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Abstract - The partial pressure of carbon dioxide (pCO2) is 

one of the most effective measurements of carbon dioxide in 

seawater, and the increases in pCO2 profoundly affect the 

marine carbonate system. The role of SST on pCO2 is 

analyzed to develop a regional pCO2 algorithm using in-situ 

SST and calculated pCO2 by employing the polynomial 

regression functions such as linear, quadratic, and cubic to 

develop a pCO2 map and the best-fit algorithm of the cubic 

function developed for the postmonsoon season with an R2 of 

0.537 and SEE of ± 36.543 has been validated for remote 

sensing applications. Evaluation of satellite-derived pCO2 

with calculated pCO2 showed R2 of 0.498 and the root means 

square error (RMSE) of ±30.922 µatm with 75% of 

overestimation of calculated pCO2 by the satellite-derived 

pCO2. The satellite-derived pCO2 map error is mainly 

because of the inbound errors in MODIS-derived SST 

products. Hence, improvement in sensor technology and 

retrieval algorithm would improve the retrieval of input 

parameters (SST), which is useful in estimating pCO2 

precisely. This would enable us to understand the 

biogeochemical processes behind the variability of CO2 in 

the surface waters of the southwest Bay of Bengal.  

 

Keywords - Chlorophyll, pCO2, Regression, SST, Bay of 

Bengal, MODIS. 

 

I. INTRODUCTION 

The global carbon cycle is essential for energy and mass 

exchange in the Earth System, as it connects the system's 

components (land, ocean, and atmosphere) (Garbe et al., 

2014). Increases in atmospheric carbon dioxide (CO2) 

concentrations, primarily caused by the combustion of fossil 

fuels, cement production, and increased urbanization, are 

directly accountable for 60% of the average global air 

temperature increase (IPCC, 2013). The direct exchange of 

CO2 with the atmosphere at mixed-layer waters is primarily 

influenced by sea surface temperature (SST), dissolved 

inorganic carbon (DIC) levels, and total alkalinity (TA), with 

SST influenced by physical processes such as the mixing of 

water masses and DIC and TA influenced by biological 

processes (photosynthesis and respiration). The partial 

pressure of CO2 (pCO2) in seawater is generally modulated 

by both physical (SST) and biogeochemical (DIC and TA) 

processes (Lu et al., 2011). 

 

The temperature mostly determines the pCO2 

concentration at the sea surface at surface (SST). When 

seawater is warmed by 1°C, pCO2 increases by four in a 

parcel with a fixed chemical composition (Stephans et al., 

1995; Zhu et al., 2009). On the other hand, the DIC in the 

surface ocean varies from an average value of 2150 μmol kg-

1 in Polar Regions to 1850 μmol kg-1 in the tropics as a result 

of biological processes and reduces pCO2 by a factor of 4 

(Feely et al., 2001). Therefore, the effect of biological 

drawdown and temperature on surface water pCO2 is similar, 

but the two effects are often compensating. Hence, the spatial 

and temporal distribution of pCO2 in surface waters and CO2 

flux is largely governed by a balance between the changes in 

seawater temperature, net biological utilization of CO2, and 

the upwelling flux of CO2-rich waters. 

 

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
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According to carbon dioxide measurements in the 

atmosphere, the oceans and terrestrial biosphere absorb 

roughly half of the annual anthropogenic CO2 emissions 

(Siegenthaler and Sarmiento, 1993). Knowledge of the large-

scale spatiotemporal variability in partial pressure of carbon 

dioxide (pCO2) distribution is a prerequisite to estimating 

oceanic CO2 absorption, which is difficult to obtain from 

observations only (Wallace, 1995). Several researchers have 

utilized various methods to interpolate and/or extrapolate 

shipboard pCO2 data on spatial and temporal scales using 

relationships with remotely sensed data, such as sea surface 

temperature (SST) and chlorophyll-a concentration. For 

instance, Tans et al. (1990) and Keeling and Shertz (1992) 

used the relationship between pCO2 and SST to infer surface 

ocean CO2 fields. Stephens et al. (1995) with root-mean-

square (RMSE) error of (≤ 40 µatm). Ono et al. (2004) 

included chlorophyll as an additional regression parameter 

and reduced the RMS error to ≤ 17µatm. Sarma et al. (2006) 

further developed a remote-sensing algorithm for pCO2 by 

including SST, chlorophyll-a, and climatological salinity. 

