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Abstract - This paper presents a modeling approach based on Artificial Neural Networks (ANNs) in the Ouémé river catchment 

at Savè. To do this, we used precipitation data as input over the period 1965 -2010 to simulate river discharge in the study 

area by using two ANNs models such as the Long Short Term Memory (LSTM) and Recurrent Gate Networks (GRU) models. 

Indeed, the description of the stochastic nature of the data is better presented today by ANNs models than the statistical models. 

We compared the performance of these two models based on different evaluation criteria. The predictions made using these 

models show a strong similarity between the observed and simulated flows. The deep learning models gave good results. 

Indeed, in calibration and validation, the Nash Sutcliffe Efficiency (NSE) and the coefficient of determination (R²) are very 

close to one (calibration: R²= 0.995, NSE= 0.991, and RMSE= 0.18; validation: R² = 0.975, NSE= 0.971, and RMSE= 0.41). 

This good performance of LSTM and GRU confirms the importance of models based on Artificial Intelligence in modeling 

hydrological phenomena for better decision-making. 

Keywords - Artificial Neural Networks, Modeling, Ouémé catchment at Savè, Long Short Term Memory, Gated Recurrent Unit. 

1. Introduction  
Precipitation is a natural phenomenon and is generally 

the largest contributor to the water balance in a watershed. 

They comprise drizzle, ice, frost, snow, hail, sleet, and rain. 

However, in West Africa, specifically in Benin, rain feeds the 

water tables and the various rivers [8]. However, excessive 

rainfall leads to natural disasters such as flooding. It is, 

therefore, necessary to better control the phenomenon of 

precipitation, and this requires its modelling. Over the past 

few decades, fully data-driven (empirical) models have 

begun to emerge with breakthroughs in new deep-learning 

methods in runoff prediction [11]. These breakthroughs were 

mainly made possible by the availability of large volumes of 

water-related data. We propose using recurrent neural 

networks models such as LSTM and GRU to model the 

rainfall-runoff relationship. To achieve this, we will optimize 

the hyperparameters of the models, simulate the river 

discharge at the outlet of the catchment area and finally 

evaluate the performance of the recurrent neural network 

models. 

2. Materials and Methods  
The Ouémé is a river that covers at Bonou, the most 

advanced station before the Delta, an area of 46,990𝑘𝑚2. It 

rises at the foot of Atacora, in the Djougou region, crosses 

Benin towards the coast, and flows into Lake Nokoué, just 

north of Cotonou (Fig. 1). It is thus the longest river in Benin, 

draining more than a third of the territory alone. The Ouémé 

basin at Savè (09°12’N; 02°16’E) is the area whose data are 

used in this project. Its natural outlet, located a few 

kilometers downstream from the confluence of the Ouémé 

with the Yérou-Maro, is the Bétérou station, created in 1952; 

the area covered by the Ouémé in Bétérou is 10,475𝑘𝑚2.  

 

Precipitation data used comes from Météo-Bénin 

(National Meteorological Agency of Benin), while the 

National Directorate of Water (DG-Eau) provides the river 

discharge data. The study area contains seven rainfall stations 

(Savè, Ouesse, Kokoro, Tchaourou, Bassila, Penessoulou, 

Toui) covering the period from 1965 to 2010.  

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Fig. 1 Geographical location of the Ouémé basins in Savè 

 
Our methodology for modeling the rainfall-runoff 

relationship using LSTM and GRU-type recurrent neural 

networks is based on four steps. 

 

2.1. Data Preprocessing 

Before loading the data into the LSTM and GRU models, 

a few transformations were applied, such as data 

normalization and transforming time series into supervised 

learning series. We use normalization and standardization 

methods to reduce the complexity of LSTM and GRU models 

[16]. 

 

Normalization scales each input variable (precipitation 

and evapotranspiration) separately in the range 0 -1, the range 

of floating point values where we have the most precision.  

𝑋𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 = 
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛

  (1) 

 

Standardization, like normalization, scales the output 

variable (rate) by subtracting the mean (called centering) and 

dividing by the standard deviation to shift the distribution to 

have a mean of zero and a standard deviation of one [22]. 

   
2.1.1. Split the Dataset 

Our hydrometeorological data is divided into three main 

parts to ensure the training, validation, and testing of 

recurrent neural network models (LSTM & GRU). 
 

