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Abstract - Geological mapping of gold deposits in Butihinda-Muyinga is an indispensable stage to recognizing gold potential in 

the region. Gold mineralization in the region of Butihinda-Muyinga is linked to iron oxides formed from the oxidation of sulfide 

minerals. Remote sensing via Landsat-8 imagery is used to support initial gold exploration activities. Different image processing 

techniques such as Red Green Blue (RGB) combination, band ratios, and Principal Component Analysis (PCA) are implemented 

to identify geological features indicative of gold mineralization. Gold mineralization in this area is associated with iron oxide 

minerals. The main aim is to identify these minerals via remote sensing and Geographical Information System (GIS) techniques. 

The findings show that selective PCA is the most effective technique for mapping pixels containing spectral signatures of hydroxyl 

and iron oxide minerals. The processed imagery successfully distinguishes urban areas, iron and hydroxyl-rich zones, and clay-

rich areas. The dominant NNE-SSW structural trends identified in the imagery are considered highly promising for gold 

mineralization. They are validated through field observations, which revealed a clear correlation between the remote sensed 

data and field geological mapping. 

Keywords - Band ratio, Gold mineralization, Landsat-8, Principal Component Analysis (PCA), Remote sensing. 

1. Introduction  
Burundi is known to have significant gold mineralization 

and is primarily located in the northern region of the country. 

Gold mineralization in Burundi is found in quartz veins and 

iron oxide breaches (Brinckmann et al., 1994). Gold 

mineralization in Burundi is related to the upper Proterozoic 

post-Kibarian shear zone.  

 

Previous studies indicate two types of primary gold 

mineralization: sulfide vein assemblages with gold related to 

the post-Kibaran (G4-granite magmatism) (900-1000 Ma) and 

Pan-African ferruginous breccia zones with gold dated around 

640 Ma. 
 

 In Burundi, past research [1,2,3,4,5,6,7] has explored 

Burundi's mineral resources, reliable reserve estimates remain 

elusive, and many deposits are untapped. Numerous studies 

employing geochemical, metallogenic, magmatic, and 

geochronological methods have identified various mineral 

deposits, but these studies have largely neglected remote 

sensing techniques.  

Burundi, an inaccessible terrain with very rugged 

geomorphology, which makes it difficult for ground mapping, 

has a lack of studies based on remote sensing and GIS for 

mineral exploration. On the basis of literature and prior 

geological studies, gold mineralization in the region of 

Butihinda-Muyinga is linked to iron oxides formed from the 

oxidation of sulfide minerals [6]. 

 

The main purpose of this investigation is to map the areas 

of iron oxides associated with gold by integrating remote 

sensing and GIS techniques with LandSat-8 images to 

delineate the zones of gold mineralisation at Butihinda-

Muyinga in northeast Burundi.  

2. Geological Setting 
2.1. Geology of Burundi 

The geology of Burundi, which is part of the Kibaran belt 

in the Karangwe-Ankolean, composed of alternating pelitic-

arenaceous metasedimentary rocks of Mesoproterozoic age 

1600-1000 Ma that occupied approximately 70% of the 

Burundi geology (found in south, west, north and central of 

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Burundi, the Neoproterozoic formations (1000 -542 million 

years ago) of schists, and basalts outcrop in the southeastern 

part towards the border with Tanzania.  

 
The zones of granite-gneissic to the gneissic basement of 

Palaeoproterozoic 1860 million years ago or the Archean of 

pre-2500 million years ago outcrop locally.  

 
Cenozoic and Quaternary surface formations are found in 

the valley-bottom alluvium and low Holocene terraces of 

various rivers.  

 
The Miocene tholeiitic and alkaline lavas (between 8 and 

6 Ma; [8]), considered the southern extension of the basalts of 

the volcanic province of South Kivu, exist in the region of the 

triple border point between Burundi, Rwanda, and the eastern 

DRC.  

 
Additionally, in the context of the intense weathering 

characteristics of intertropical environments such as those of 

Burundi, these formations were transformed into lateritic soils 

covering several places. 

