.350          0.321         0.179 

         P         0.313        0.180          0.346         0.160 

        Q         0.236        0.286          0.318         0.159 

         B         0.258        0.258          0.312          0.172 

 

Stationary probabilities (π) or diagonal elements of diagonal matrix (D) 

 (d11, d22, d33 , d44)  i.e. (M =0.2397, P=0.2683, Q=0.3256, B=0.1664)        then we have 

Reversibility matrix (S= PD-1) 

           M          P           Q          B 

        M         0.623        1.307          0.985         1.077 

         P         1.307        0.671          1.065         0.961 

        Q         0.985        1.065          0.979         0.958 

         B         1.077        0.961          0.958         1.034 

 

       By inspection it can be seen that S is symmetrical and fulfilling Kolmogorov criterion (πj pji = πi pij) suggesting thereby 
that the Markov process is reversible and, hence, the Pacolet Mills Pluton (South Carolina) had reversible grain sequence. This 

conclusion gets support Vistelius (1972) visual observation that ideal granite should be a reversible Markov sequence.  

Another way to compute and proof Theorem 4 as follows 

       Let P is the observed transition probability matrix of a reversible Markov chain. We will show that P can be written as a 

product of a symmetric matrix (S) and a diagonal matrix (D) whose diagonal elements are the stationary probabilities of P. i.e., 

P= SD 

                               π1        0          0                                                   p11       p12        p13            

Let D =                   0        π2         0                     and    P =               p21       p22        p23            

                                0        0          π3                                                 p31        p32       p33              

 

Then according to above theorem        S   =       P    D-1 

                                                                

                                               p11         p12         p13                                      1/ π1        0           0         

                        =                    p21         p22         p23                                        0        1/ π2         0        

                                              p31         p32         p33                                         0           0          1/ π3          

                                                

                                                               p11/ π1       p12/ π2        p13/ π3   

                                                              p21/ π1           p22/ π2          p23/ π3       

                                                              p31/ π1       p32 / π2        p33/ π3      
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  As we have proved above that if πipi j = πjpj i, then the Markov chain is reversible. Thus we get 

                                                                                          p11/π1      p21/π2           p31/π3      

                                                         S =                            p21/π1     p22/π2            p32/π2       

                                                                                          p31/π1     p32/π2            p33/π3       

                                                                       

This is clearly a symmetric matrix. Since S = PD-1, we get P = S D, as required. 

E. Geological Overview and Application: 
       Strata of the Miocene-Pliocene Middle Siwalik molasses 

of Kaluchaur area in Uttrakhand exposed in excellent road-

cuts and along river course, offer a good opportunity to study 

alluvial plain cyclicity and relate it to recurring patterns of 

depositional facies sequence. Early workers studying the 

Middle Siwalik concentrated on the vertebrate fossils and 

little published information exists on characteristics of the 

deposits with respect to the nature of cyclicity and facies 

variation. Moreover, the cyclic aspects of Middle Siwalik 

sediments have been based only upon visual appraisal of 

outcrops (Agarwal and Singh, 1983; Kumar et al., 2004) and 
more recently (Kundu et al., 2012; Kotlia et al., 2016). The 

exposed sequence consists of a spectrum of near horizontal 

depositional units representing a non-marine; cyclic, fluvial 

dominated lithofacies sequence shows a succession of 

repetitive lithofacies. Four major lithofacies are readily 

identifiable in the field, and, are distinctive and genetically 
meaningful are considered for partial independence and 

entropy analysis. The fining-upward asymmetrical sequence 

involves upward point bar sandstones and associated top 

stratum deposits or alternatively consists of levee-splay silt 

and flood plain variegated mud (Khan, 1996). Entropy plots 

of each lithological state corresponds to the Type A-4 

category, signifying lower and upper truncated asymmetrical 

cycles and falls within the boundary allocated for fluvial-

alluvial succession. These truncated fining-upward sequences 

are produced by lateral accretion in the channel belt 

environment, or crevassing and subsequent abandonment of 
crevasse channels leading to silting by levee and flood plains 

fines (Galloway, 1981). Data in the transition count matrix 

are then processed into transition probability matrix are given 

in Table 8 

                                                                       TABLE 8 

Transition count matrix of Siwalik molasses (fij) 