Table 1. Dataset split 
 

Phase Percentage Period 

Training set 60%  

1965-2010 Validation set 20% 

Test set 20% 

 
 

2.1.2. Training Set 

A first data set will be used to train the models. This set 

covers 60% (01-01-1965 to 12-31-1992) of the dataset. This 

data set allows learning the different weights of the neurons 

constituting our network. 

 

2.1.3. Validation Set 

 A second data set will be used to validate the model 

parameters (validation set). This set represents 20% of our 

database (01-01-1993 to 12-31-2001). This data sample 

provides an unbiased evaluation of the model fit on the 

training data set while adjusting the model hyperparameters.   

 

2.1.4. Test Set 

A third data set will be used to test the real performance 

of our model. This dataset also represents 20% of our 

database (01-01-2002 to 12-31-2010). This is the test sample. 

It was used only after the model was fully trained (using the 

training and validation sets). It is used to provide an unbiased 

assessment of the fit of the final model on the training dataset.  

 

2.2. Construction and Validation of Forecasting Models 

This phase consists of training the LSTM and GRU 

models and validating their performance by optimizing some 

of their hyper-parameters.  

 

An artificial neural network is like an assembly of 

identical structural elements called cells (or neurons) 

interconnected like the nervous system cells of vertebrates. 

The information in the network propagates from one layer to 

another, and they are said to be of a “feed-forward” type [23]. 

We distinguish three types of layers: 

 

2.2.1. Input Layers 

The neurons in this layer receive the input values from 

the network and pass them on to the hidden neurons.  

 

Each neuron receives a value, so it does not sum; 

 

2.2.2. Hidden Layers 

Each neuron of this layer receives information from 

several previous layers, performs the summation weighted by 

the weights, and then transforms it according to its activation 

function, which is generally a sigmoid function [21]; it is the 

most suitable for the hydrological model. It then sends this 

response to neurons of the next layer; 

 

2.2.3. Output Layers 

These play the same role as the hidden layers, the only 

difference between these two types of layers is that the output 

of the neurons of the output layer is not linked to any other 

neuron 

 

2.3. Artificial Neural Networks 

The input variable X of our artificial neural network is 

composed of precipitation and evapotranspiration data (𝑥1 : 
Precipitation; 𝑥2:  ETP).
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Fig. 2 Cell of Artificial Neural Network 
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With m, the number of observations. 

 

In an artificial neuron, the input variable goes through an 

aggregation step and then an activation step that allows 

activating or not the neuron. The first aggregation step 

consists in making the weighted sum of the inputs and the 

weights of the neurons (W) to which we add a bias (b). 

 

𝑍 = 𝑋𝑊 + 𝑏 
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The second step consists in passing the value of Z in the 

activation function (sigmoid function, [11]), which allows 

activating or not the neuron. 

 

𝑎(𝑖) = 𝜎(𝑧(𝑖)) =  
1

1+ 𝑒−𝑧(𝑖) 

A =  [

𝑎(1)

𝑎(2)

⋮
𝑎(𝑚)

] =  𝜎 ([

𝑧(1)

𝑧(2)

⋮
𝑧(𝑚)

])   (5) 

  
In summary, in an Artificial Neural Network, we have: 

 

y =  σ(XW + b) 

 

2.4. Recurrent Neural Networks 

A recurrent neural network is an artificial neural network 

with recurrent connections. A recurrent neural network 

consists of interconnected units (neurons) interacting non-

linearly, for which there is at least one cycle in the structure. 

The units are connected by arcs (synapses) which have a 

weight. The output of a neuron is a nonlinear combination of 

its inputs. Recurrent neural networks are suitable for time 

series analysis. 

 
Fig. 3 Cell of a Recurrent Neural Network 

 

𝑦𝑡 =  σ(X𝑊𝑋 + 𝑦𝑡−1 ∗ 𝑊𝑦  + b) 

 
A Long Short Term Memory (LSTM) neural network [6] 

is the most widely used recurrent neural network architecture 

in practice that addresses the gradient vanishing problem. The 

idea associated with LSTM is that each computational unit is 

linked to a hidden state h and a state c of the cell, which acts 

as a memory. The transition from 𝑐(𝑡−1) to 𝑐𝑡 is done by a 

constant gain transfer equal to one [24]. In this way, errors 

are propagated to previous steps (up to 1000 steps in the past) 

without any gradient disappearance phenomenon. The state 

of the cell can be modified through a gate that allows or 

blocks the update (input gate). Similarly, a gate controls 

whether the cell state is communicated at the output of the 

LSTM unit (output gate). The most common version of 

LSTMs also uses a forget gate to reset the cell state. 