Lohrenz and Cai (2006) added chromophoric dissolved 

organic matter (CDOM) to derive sea surface salinity as a 

parameter in their remote-sensing algorithm for pCO2. Zhu et 

al. (2009) studied the air-sea exchange of CO2 using 

remotely sensed pCO2 developed using satellite-derived SST, 

chlorophyll a, and wind speed with an RMS error of 4.6 

µatm. Recently, a regression equation for pCO2 with SST 

and chlorophyll a was proposed by Zui et al. (2012) and Qin 

et al. (2014) with an RMSE of ±13.45 μatm and ±21.46 μatm 

with the satellite-derived pCO2 respectively. 

 

Considering the above facts, it is attempted to develop a 

regional pCO2 algorithm using in-situ SST and calculated 

pCO2. The best-fit algorithm has been validated with the 

calculated pCO2 measurements for remote sensing 

applications. 

II. MATERIALS AND METHODS 

The present study was conducted along the Tamilnadu 

coast, falling along the southwest Bay of Bengal region. 

From January 2017 to June 2019, regular monthly samplings 

were performed at 1, 5, 7, 9, and 12 km from the coast at four 

sampling stations concealing the longitude and latitude of 

Chennai (80⁰23.9 E - 13⁰07.9 N), Cuddalore (79⁰48.5 E – 

11⁰42.4 N), Parangipettai (79⁰51.7 E – 11⁰30.6 N)  and 

Karaikal (79⁰55.5 E – 10⁰54.8 N) (Fig. 1). Based on the 

region's northeast monsoon, the study period was split into 

four seasons: postmonsoon (January to March), summer 

(April to June), premonsoon (southwest monsoon - July to 

September), and monsoon from October to December) 

(monsoon). 

 

A. In-situ data 

A digital multi-stem thermometer with a ± 0.1º C 

precision was employed to monitor in situ SST. Water 

samples were taken directly from the Niskin water sampler 

into a 250 ml polyethylene container. 

Fig. 1 Map showing the sampling stations and transects in the southwest 

Bay of Bengal water 

 

clean drawing tubes with no bubbles and low turbulence with 

sufficient flushing to avoid contamination from the 

atmosphere. A hand-held refractometer was used to 

determine salinity (Atago hand refractometer, Japan). The 

samples were stored in the dark until further analysis of pH 

and total alkalinity (TAlk) that were measured in the 

laboratory using a potentiometric titrator calibrated on the 

total scale (905 Titrando, Metrohm, Switzerland) 

(Frankignoulle and Borges, 2001). The pCO2 was computed 

using measured temperature, salinity, TAlk, and in situ pH 

(total scale). The precision for pCO2 was 9–13 µatm (Bhavya 

et al., 2016). 

 

B. SST based pCO2 Retrieval Algorithm  

SST is usually the key governing element of pCO2 in 

oligotrophic waters, which provides a theoretical basis for 

calculating pCO2 (Zhai et al., 2005). Hence, the in situ SST 

and calculated pCO2 datasets were subjected to two-

dimensional regressions to develop the pCO2 algorithm. 

Three different polynomial functions such as linear, 

quadratic, and cubic were applied for regression analysis  

 

C. Satellite Data 

 MODIS-Aqua derived Level-2a SST image was 

acquired to generate a remotely sensed pCO2 image using 

satellite-derived SST. For remote sensing measurements in 
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the southwest Bay of Bengal, February to May is a good time 

to get cloud-free data; however, only occasional data sets are 

available attributed to the influence of both the southwest 

and northeast monsoons, which render the southern Bay of 

Bengal a more cloud-prone region in the northern Indian 

Ocean during the rest of the year. As a result, MODIS-Aqua 

derived Level-2a SST for 23rd March 2014, with a spatial 

resolution of 1km, was obtained from 

http://modis.gsfc.nasa.gov. ERDAS IMAGINE (9.2. ver.) 

and ENVI (4.7. ver.) software-generated SST and pCO2 

images from the data. The geometric correction was used on 

the SST data to remove image distortion and bring it to a 

standard geographic projection (Lat/Lon) with a modified 

Everest Datum. 

 

D. Evaluation Criteria 

The evaluation was carried out by comparing satellite-

derived values with field measurements. SigmaPlot 

(Ver.12.0) statistical software was used to perform statistical 

fitting on these data. Mean Normalized Bias (MNB) and 

Root Mean Square Error (RMSE) evaluated the algorithm's 

performance. Mean normalized bias measures whether true 

values are over or understated. Root mean square error is a 

reliable marker of data scatter for normally distributed 

variables and provides vital information on satellite and in-

situ data (Shanthi et al., 2013). 