                                      COSD       FMSD        SLSD       MDST          f i+    

       COSD           0           28          05          02          35 

       FMSD          17           0          23          05          45 

       SLSD          10          07            0          14          09 

       MDST          07          10           04            0           21 

          f+i                34          45           32           21          132 

 

Note that the table has perfect marginal homogeneity i.e.,   fi+ = f+i indicating a properly counted section. 

Transition probability matrix of Siwalik molasses (pij) 

          COSD          FMSD          SLSD         MDST 

          COSD            0           0.800             0.142            0.057 

          FMSD         0.377             0             0.511            0.111 

          SLSD         0.322           0.225                0            0.452 

          MDST         0.333           0.476              0.190               0 
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No we calculate out its limiting probability as 

 π = (0.3460, 0.3183, 0.1972, 0.1384) 

Let D be a diagonal matrix with (πi) as its diagonal entries. Then 

                                                              S = PD-1 

 

0        0.800      0.142      0.057                                           1/0.3460    0            0             0 

0.377    0       0.511          0.111                                            0       1/0.3183       0             0 

0.322    0.225    0             0.452                                            0             0         1/0.1972    0 

0.333    0.476   0.190         0                                                 0             0               0       1/0.1384 

 

                                                                                  

                                                                                              0      2.5157     0.7258     0.3626 

                                                                =                          1.0693     0          2.5888   0.7971  

                                                                                             0.9248   0.6918      0          3.2608 

                                                                                             0.9537   1.5094    0.9644       0 

       The above result shows that S is a non-symmetric matrix hence P is a non reversible matrix suggesting that the succession 

possess Markov cyclicity supporting Khan’s geological interpretation that the Middle Siwalik molasses’ is a cyclothymiacs in 

nature.  

       The following proof of the above Theorem 4 taken from Sharp and Markham (2000) based on transition count matrix as 

follows: 

 Let assume that A = DS, where S is an n x n symmetric matrix whose (i, j) th entry is sij and D is a diagonal matrix whose i th 

diagonal entry di. Since fij = di sij and sij = sji for all i, j, then 

 fij fjk fki= disijdjsjkdk ski 

            = didjdksijsjkski 

            = didj dksjiskj sik 

            = djsjidkskjdisik 

            = fjifkjfik 

            = fikfkjfji                                  for all i, j, k 

     Hence A is quasi-symmetric following the definition given by Caussinus (1965, p. 147) and it can be written as a product of 

a diagonal and symmetric matrix. In other words a Markov process is reversible if the tally matrix of transition counts possess 

quasi-symmetry hence cyclical otherwise non-cyclical. An n x n matrix A with (i, j) th entry fij is quasi-symmetric if 

  fij fjk fki   = fik fkj fji              for any i, j , k   with   1 ≤  i, j, k  ≤   n                                  (9) 

     Now if the transition count matrix A is a quasi-symmetric matrix then by equation (1), we have 
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(fij/fji)fjk = (fik/fki)fkj          for all 1≤ i, j, k ≤ n                                                                ( 10) 

     Suppose Qi be a diagonal matrix whose j th diagonal entry is fij /fji, for j = 1, 2, 3, … , n  or a diagonal matrix whose k th 

diagonal entry is fik/fki for k= 1, 2, ,3, …..,n and S an n x n tally symmetric matrix whose (j, k) th entry is sjk.  Now assume Qi A 

= S, then sjk= (fij /fji)fjk and ski =(fik/ fki) fkj .By equation (9)as obtained above, we have sjk = ski; hence S must be symmetric. It has 

been shown previously (Richman and Sharp, 1990, p.754) suggested that Qi A is symmetric for all i in (1,2,….,n). The simple 

way of doing this is by forming product Qi A for all i where the entries in the diagonal matrix Qi are obtained from the ratios of 