 
Fig. 4 LSTM network architecture 

 

The different formulas for each gate (forget gate, input 

gate, output gate) are presented below. 

 

𝑓(𝑡) =  𝜎(𝑊𝑥𝑡
𝑇 . 𝑋(𝑡) + 𝑊ℎ𝑓

𝑇 . ℎ(𝑡−1) + 𝑏𝑓) 
 

𝑖(𝑡) =  𝜎(𝑊𝑥𝑖
𝑇 . 𝑋(𝑡) + 𝑊ℎ𝑖

𝑇 . ℎ(𝑡−1) + 𝑏𝑖) 

 

𝑔(𝑡) = 𝑡𝑎𝑛ℎ(𝑊𝑥𝑔
𝑇 . 𝑋(𝑡) + 𝑊ℎ𝑔

𝑇 . ℎ(𝑡−1) + 𝑏𝑔)              
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𝑜(𝑡) =  𝜎(𝑊𝑥𝑜
𝑇 . 𝑋(𝑡) + 𝑊ℎ𝑜

𝑇 . ℎ(𝑡−1) + 𝑏𝑜) 
 

                    𝑐(𝑡) = 𝑓(𝑡) ⊗ 𝑐(𝑡−1) + 𝑖(𝑡) ⊗ 𝑔(𝑡)   
 

                    𝑦(𝑡) = ℎ(𝑡) = 𝑜(𝑡) ⊗ tanh (𝑐(𝑡)) 

 

2.5. Gated Recurrent Unit (GRU) Network 

A Gated Recurrent Unit (GRU) network [5] is a variant 

of LSTMs introduced in 2014. GRU networks have 

performance comparable to LSTMs for time series 

prediction. A GRU unit requires fewer parameters to learn 

than an LSTM unit. A neuron is now associated with only one 

hidden state, and the gates of entering and forgetting the 

hidden state are merged [27]. The output gate is replaced by 

a reset gate. 
 

 
Fig. 5 GRU Network Architecture 

 
2.6. Optimization of Hyperparameters of LSTM and GRU 

models 

While constructing recurrent neural network models, we 

are faced with the choice of hyperparameters. Indeed, a 

hyperparameter is a parameter whose value is used to control 

the learning process. They are adjustment parameters of the 

machine learning algorithms. It is known that the 

hyperparameters of an artificial neural network have an 

influence on the performance of the model, so the number of 

units in the LSTM layers, the batch size, and the learning rate 

of the optimizer are selected as optimization objects. 

Optimizing the hyperparameters of an LSTM or GRU model 

involves performing a search to discover the set of model 

configuration arguments that result in the best model 

performance on a specific data set. The hyperparameters to 

be optimized during the training phase of LSTM and GRU 

models are:  

 

2.6.1. Number of Hidden Units by Layer 

These must also be chosen reasonably to find a trade-off 

between high bias and high variance. Again, this depends on 

the size of the data used for training. 

 

2.6.2. Learning Rate 

This is a hyperparameter that plays on the speed of the 

gradient descent: a more or less important number of 

iterations is necessary before the algorithm converges, i.e. 

before optimal learning of the network is achieved. 

 

2.6.3. Batch Size 

Several samples that will be transmitted to the network 

at one time. It is also commonly referred to as a mini lot. If 

the batch size is smaller, the patterns would be less repetitive 

and hence convergence would become difficult. If the batch 

size is large, the learning is slow because it is only after many 

iterations that the batch size will change.  

 

2.6.4. Number of Epochs 

The number of epochs is the number of times all the 

training data are presented to the model. 

It plays an important role in how well the model fits the 

training data. 

 

The architectures of the recurrent neural network models 

developed consist of three layers, namely: 

 

• An input layer made up of vectors comprising the values 

of the input variables (precipitation and 

evapotranspiration); 

• A hidden layer (LSTM or GRU) composed of 100 units; 

• An output layer composed of a neuron that predicts the 

value of the flow. 