2.2. Mining Potential of the Subsoil of Burundi 

The mining potential of the subsoil of the Burundi region 

is not well known. Most of the published works are geological 

and mineralogical studies dating back to the Belgian colonial 

period. Since the beginning of the 21st century, national and 

international interest in these mineral resources has increased 

significantly.  

 
Numerous studies carried out in Burundi on 

mineralization [1,3,4,5,6,7,9,10,11] demonstrated that several 

types of mineral deposits exist.  

 
Based on their geological characteristics, their formation 

environment, and their genesis, the mineral deposits of 

Burundi can be divided into eight categories, not counting the 

fluvial placers with heavy metals (Au, Sn, Nb-Ta, W), which 

are the most exploited artisanal: (1) granites accompanied by 

mineralized pegmatites in rare elements (Sn, Nb, Ta, W),  (2) 

mafic rocks mineralized in Fe-Ti and V, (3) ultramafic rocks 

mineralized in Ni-Cu (± PGE), (4) iron and gold oxide 

breccias, (5) gold-bearing quartz veins, (6) carbonatites and 

syenites mineralized in rare earth elements and zircon, (7) 

metasomatic veins mineralized in rare earth elements,  and (8) 

nickel laterites.  

 
The mineral deposits of Burundi can also be classified 

into three groups according to their origins: deposits 

associated with the evolution of the Kibarian orogen, deposits 

associated with the opening of the western branch of the East 

African rift, and deposits associated with the region’s climatic 

conditions (see Figure.1 a). 

 

2.3. Gold mineralization in Burundi 

Gold mineralization is found in quartz veins and iron 

oxide breaches [11]. Gold mineralization in Burundi is related 

to the upper Proterozoic post-Kibarian shear zone. Gold quartz 

veins are the most important deposits in Burundi and the 

majority of them are found in the Muyinga area, where fifteen 

indications of mineralization have been described at Gatovu I 

and II, Kamara I, II, III and IV, Nyarabuye, Kizebe I and II, 

Murehe, Masaka I and II and Nyungu, in the brittle formation 

of the Kamaramagambo quartzite, especially towards its base, 

close to its contact with the ductile schist formation of 

Nyabihanga [6]. 

 

Similar vein deposits have been reported in other 

provinces, especially Ruyigi and Cankuzo, in a similar 

lithological context, towards the base of the Mpungwe 

quartzite at its contact with the Kayongozi Schiste Formation. 

They are also known for their more deformed terrain in the 

west, in the Tora-Ruzibazi region. 

 

The veins are located in a geological context 

characterized by complex structural control, where the veins 

form a stockwork of white and grey quartz formed during 

different tectonic phases of the Kalagwe Ankolean Belt 

(KAB) deformation. The mineralization preferentially occurs 

in the grey component. 

 

Primary mineralization occurs not only in the form of 

native gold but also in the invisible form in solid solutions 

containing arsenic in iron sulfide, such as pyrite and 

arsenopyrite, from which it is released during supergene 

weathering processes and remobilized in the oxides and 

hydroxides of iron. 

 

Gold-bearing ferruginous breccias occur in the Cibitoke 

region, Mabayi region, and Bukinanyana [6]. They form 

elongated bodies, often more than 100 m thick and several 

hundred metres long, with a north-south orientation and a sub-

vertical dip [10]. They are associated with metavolcanic rocks 

in the Mabayi Formation, the tectonic-metamorphic 

equivalent of the Kamaramagambo quartzite (see Figure.1 b).  
 

2.4. Remote Sensing 

In Burundi, inaccessible terrain and thick vegetation 

cover made it difficult to conduct ground geological mapping, 

making remote sensing inevitable, particularly in identifying 

zones of gold, copper, and iron deposits. The use of remote 

sensing in mineral exploration, especially during 

reconnaissance surveys, cannot be over-emphasized. Remote 

sensing is used as a tool to provide data for large areas and 

data for very remote and inaccessible regions. Remote sensing 

can reduce survey costs when compared to ground geological 

mapping. No mineral explorations in the Northeast of Burundi 

are based on remote sensing. Most mining exploration 

activities are conducted without any consideration of remote 

sensing.  
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                                    (a)                                                                                                                              (b)

Fig. 1 a mineralization map of Burundi, produced from the compilation of mineral resource maps. b gold mineralization areas well known in 