(fij /fji) of the quasi-symmetric matrix. To have unique symmetric matrix, each the un-scaled matrices can be multiplied by a 

constant ki, obtained by taking the ratio of the sum of non-diagonal entries of observed tally matrix to the sum of the non-

diagonal entries of each Qi A (Sharp and Markham, 2000). Then a scaled estimate of Si is given by k1Q1A and all k1Q1A have 

perfect symmetry in absence of random error. Sharp and Markham (2000, p. 568) suggests that in principle, if A  (tally matrix) 

possess quasi-symmetry, then all scaled solutions of the square matrix should  be identical and pass a chi-square test of 

symmetry as follows: 

  χ2 = ∑ ∑ (sij –sji)
2/ ( sij +sji)                        

            i>j 

 with v =(n-1)(n-2) /2 degree of freedom. sij denote the ( i, j) th entry of the product matrix k1Q1A =Si 

F. Geological Overview and Application: 
     In a practical geological application of the Sharp and Markham’s (2000) proof, a set of tallies from Late Paleozoic Barakar 

coal measures, East Bokaro basin, India (Khan and Casshyap, 1981, p.157) is taken (Table 8), which comprises A - sandstone, 

B- arenaceous shale, C - carbonaceous shale, and D - coal. These sediments are ideally deposited in the sequence A B C D A B 

…. C D and as a whole represent fluvial sedimentation in predictable cyclic arrangements of litho units. 

                                                                     TABLE 9 

Observed tally matrix of Barakar coal measures (A) 

        A        B         C         D     Total 

       A        0     1274       277         93      1644 

       B      1014        0       716       168      1898 

       C       500      628         0       556      1648 

       D       154        249      309         0        712 

    Total     1668     2151      1302       817           0 

                              

Note the absence of symmetry and marginal homogeneity 

                         Test of symmetry       χ2 = 185.364     v = 6       χ2 (1%) = 16.81 

                     Marginal homogeneity      χ2 = 72.463     v = 3       χ2 (1%) =11.34 

             Formal testing (χ2) confirms the rejection of symmetry and marginal homogeneity 

______________________________________________________________________________ 

   Scaled inverse square matrices                       Diagonal matrices                        Test for 

                 k1Q1A                                                                         (k1Q1)
-1                                quasi-symmetry         

__________________________________________________________________ 

       0        1400.63        304.53        102.24                  0.9095                                   k1 = 1.0994         

 1400.63        0              988.99        232.05                  0.7240 
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  304.53      382.27            0             338.63                  1.6420 

  102.24      165.28        205.11            0                       1.5064                                    χ2 = 311.79 

______________________________________________________________________________      

                 k2Q2A                                                                          (k2Q2)
-1          

__________________________________________________________________                    

       0          957.43        205.15         69.87                     1.3308                                     k1 =0.9442         

 1400.63        0              676.04        108.22                    1.0591 

  538.24      676.04            0             598.51                    0.9290 

    98.08      158.59        196.81            0                         1.4912                                     χ2 = 362.22 

______________________________________________________________________________ 

      k3Q3A                                                                       (k3Q3)
-1    

_________________________________________________________________ 

       0          2053.01        427.85         143.57                 0.6476                                       k1 =0.8556         

 760.83          0              537.24           126.02                 1.3328 

 427.80        537.31            0             475.71                   1.1687 

  115.50      186.77        231.85            0                         0.6496                                        χ2 = 692.23 

______________________________________________________________________________ 

     k4Q4A                                                                        (k4Q4)
-1    

_________________________________________________________________ 

       0          1739.53       379.09         69.87                    0.7302                                     k1 =0.9442         

 1242.73        0               877.52        108.22                   0.8159 

  229.49       288.20           0             598.51                    2.1279 

  127.35      205.92        255.54            0                         1.2092                                     χ2 = 362.22 