 

The optimizer used is the Adam optimizer. [26] list the 

attractive benefits of using Adam on non-convex 

optimization problems, as follows: Straightforward to 

implement; computationally efficient; little memory 

requirements; invariant to diagonal rescale of the gradients; 

well suited for problems that are large in terms of data and/or 

parameters. 

 

The hyper-parameters have intuitive interpretation and 

typically require little tuning. The loss function chosen is the 

root mean square error. For the training phase of the LSTM 

and GRU models, the number of epochs was set to 100 to 

have the same scale of comparison between the models. 

Model evaluation was performed using the test dataset. We 

evaluated the models by analyzing the curve of the loss 

function on the number of epochs [15] 
 

2.7. Model Performance Evaluation 

To assess the performance of the models, the Nash 

Stutcliffe efficiency (NSE), the coefficient of determination 

(R²), and the root mean squared error (RMSE) are statistical 

methods often used to compare predicted values to observed 

values. 

 

2.8. Performance Evaluation Criteria 

2.8.1. Nash-Sutcliffe criterion (or Nash criterion) 

This metric (3) expresses the proportion of the variance 

of flows explained by the hydrological model. According to 
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[14], in hydrological applications and depending on the type 

of river, the Nash criteria are acceptable between 0.60 and 

0.70 and excellent if they are greater than 0.90. 

 

𝑁𝑆𝐸 = 1 − 
∑ (𝑄𝑖,𝑜𝑏𝑠 − 𝑄𝑖,𝑠𝑖𝑚)

2𝑛
𝑖=1

∑ (𝑄𝑖,𝑜𝑏𝑠 − �̅�)
2𝑛

𝑖=1

   (6) 

  

Where 𝑄𝑖,𝑜𝑏𝑠, 𝑄, and n stand respectively for the 

observed river discharge at day i, the simulated discharge at 

day i, the average river discharge, and n, the total number of 

days. The closer the value of the criterion is to 1, the more 

accurate the model is. A negative criterion value occurs when 

the observed mean is a better prediction than the model, in 

other words, when the residual variance is larger than the data 

variance. 

 

2.8.2. Coefficient of determination  𝑅2 

The value of 𝑅2 describes the proportion of the variance 

of the observed discharges compared to the simulation 

discharges. 

𝑅2 = 
∑ (𝑄𝑖,𝑠𝑖𝑚 − �̅�𝑖,𝑜𝑏𝑠)

2𝑛
𝑖=1

∑ (𝑄𝑖,𝑜𝑏𝑠 − 𝑄)
2

𝑛
𝑖=1

 (7) 

 

Authors such as (Moriasi, 2015) suggest that any 𝑅2 

value greater than 0.5 for comparisons of daily flows is an 

acceptable threshold in hydrological simulation. 

 

2.8.3. Root Mean Square Error (RMSE) 

The square root of the means square error RMSE is one 

of the most widely used evaluation criteria in 

forecasting research  [25], which gives a quantitative 

indication of the overall error produced by the model. This 

criterion determines the deviation of the simulated value from 

the observed mean. 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
 ∑(𝑄𝑖,𝑜𝑏𝑠 − 𝑄𝑖,𝑠𝑖𝑚)

2
𝑛

𝑖=1

 (8) 

The closer the mean squared error value is to 0, the better 

the simulation result is. 

 

3. Results and Discussion  
3.1. Models Training and Validation 
  We can see in Fig. 6 the evolution of the loss function 

(Loss) during the training of the two models of recurrent 

neural networks (LSTM and GRU). It can be seen that the 

error during the training and test phases converges towards 

zero just after a few tens of epochs. One can deduct from this 

fact that models based on machine learning require very few 

computing resources while allowing them to have very good 

results. 

 
Fig. 6 Error evolution curve during the test training phases 

 

3.2. Hyperparameters Tuning Values 

Fig. 7 and Fig. 8 below show the values of the selected 

hyperparameters after hyperparameter optimization. 

 
Fig. 7 Value of LSTM model hyperparameters 

 

Table 2. Hyperparameter value 

Models Learning 

rate 

Number 

of units 

Number 

of epochs  

Batch 

size 

LSTM 0.0051 144 415 454 

GRU 0.01 222 294 144 
 

Both recurrent neural network models perform better 

with lower learning rates and several units smaller than 300. 

The number of epochs and the batch size has less influence 

on the models, although a higher number of epochs slightly 

improves simulations. The models obtained good results in 

calibration and validation. After the training phase of the 

LSTM and GRU models, we obtain almost very good models. 