Burundi. Data from the literature

3. Materials and Methods  
3.1. Landsat-8 Remote Sensing Data Acquisition 

Remotely sensed multispectral datasets were acquired 

from the United States Geological Survey (USGS) and then 

processed by software for remote sensing. In the course of our 

study, the multispectral sensor OLI_TIRS, carried by Landsat-

8 imagery level 1T, acquired on 19 August 2023 under 

excellent weather conditions at the L1T (corrected terrain) 

level, with a Universal Transverse Mercator (UTM) projection 

and a World WGS84 datum and image quality, was used to 

extract mineralogical and structural information in the 

Northeast Burundi region of Butihinda-Muyinga. Landsat-8 is 

an American satellite launched in 2013 by NASA and the 

United States Geological Survey (USGS) collaboration. 

Landsat program carries two instruments on board: the 

Operational Land Imager (OLI), nine bands: spectral 

resolution of 30 m (bands 1-7 and 9) and 15 m for a 

panchromatic band (band 8), and the Thermal Infrared Sensor 

(TIRS), which consists of 2 thermal bands (bands 10 and 11) 

that were acquired at 100 m spatial resolution but resampled 

to 30 m [12]. Operational Land OLI, on the other hand, has 

nine spectral bands, including a pan band such as the 

following: Band 1 - Coastal Aerosol (0.43 -0.45) 30 m, Band 

2-Blue (0.450 - 0.51 µm) 30 m, Band 3 - Green (0.53 - 

0.59µm) 30m, Band 4 – Red (0.64 - 0.67 µm) 30 m, Band 5 

Near-Infrared (0.85 - 0.88 µm) 30 m, Band 6 SWIR 1(1.57 - 

1.65) 30 m, Band 7 - SWIR 2 (2.11 - 2.29 µm) 30 m, Band 8 

- Panchromatic (PAN) (0.50 - 0.68 µm) 15 m, Band 9 Cirrus 

(1.36 - 1.38 µm) 30 m. Data acquired in visible and SWIR 

regions have particular features for geological application 

[14,15]; Band 4, visible: 0.64–0.67 μm): appropriate for soil 

and vegetation differentiation, outlines of soil cover. Band 6 

(SWIR: 1.57–1.65 μm): Discrimination between soil and rock; 

sensitive to variations in the moisture of vegetation and soils 

and the presence of ferric iron or hematite-rich rocks.  

Band 7 (SWIR: 2.11–2.29 μm): this band coincides with 

absorption features from hydrous minerals (clay, mica, some 

oxides, and sulfates) that give them a dark appearance. These 

are commonly used in lithological mapping. In this study, 

band 1 (coastal aerosol), band 9 (cirrus), and bands 10 and 11 

(TIRS bands) were discarded from the analysis, and thermal 

bands were not considered because of their lower spatial 

resolution.
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3.2. Landsat-8 Imagery Preprocessing Methods 

Preprocessing procedures are necessary to obtain 

spatially and radiometrically corrected images. Presently, the 

USGS EROS Centre corrects Landsat imagery and includes 

radiometric correction and geometric correction [15]. First, 

the data were converted into top-of-atmosphere (TOA) 

reflectance via the radiometric coefficients provided by USGS 

2020, 2020, where Digital Numbers (DNs) are converted to 

TOA reflectances, which represent the ratio of the radiation 

reflected from a surface to the radiation striking it [15]. To 

convert TOA reflectance to surface reflectance, DOS1 

atmospheric correction was performed. These steps were 

performed in QGIS software via the Semiautomatic 

Classification Plugin (SCP). 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Schematic diagram of the overall workflow 
 

3.3. Landsat-8 Image Processing Methods 

Image-processing techniques transform multispectral 

satellite data into images that enhance geological features in 

contrast with the background. In the present study, 

enhancement techniques, such as band composite, band 

rationing, and principal component analysis (PCA), were 

employed to extract spatial and spectral information on 

lithology, structure, and hydrothermally altered zones. 

The general workflow of image processing analysis is 

schematically represented in Figure. 2. 
 