                                  Reject quasi-symmetry because χ2 (1%) = 11.34 with v =3 

______________________________________________________________________________ 

       

Each complete cycle of the Barakar sandstone start with 

conglomerate or coarse grained sandstone at the base, 

succeeded in turn, by parallel laminated siltstone-shale and 

terminates with shaly coal/ coal. These cycles are 

comparable to each other at various localities in the East 

Bokaro basin and show fining-upward character, which 
might have resulted from variations in hydraulics changes of 

lateral shifting of the braided/meander belts as described by 

Tewari and Khan (2017). Repeated occurrence of the 

sandstone-siltstone-shale facies suggests that channel 

establishment and abandonment was repeated many times at 

a given site upward facies transition is non-stationary over 

the entire areas and develop either locally in a part of the 
floodplain or occupy the entire basin overlying the deposits 
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of various sub-environments. Above result support that the 

coal measures of the Barakar succession was deposited by 

Markovian mechanism and as a whole represents fluvial 

sedimentation deposited in a predictable cyclic arrangements 

of lithofacies. 

      Note that observed tally matrix has lacks both symmetry 

and marginal homogeneity and formal testing by equations 

(2) and (3) confirm these result with χ2 = 185.364     v = 6; 

χ2 (1%) = 16.81 and χ2 = 72.463     v = 3;    χ2 (1%) =11.34. 

Such a tally matrix of Late Paleozoic Cyclical coal measures, 

East Bokaro basin, India is a case for quasi-symmetry (Table 

9). 

     An application of chi-square tests to each of the scaled 

inverse square matrices shows that they all lack symmetry 

and consequently the observed tally matrix does not possess 

quasi-symmetry After considering several possibilities, the 

statistical analyses evidently suggest: 

 1. Since the table lacks marginal homogeneity, the 

collection of data from a series of drill   holes may 

possibly have a sampling bias in the observed transition 

counts. 

       2. None of the four inverted square matrices possess 

symmetry (Table 9), the observed tally matrix, therefore, 

cannot be quasi-symmetric and the sedimentary sequence 

must conform to a non-reversible Markov process.  

       Because the reverse and forward sequence are distinctly 

different, the bedding sequence from the Late Paleozoic 

Barakar coal measures, East Bokaro basin, India can be used 

to distinguish whether or not the section is overturned. That 

is, the geological interpretation of cyclical deposit within the 

East Bokaro basin as illustrated in Khan and Casshyap 

(1981) is supported unreservedly. 

V. CONCLUSIONS 
      A Markov sequence is a series of states generated by a 

Markov process in which the probability of changing from 

one to another depends solely on the state which the system 

is in. If transition counts are made and tabulated following an 

ergodic process among discrete lithology, the corresponding 

row and column sums are equal or nearly equal i.e., fi+=f+ i 

all values of  i. Such transition count matrixes have marginal 

homogeneity and are either symmetric or non-symmetric. 

     If the transition tally matrix has marginal homogeneity, a 

simple chi-square test for symmetry is sufficient to show that 

the sedimentary succession follows a reversible or a non-

reversible Markov sequence. If the sequence is reversible, 

then the sedimentary succession lacks Markov cyclicity and 

on the other hand if the sequence in non-reversible then the 
succession possesses Markov cyclicity. Clearly if the 

sequence of lithological states is cyclical then the sequence 

of states cannot be reversible. The classical case of a cyclical 

sedimentary succession is the cyclothymiacs. Alternatively if 

the tally matrix lack marginal homogeneity and likely origin 

is a sampling bias was introduced by the counting procedure 

of the sequence, even then it is still be possible to recognize 

that the reversible Markov sequence by demonstrating that 
the tally matrix possesses quasi-symmetry. Thus a simple 

chi-square test for symmetry on the original tally matrix has 

immediate application in determining whether or not a 

sedimentary succession follows a reversible or non-reversible 

Markov process.  
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