Indeed, the performances obtained in the NSE and R² tests 

are very close to one. Similarly, the mean square error is close 

to zero (Table 3).  
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Fig. 8 Value of GRU model hyperparameters 

 
These various values allowing obtaining the best 

performances during the simulation of the flows (Table 2). 

 
Table 3. Results of models in calibrations of the model calibrations 

Metrics LSTM GRU 

Coefficient of 

determination 𝑹𝟐 

 

0.994 

 

0.995 

Nash-Sutcliffe Efficiency 

(NSE) 

 

0. 989 

 

0.991 

Root Mean Square Error 

(RMSE) 

 

0.20 

 

0.18 

 
3.3. Simulation with LSTM and GRU models 

After training, the validation of the two models was 

carried out with the test data ranging from the period 2002 to 

2010. 

 
Fig. 9 Discharge simulated with LSTM neural network 

 
Fig. 10 Discharge simulated with LSTM neural network 

 
Both models performed very well on this test data. It 

comes from these figures that the models (LSTM and GRU) 

present very good results in calibration. Indeed, the LSTM 

and GRU obtained the same scores of 0.971 for the NSE test 

and 0.975 as the value for R² in validation (Table 4). The 

LSTM and GRU simulation results are the same based on the 

obtained R² and NSE performance criteria. However, with the 

RMSE criterion, it can be seen that the LSTM and GRU 

models give respectively 0.44 and 0.41. We can therefore 

deduce that the GRU model provides slightly better results 

than the LSTM model because the mean square error of the 

latter is closest to zero. These calibration performances 

produced by LSTM and GRU models well exceed the 

acceptable threshold in rainfall-runoff modeling at the daily 

scale proposed by [12], which is 0.5. 

 
Table 4. Evaluation of the performances of the two models 

Metrics LSTM GRU 

Coefficient of 

determination 𝑅2 

 

0.975 

 

0.975 

Nash-Sutcliffe 

Efficiency (NSE) 

 

0. 971 

 

0.971 

Root Mean Square 

Error (RMSE) 

 

0.44 

 

0.41 

 
Table 5. Performance obtained by hydrological models 

Metrics Calibration Validation 

R² 0.86 0.83 

NSE 0.82 0.81 

 
 

Table 5 presents the results obtained by [2] on the Ouémé 

basin in Savè using a hydrological model. It can be seen that 

the performance achieved with recurrent neural networks 

largely exceeds that obtained by other authors using classical 

hydrological models. 
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4. Conclusion  
This work aimed to assess the potential for using 

recurrent neural networks in rainfall-runoff modeling in the 

Ouémé basin at Savè over the period 1965 to 2010. We used 

two recurrent neural network models (LSTM and GRU), 

leading us to very conclusive results. The simulations 

obtained show a strong similarity between the observed and 

simulated flows. This demonstrates the effectiveness of 

artificial intelligence-based models in hydrological 

modeling. A combination of the LSTM and GRU models to 

set up an overall model may better improve the simulation. 

 

References  
[1] Agon, Orel, “Rainfall Variability and Impacts on Surface Water Resources in the Zou Basin at Atcherigbe,” International Journal of 

Progressive Sciences and Technologies, 2020. 

[2] A. Alamou, “Application of the Least Action Principle to Rainfall Flow Modeling,” Unique Doctoral Thesis, University of Abomey-

Calavi, p. 231, 2016. 

[3] Balduíno César Mateus et al., “Comparing LSTM and GRU Models to Predict the Condition of a Pulp Paper Press,” Energies, 2021. 

[CrossRef] [Google Scholar] [Publisher Link] 

[4] Eliézer Iboukoun Biao et al., "Improving Rainfall-Runoff Modelling through Uncertainties’ Control under Increasing Climate Variability 

in the Oueme," Doctoral Thesis, University of Abomey-Calavi, 2015.   

[5] Junyoung Chung et al., “Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling,” arXiv, 2014. [CrossRef] 

[Google Scholar] [Publisher Link] 

[6] Sepp Hochreiter, and Jürgen Schmidhuber, “Long Short-Term Memory,” Neural Computation, pp. 1735-1780, 1997. [CrossRef] [Google 

Scholar] [Publisher Link] 

[7] M.A. Manjunatha Swamy et al., "Evaluating the Impacts of Climate Change on Thunga River Basin Karnataka," SSRG International 

Journal of Agriculture & Environmental Science, vol. 8, no. 5, pp. 1-8, 2021. [CrossRef] [Publisher Link]   

[8] Y. B. Koffi, Study of the Calibration, Validation and Performance of Formal Neural Networks Based on Hydro-Climatic Data from the 

Bandama Blanc Watershed in Ivory Coast, 2014. 