3.3.1. RGB Combinations 

RGB combinations in remote sensing refer to how 

different spectral bands of satellite or aerial imagery are 

combined to create a color image. Landsat-8 imagery results 

in grayscale images that are representative of the translation 

of its spectral bands. A composite of three bands, such as red, 

green, and blue, produces a multispectral color image. 

Different band combinations based on laboratory spectra of 

minerals may serve to enhance geological features [19].  

Some of the well-known RGB combinations for Landsat-8 

images were tested to identify the following: 

(i) hydrothermal alteration: RGB 752 and RGB 567 [16], and 

RGB 573 [17]; 

(ii) iron oxides and clay minerals: RGB 257 and RGB 657 

[16]; 

(iii) lithological contrasts: RGB674 [14]. 

3.3.2. Band Ratio 

Band rationing is a technique whereby one band is 

divided by another to highlight features that cannot be viewed 

in raw bands, as revealed by [16,18,19]. The ratios amplify 

contrast and compositional information while suppressing 

useless information, such as shadowing and topographic 

surface shadows [18,20,21,22,23,26]. Considering the case of 

Landsat-8, minerals such as alunite and clay minerals such as 

illite, kaolinite, and montmorillonite have distinctive 

absorption (low reflectance) features at SWIR 2 (2110–2290 

nm) and low absorption at SWIR 1 (1570–1650 nm) band, 

whereas iron oxides and sulfate minerals commonly have 

strong reflectance near red (640–670 nm) band, and low 

reflectance in the blue band (450-510 nm) [19,20,24]. Based 

on their absorption, spectral reflectance, and position, some 

authors have proposed band ratios for geological use to 

highlight the minerals associated with hydrothermally altered 

rock features (Table 1).  
 

An RGB image created from band ratios differentiates 

altered ground from unaltered ground, emphasising regions 

where these minerals are abundant [13]. Sabins, 1999, 

suggested RGB combinations of ratios of 4/2, 6/7, and 6/5 for 

lithological mapping and identification of hydrothermal 

alteration areas. Pour, and Hashim (2015) report that RGB 

composite 4/2, 6/7, and 5 are beneficial for identifying 

lithology, altered rocks, and vegetation. Similarly, the 

Kaufmann ratio (7/5, 5/4, 6/7) was likewise utilized in this 

study [16]. 

Acquisition of Landsat-8 
imagery from USGS 
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Using 
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Using QGIS 
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Digital Elevation 
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Topography Mission 
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Table 1. Band ratios for Landsat-8 images for mineral analysis 

according to the literature 

Band ratio Features References 

4/2 Iron oxide [19,24,29] 

6/7 
Alunite and 

clay minerals 
[13,30] 

6/5 
Ferrous 

minerals 
[16,17,31] 

 

3.3.3. Principal Component Analysis (PCA) 

Principal Component Analysis (PCA) is a method 

employed to improve and differentiate specific spectral 

signatures from the background [16,23,25,26,27]. PCA is a 

statistical method involving multiple variables that choose 

uncorrelated linear combinations (eigenvector loadings) of 

variables so that each sequentially derived linear combination 

or Principal Component (PC) exhibits reduced variance 

[17,28].  

 

The number of output PCs is the same as the number of 

input spectral bands. Consequently, PCA involves a linear 

transformation implemented on strongly correlated 

multidimensional data such as multispectral images, which 

possess a comparable visual look for various bands, leading to 

data duplication (strong correlation of spectral bands) [31]. PC 

analysis can be used as a standard or selective method [31]. 

For standard analysis, all available spectral bands are utilized 

in the input for the PC computation. 
 

In selective analysis, PCA is applied to selected input 

bands. For the enhancement of hydrothermal alteration zones, 

only bands with spectral characteristics for iron and hydroxyl-

bearing minerals are used [31,32]. An examination of PCA 

eigenvector loadings can reveal which PC image contains 

more information related to the theoretical spectral signatures 

of altered minerals [28,31]. 

4. Results and Discussion  
4.1. RGB Combinations 

Single-band composite RGB images were generated to 

emphasize characteristics not clearly identified in visible 

spectral images. 