 

III. RESULTS AND DISCUSSION 

The oceanic partial pressure of CO2 (pCO2) is highly 

variable, and it is difficult to assess spatial and temporal 

variability because of the scarcity of measurements. In 

general, pCO2 and SST have a strong relationship, mainly in 

oceanic regions where significant physical and biological 

factors are. The thermodynamic effect of temperature on 

pCO2 (at constant salinity, alkalinity, and dissolved inorganic 

carbon) is about 4ºC (Copin-Montegut, 1989). At the same 

time, the equilibrium of the carbonate system in seawater is 

altered by the influence of SST in the absence of external 

exchanges (Qin et al., 2014). Hence, the two-dimensional 

approach of SST and pCO2 regression fits are attempted to 

understand the role of SST on pCO2 in the southwest Bay of 

Bengal coastal waters; the polynomial regression analysis for 

different functions like linear, quadratic, and cubic have been 

carried out to generate pCO2 maps.  

 

A. 2D-Regression Analysis and Pco2 Algorithm 

Development 

In-situ SST and calculated pCO2 concentrations (Eq. 2) 

were obtained by monthly coastal samplings at four sampling 

stations from January 2017 to June 2019 in the southwest 

Bay of Bengal region. The data points (20) matching the date 

of satellite-derived SST data were treated separately for 

validation purposes. Finally, 334 points were taken for 

regression analysis accounting for 94% of the total data.   

 

 

Where N= Number of points. On the whole cubic, the 

function was a better fit than other functions. It produced a 

significant relationship during the postmonsoon season 

(R2=0.537) with a minimum standard error of estimation  (± 

36.543 µatm), and the derived pCO2 algorithm was used to 

generate the pCO2 images. The pCO2 algorithm implies the 

following equation: 

 

pCO2 = 263581.4877 – 27820.7825*SST + 980.9763*SST2 – 

11.5396*SST3 

Postmonsoon 

 pCO2=1590.7218–43.4352*SST                (1) Linear 

 

 pCO2=-2922.0693+272.4418*SST–5.5244*SST2         

(2) Quadratic    

                             

 pCO2=263581.4877–

27820.7825*SST+980.9763*SST2–11.5396*SST3           

(3) Cubic 

 

Summer 

pCO2 = 2594.7694–76.0582*SST              (4) Linear 

 

pCO2=9892.4125–555.7563*SST +7.8763*SST2     (5) 

Quadratic 

 

 pCO2=-4167.8615+832.0346*SST–37.7442*SST2–

0.4995*SST3                     (6) Cubic                      

 
 

Premonsoon 

pCO2 =2983.6552–88.1427*SST         (7) Linear                                   

 pCO2=29285.3892–1881.4403*SST +30.5341*SST2        

(8) Quadratic 

 

 pCO2=-151226.738+16636.935*SST–

602.1762*SST2–7.1998*SST3             (9) Cubic 

 

Monsoon 

 pCO2 = 2755.7601–77.9496*SST           

 (10) Linear                               

 pCO2=-2378.7502+283.9733*SST–6.3704*SST2          

(11) Quadratic                            

 pCO2=-596822.233-63293.5995*SST–

2240.349*SST2–26.443*SST3         (12) Cubic 
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B. Development of pCO2 algorithm based on in-situ SST 

The regression analysis of the full dataset for three polynomial functions reveals an insignificant association with an R2≤ 

0.330 and SEE ≥ ±92µatm between SST and pCO2. The thermal capacity of the ocean is very large, and it varies from season 

to season, and space coinciding with this pCO2 also shows fluctuations. Hence it is not appropriate to treat the entire dataset in 

one cluster. Therefore, the seasonal regression analysis between SST and pCO2 was made to develop an SST-based pCO2 

algorithm for three polynomial linear, quadratic, and cubic functions. The regression plots were illustrated in figures 2-5, and 

the polynomial regression equations were given as follows. SST plays a major role in influencing the seasonal variability of 

pCO2 because temperature determines the solubility of CO2 to a large extent (Sabine et al., 2000). Higher SST makes the air 

lighter, shifts the air to the upper atmosphere, and reduces the air-sea interaction, thereby CO2 dissolution on the water's 

surface. In the regression analysis, SST portrays the constant negative relationship with pCO2 in all the seasons, and it is clear 

from the regression equations that pCO2 decreases with increasing temperature (Lefevre and Taylor, 2002). SST in the Bay of 

Bengal varies more seasonally, with high temperatures during the summer months and low temperatures during the monsoon 

and postmonsoon seasons, which coincide with river inputs and winter cooling. Hence it is attempted to treat them on a 

seasonal scale. 