[9] N. Laborde, Towards a New Approach for Determining the Siltation Rate of Dams, 1998. 

[10] S. Lallahem, “Structure and Hydrodynamic Modeling of Two Groundwaters: Application to the Chalky Aquifer of the Northern Border 

of the Paris Basin,” Lille: Geological Society of the North, 2023. 

[11] M.-A. Boucher, J. Q “Data Assimilation for Streamflow Forecasting,” Water Ressources Research, 2020. 

[12] Daniel N. Moriasi, “Hydrologic and Water Quality Models: Key Calibration and Validation,” American Society of Agricultural and 

Biological Engineers, 2015. [CrossRef] [Google Scholar] [Publisher Link] 

[13] K. P. Sudheer, A. K. Gosain, and K. S. Ramasastri, “A Data-Driven Algorithm for Constructing Artificial Neural Network Rainfall-

Runoff Models,” Hydrological Processes, Hydrological Processes, vol. 16, no. 6, pp. 1325-1330, 2020. [CrossRef] [Google Scholar] 

[Publisher Link] 

[14] Mohamed Samir Toukourou, Application of Machine Learning to Flash Flood Forecasting, ParisTech Online Theses, 2015. 

[15] A.Vannieuwenhuyze, Machine Learning and Deep Learning by doing, 2019. 

[16] Xuan-Hien Le et al., “Comparison of Deep Learning Methods for Hydrological Forecasting in a Large-Scale Basin,” Remote Sensing of 

Environment, vol. 251, p. 111631, 2020.  

[17] S. Sadeghian et al., “Modeling and Forecasting River Flow Using Hybridized Deep Learning Methods,” Journal of Hydrology, vol. 569, 

pp. 594-606, 2019. 

[18] Télesphore Cossi Nounangnonhou et al., “Modelling and Prediction of Ouémé (Benin) River Flows by 2040 Based on Gr2m Approach,” 

Accra Technical University Library, 2018. [Google Scholar] [Publisher Link] 

[19] V. Banupriya, and S. Anusuya, "Improving Classification of Retinal Fundus Image Using Flow Dynamics Optimized Deep Learning 

Methods," SSRG International Journal of Electrical and Electronics Engineering, vol. 9,  no. 12, pp. 39-48, 2022. [CrossRef] [Publisher 

Link]   

[20] Poornima, S. Pushpalatha, M. “Prediction of Rainfall Using Intensified LSTM Based Recurrent Neural Network with Weighted Linear 

Units,” Atmosphere, vol. 10, p. 668, 2019. [CrossRef] [Google Scholar] [Publisher Link]  

[21] Zhongrun Xiang, Jun Yan, and Ibrahim Demir, “A Rainfall-Runoff Model with LSTM-Based Sequence-To-Sequence Learning,” Water 

Resources Research, vol. 56, p. e2019WR025326, 2020. [CrossRef] [Google Scholar] [Publisher Link]   

[22] Dechao Sun et al., "Prediction of Short-Time Rainfall Based on Deep Learning," Mathematical Problems in Engineering, vol. 2021, 

2021. [CrossRef] [Google Scholar] [Publisher Link]  

[23] S. Riad, J. Mania, L. Bouchaou, Y. Najjar, “Rainfall-Runoff Model Usingan Artificial Neural Network Approach,” Mathematical and 

Computer Modelling, vol. 40, pp. 839-846, 2004. [CrossRef] [Google Scholar] [Publisher Link] 