 

A true color image was created using the visible surface 

reflectance bands 4, 3, and 2 from Landsat-8 (representing red, 

green, and blue, respectively). This combination of bands 

produces a natural color representation. It facilitates an 

investigative examination of the region, enabling the 

identification of rock outcrops, vegetation, water bodies, and 

urban developments (see Figure. 3). 

 

False color images were generated via various band 

combinations. Certain combinations, such as 573 and 567, 

emphasize regions with vegetation or urban settings. In 

contrast, RGB false color combinations that include near-

infrared (band 5) and shortwave infrared (bands 6 and 7) 

signals are particularly effective for pinpointing geological 

and structural characteristics, especially hydrothermally 

altered rocks (See Figure. 4 & 5).  

 

Band combinations 573 and 567 enhance the 

differentiation of various regional features, including rock 

exposure, vegetated regions, urban areas, and structural 

lineaments. In the 573 combination (Figure. 4), vegetation is 

depicted in shades of red and dark red, whereas urban regions 

and cultivated fields are represented in light blue and light 

green.  

 

Rock outcrops appear in green, with variations ranging 

from darker shades of green to light blue. The light blue hue 

also characterizes some ploughed fields, likely because of soil 

disturbances that bring clay and iron oxide minerals to the 

surface.  

 

In this combination, areas affected by the fire are 

indicated in a vibrant green color. Conversely, the 567 

combinations (Figure. 5) present orange and dark red 

vegetation (signifying different plant life types), with urban 

areas and cultivated fields shaded from light blue to blue, 

while water bodies are marked in black.  

 

Rock exposure shows a subtle transition from light blue 

to greenish blue, although lithological distinctions are not 

readily apparent. Additionally, alteration minerals are 

characterized by their unique colors. 

 
Fig. 3 A true color image, and visible reflectance bands 4,3, and 2. This 

band combination reproduces a natural color image distinguishing rock 

exposure areas, vegetated areas, water bodies, and urbanized areas. 
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Fig. 4 The 573 RGB false color composites highlights vegetation in 

shades of red, urban areas and ploughed fields in light blue to light 

green, and rock outcrops in shades of green to light blue. The intense 

light blue color observed in rock outcrops is interpreted as alteration. 

 
Fig. 5 False color composites enhancing the different spectral signatures 

in the study area. RGB 567 false color composite highlights vegetation 

appears in shades of orange and dark red, urban areas and ploughed 

fields in light blue to blue, and rock exposed in shades of greenish-blue 

to light blue. The light blue color in rock exposure can be attributed to 

the alteration of minerals within these lithological. 

4.2. Band Ratio 

The band ratio method was additionally implemented to 

create a combination of RGB photographs enhancing 

hydrothermally altered rocks. The ratio of band 4/band 2 

became implemented in spotlight regions with plentiful iron 

oxide-bearing minerals as brighter pixels (Figure. 6). 

The ratio of band 6/band 5 discriminates ferrous minerals in a 

bright tone (Figure. 7).  

 

The ratio of band 6/band 7 distinguishes altered rocks 

containing clays and alunite at shiny pixels (Figure. 8). 

 

In accordance with the available literature, RGB 

composite images featuring band ratios were generated. One 

specific image utilizing Sabin’s ratio (4/2, 6/7, and 6/5) was 

created for the purpose of lithological mapping and identifying 

hydrothermal alteration zones (see Figure 9). A 4/2 ratio was 

used to map the iron oxides, which appeared in pink or orange.  

 

The 6/7 ratio was utilized to delineate areas with clay 

minerals, which are marked in green. However, it is also 

sensitive to moisture differences in vegetation and soil, 

highlighting plant features as well.  

 

The 6/5 ratio indicates high reflectance, suggesting the 

presence of ferrous minerals, represented in purple. The vivid, 

mild blue colors are visible in rock outcrops are interpreted as 

signs of alteration. 

 

  
Fig. 6  4/2 ratio highlights areas with plentiful iron oxide-bearing 

minerals as brighter pixels. 
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Fig. 7 The 6/5 ratio highlights ferrous minerals in a bright tone 

 

  
Fig. 8 The ratio of band 6/band 7 distinguishes altered rocks containing 

clays and alunite at shiny pixels 

Fig. 9 RGB composite images using band ratios to discriminate 

hydrothermally altered areas. Sabin’s ratio (RGB 4/2, 6/7, 6/5). 