 

  

Fig. 2 Regression analysis of postmonsoon dataset between in-situ SST and calculated pCO2 for linear (a), quadratic (b), and cubic (c) polynomial 

functions 
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Fig. 3 Regression analysis of summer dataset between in-situ SST and calculated pCO2 for linear (a), quadratic (b), and cubic (c) polynomial functions 

 
Fig. 4 Regression analysis of premonsoon dataset between in-situ SST and calculated pCO2 for linear (a), quadratic (b), and cubic (c) polynomial 

functions 
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Fig. 5 Regression analysis of monsoon dataset between in-situ SST and calculated pCO2 for linear (a), quadratic (b), and cubic (c) polynomial 

functions 

 

  The R2 values and standard error of estimate (SEE) obtained for different seasons using the polynomial regression analysis 

are summarized in table 1. Among the three polynomial functions used, the cubic function provided better agreement for all the 

seasons than other functions. Still, the standard error of the estimate remained high (> 50µatm) for summer, premonsoon, and 

monsoon seasons. The polynomial regression analysis of different seasons showed the significant R2 values during pre-

monsoon season (R2 = 0.599, SEE = ±64.937; R2 = 0.686, SEE = ±57.982 and R2 = 0.692, SEE = ±57.929) for linear, 

quadratic, and cubic functions respectively than other seasons.  So after that summer explained the better relationship between 

SST and pCO2 and poor correlation co-efficient is observed during monsoon and postmonsoon seasons with the R2 values for 

different functions.  

 
Table 1. Results of regression analysis between in-situ pCO2 and SST 

 

 The cubic function provided a better predictive capability for all seasons with a marginal improvement in the correlation 

coefficient than the other two functions. Conversely, Olsen et al. (2008) investigated the different regression diagnostics from 

single parameter relationships of fCO2 with SST, chlorophyll a, and mixed layer depth. They found a poor correlation of SST 

with fCO2 in seawater during winter (R2 ≤0.001) and a strong correlation with chlorophyll a and mixed layer depth in summer. 

In the present study, the cubic function offers an improved correlation coefficient (R2 = 0.537) during the postmonsoon season, 

with a minimum standard error of estimate (±36.543). Thus, a cubic function-derived algorithm has been applied to develop 

satellite-derived pCO2.  

 

 

Season  

N 

Linear Quadratic Cubic 

R2 SEE(±) R2 SEE(±) R2 SEE(±) 

POM 86 0.49 37.61 0.50 37.62 0.54 36.54 

SUM 128 0.52 60.48 0.53 60.13 0.53 60.17 

PRM 60 0.60 64.94 0.69 57.98 0.69 57.93 

MON 60 0.46 83.76 0.46 84.25 0.53 79.58 
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C. Evaluation of SST based pCO2 algorithm 

 To generate a satellite-derived pCO2 field, MODIS-Aqua retrieved SST data was used for the postmonsoon season (23rd 

March 2014) (Fig. 6). Satellite-derived SST (MODIS-Aqua) and modeled pCO2 images are validated with the in-situ SST and 

calculated pCO2 data of the same date at different locations of the southwest Bay of Bengal. Evaluation of MODIS-SST with 

in-situ SST shows a negative bias (MNB = -0.009) with RMSE of ±0.491ºC (Fig.7a), which is greater than the error (±0.38°C) 

observed by Gentemann (2014) and could be attributed to possible errors in cloud removal, contaminated aerosol retrievals, or 

sampling. Moreover, SST measured using infrared radiometers will estimate with high resolution only under cloud-free 

conditions, and it has been evident from the regression results (R2=0.700 and SEE ±0.244ºC). The data points fall outside the 

95% confidence band, suggesting that the satellite-derived values were higher or lower than they should be in natural waters. 

However, a comparison plot of in-situ SST with MODIS-derived SST revealed that the MODIS-SST, scattered about the 1:1 

line, underestimated 70% of the in-situ data and inflated 30% of the in-situ data (Fig.7b). 