 

https://doi.org/10.3390/en14216958
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Comparing+LSTM+and+GRU+Models+to+Predict+the+Condition+of+a+Pulp+Paper+Press&btnG=
https://www.mdpi.com/1996-1073/14/21/6958
https://doi.org/10.48550/ARXIV.1412.3555
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Empirical+Evaluation+of+Gated+Recurrent+Neural+Networks+on+Sequence+Modeling&btnG=
https://arxiv.org/abs/1412.3555
https://doi.org/10.1162/neco.1997.9.8.1735
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Long+Short-Term+Memory.+Neural+Computation&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Long+Short-Term+Memory.+Neural+Computation&btnG=
https://direct.mit.edu/neco/article-abstract/9/8/1735/6109/Long-Short-Term-Memory?redirectedFrom=fulltext
https://doi.org/10.14445/23942568/IJAES-V8I5P101
https://www.internationaljournalssrg.org/IJAES/paper-details?Id=340
https://doi.org/10.13031/trans.58.11075
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Hydrologic+and+Water+Quality+Models%3A+Key+Calibration+and+Validation&btnG=
https://elibrary.asabe.org/abstract.asp?aid=46553
https://doi.org/10.1002/hyp.554
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Data-Driven+Algorithm+for+Constructing+Artificial+Neural+Network+Rainfall-Runoff+Models&btnG=
https://onlinelibrary.wiley.com/doi/10.1002/hyp.554
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Modelling+And+Prediction+Of+Ou%C3%A9m%C3%A9+%28Benin%29+River+Flows+By+2040+Based+On+Gr2m+Approach&btnG=
http://atuspace.atu.edu.gh/handle/123456789/2434
https://doi.org/10.14445/23488379/IJEEE-V9I12P104
https://www.internationaljournalssrg.org/IJEEE/paper-details?Id=403
https://www.internationaljournalssrg.org/IJEEE/paper-details?Id=403
https://doi.org/10.3390/atmos10110668
https://doi.org/10.3390/atmos10110668
https://doi.org/10.3390/atmos10110668
https://doi.org/10.3390/atmos10110668
https://doi.org/10.3390/atmos10110668
https://doi.org/10.3390/atmos10110668
https://doi.org/10.3390/atmos10110668
https://doi.org/10.3390/atmos10110668
https://doi.org/10.1155/2021/6664413
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Prediction+of+Short-Time+Rainfall+Based+on+Deep+Learning&btnG=
https://www.hindawi.com/journals/mpe/2021/6664413/
https://doi.org/10.1016/j.mcm.2004.10.012
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Rainfall-Runoff+Model+Usingan+Artificial+Neural+Network+Approach%2C&btnG=
https://www.sciencedirect.com/science/article/pii/S0895717704002742


Zohou Pierre Jérôme et al. / IJGGS, 10(1), 29-35, 2023 

 

35 

[24] John Abbot, Jennifer Marohasy, “Input Selection and Optimisation for Monthly Rainfall Forecasting in Queensland, Australia, Using 

Artificial Neural Networks,” Atmospheric Research, pp. 166-178, 2014. [CrossRef] [Google Scholar] [Publisher Link] 

[25] Christian W. Dawson, and Robert Wilby, “An Artificial Neural Network Approach to Rainfall-Runoff Modelling,” Hydrological 

Sciences Journal, vol. 43, no. 1, 1998. [CrossRef] [Google Scholar] [Publisher Link]  

[26] Diederik Kingma, and Jimmy Ba, “A Method for Stochastic Optimzation,” arXiv, 2014. [CrossRef] [Google Scholar] [Publisher Link] 

[27] Longzhang Fang, and Dongguo Shao, “Application of Long Short-Term Memory (LSTM) on the Prediction of Rainfall-Runoff in Karst 

Area,” Frontiers in Physics, vol. 9, p. 790687, 2022. [CrossRef] [Google Scholar] [Publisher Link]  

 

 

https://doi.org/10.1016/j.atmosres.2013.11.002
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Input+selection+and+optimisation+for+monthly+rainfall+forecasting+in+Queensland%2C+Australia%2C+using+artificial+neural+networks&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0169809513003141?via%3Dihub
https://doi.org/10.1080/02626669809492102
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+artificial+neural+network+approach+to+rainfall-runoff+modelling+&btnG=
https://www.tandfonline.com/doi/abs/10.1080/02626669809492102
https://doi.org/10.48550/ARXIV.1412.6980
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Method+for+Stochastic+Optimzation&btnG=
https://arxiv.org/abs/1412.6980
https://doi.org/10.3389/fphy.2021.790687
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Application+of+Long+Short-Term+Memory+%28LSTM%29+on+the+Prediction+of+Rainfall-Runoff+in+Karst+Area&btnG=
https://www.frontiersin.org/articles/10.3389/fphy.2021.790687/full