 
Fig. 6 MODIS-Aqua derived SST image of 23rd March 2014 

  
Fig. 7 Regression (a) and comparison (b) plots of in-situ SST Vs. MODIS-Aqua derived SST 

 

 The statistical results reported in this study are analogous to MODIS SST validation using in-situ observations along the 

western Pacific coasts (Barton and Pearce, 2006) with a bias of –0.32°C; western North Pacific (Hosoda et al., 2007) with a 

bias of –0.06°C and RMSE of ±0.81°C, Taiwan coast  (Lee et al., 2010) with a bias of 0.42°C and RMSE of ±0.86°C, San 

Matías Gulf of Argentina (Williams et al., 2013) with an R2 of 0.89 and Bay of Bengal (Narayanan et al., 2013) with a bias of 
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1.80°C and reported the overestimation of the satellite product. However, with a correlation of R2 = 0.700, the regression fit 

was determined to be substantial. Hence MODIS-derived SST data was used to construct an SST-based pCO2 algorithm to 

generate remotely sensed pCO2. 

 

D. Validation of Remotely Sensed pCO2 

 The algorithm developed for the postmonsoon season is applied with MODIS-Aqua-derived SST to generate the remotely 

sensed pCO2 fields. The algorithm's predictive capability has been examined by comparing the calculated pCO2 with remotely 

remote sensed pCO2 data. Validation of remotely sensed pCO2 was carried out to assess the SST-based algorithm's 

performance by using calculated pCO2 data (Fig.8). The validation results found that there is no significant coefficient of 

determination (R2 = 0.428) with the SEE of ±12.510, MNB (0.071), and RMSE (30.922), indicating the poor agreement 

between remotely sensed pCO2 and calculated pCO2 (Fig.9a). A comparison plot of remotely sensed pCO2 with calculated 

pCO2 showed 75% overestimation and 25% underestimation of calculated pCO2 data (Fig. 9b). Similarly, Metzl et al. (1995) 

observed seasonal pCO2–SST relationships to reconstruct pCO2 from climatological SST in the Indian and Antarctic Oceans. 

Stephans et al. (1995) also used the pCO2-SST relationship to extrapolate pCO2 distribution by using satellite-derived SST in 

the North Pacific basin and obtained an RMSE of ±17 µatm and ±40 µatm for the northeast and western Pacific. The change is 

due to the impact of biologically produced variations in DIC. 

 
Fig. 8 SST based satellite-derived pCO2 image for 23rd March 2014 

 
Fig. 9. Regression (a) and comparison (b) plots of calculated pCO2 Vs. SST-based satellite-derived pCO2. 
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Landrum et al. (1996) and Lee et al. (1998) described the 

relation of pCO2 with SST in subtrophic and subarctic (30-

43ºN) waters and found an insignificant correlation (R2 = 

0.38). These results indicated that SST alone would not 

serve as an accurate estimate of basin-scale pCO2. 

Furthermore, our data showed little improvement in the 

relationship of pCO2 with SST (R2 = 0.537) over Landrum 

et al. (1996) and significantly supported Stephans et al. 

(1995) findings of poor predicting ability (RMSE = ±30.922 

atm). Lee et al. (1998) also extrapolated surface pCO2 in the 

Pacific Ocean based on the relationship of pCO2 with SST 

and found low interannual variability in the recent CO2 

uptake of atmospheric pCO2. Zhai et al. (2005) also 

reported underestimating field measurements of 0-50 µatm 

by the pCO2-SST relationship in the Northern South China 

Sea. From the present results and literature, it is inferred 

that SST plays a vital role in the pCO2 distribution and has a 

significant impact on the pCO2 distribution in the Bay of 

Bengal.  

 

IV. CONCLUSION 

 The seasonal regression analysis showed 

significant seasonal variability in the relationship of pCO2 

with SST. The pCO2 and SST had a strong inverse 

relationship in all the seasons, suggesting that increased 

SST reduces CO2 dissolution in seawater, lowering the 

pCO2 in seawater. The distribution of pCO2 fits well with 

the cubic curve in each season, and the best fit is found for 

the postmonsoon season. Further, an SST-based algorithm 

has been employed to generate a pCO2 map using MODIS-

Aqua-derived SST data. The validation of the pCO2 map 

exhibited poor prediction capacity with an RMSE of 

±30.922µatm. The satellite-derived pCO2 map error is 

mainly because of the inbound errors in MODIS-derived 

SST products. As a result, advancements in sensor 

technology and retrieval algorithms will undoubtedly 

improve the retrieval of input parameters (SST), which will 

be valuable in accurately determining pCO2. This would 

enable us to understand the biogeochemical processes 

behind the variability of CO2 in the surface waters of the 

southwest Bay of Bengal. 
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