 
4.3. Principal Component Analysis PCA 

Principal component analysis (PCA) was performed on  

Landsat-8 imagery via SCP, without any atmospheric or 

radiometric corrections since they were deemed unnecessary. 
This method was implemented in two ways: a standard 

method analysing all six bands and a selective method using 

groups of four chosen bands selected according to the spectral 

signatures of alteration minerals. 
 

 4.3.1. Standard Method 
In the standard PCA, six Landsat-8 bands (2, 3, 4, 5, 6, 

and 7) were employed, resulting in the eigenvector matrix 

detailed in Table 4.3. This analysis facilitated the PC 

identification, providing more valuable spectral information 

than the original Landsat-8 bands. The statistics of the images, 

eigenvalues, and eigenvector loadings relevant to the PCA 

using the six bands are presented in Table 2. The first Principal 

Component (PC1) accounts for 77.5% of the total variance in 

the data, reflecting the overall brightness or albedo of the 

scene. Analysis of the magnitude and signs of the eigenvector 

loadings, which are negative, reveals that this component is 

associated with minerals indicative of hydrothermal 

alterations and the spectral characteristics of vegetation. PC2 

contributes 19.6% to the data variance, which is influenced 

primarily by vegetation, as evidenced by high loading in band 

5, which is represented in dark pixels due to its negative sign; 

this band corresponds to the disparity between visible and 

Near-InfraRed (NIR) spectra. 
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Table 2. Eigenvector loadings from PCA Landsat-8 bands 2-7  
PC1 PC2 PC3 PC4 PC5 PC6 

Band 2 -0.0887 0.0151 0.1957 0.2135 -0.6287 -0.716 

Band 3 -0.1419 -0.0153 0.3437 0.2372 -0.5762 0.6879 

Band 4 -0.2982 0.0827 0.6047 0.5078 0.52 -0.1013 

Band 5 -0.1004 -0.9712 0.1573 -0.1367 0.0396 -0.0405 

Band 6 -0.7337 -0.0668 -0.5993 0.3117 -0.0119 0.0291 

Band 7 -0.5786 0.212 0.3066 -0.7242 -0.022 -0.0366 

Eigenvalues 5,977,057 1,516,343 115,340.5 79,223.71 13,737.1 1,651.552 

Accounted 

variance 

77.5903 19.6842 1.4973 1.0284 0.1783 0.0214 

Cumulative 

variance 

77.5903 97.2745 98.7718 99.8002 99.9786 100 

The loadings for PC3 account for 1.4% of the variance and 

highlight the contrast of ShortWave InfraRed (SWIR) bands in 

relation to the visible and NIR bands. The remaining three 

principal components provide insights into hydrothermal 

alterations as they pertain to the spectral responses of iron 

oxides (notably absorption in band 2 and increased reflectance 

in band 4) and minerals containing hydroxyl groups. To 

emphasize areas rich in iron oxides, principal components 

(PCs) exhibiting moderate to high eigenvector loadings for 

bands 2 and 4 that have opposite signs are selected. 

 

In PC5, iron oxide minerals appear as bright pixels, with 

band 2 showing a negative value and band 4 showing a positive 

value. Hydroxyl-bearing minerals are depicted as bright pixels 

in PC4, where the contribution from band 6 is positive, and that 

from band 7 is negative. In PC6, hematite is represented as dark 

pixels because of the negative contribution from band 4 and the 

positive contribution from band 3. Using the PCA results (as 

shown in Table 4.3), an RGB combination was created to 

identify hydrothermally altered rocks, integrating PC4, PC5, 

and PC6. 
 

In the image (Figure. 10), PC5 was adjusted and 

expanded to accentuate iron oxides through bright pixels. A 

similar process was applied to PC6. Compared with the earlier 

methods considered, the resulting image (Figure. 10) offers 

enhanced feature discrimination. Urban regions are displayed 

in pink, areas rich in iron oxide are shown in yellow and pink, 

clay-dominated zones appear in light blue, and vegetation is 

represented in brownish hues. This RGB combination also 

demonstrates strong lithological contrast at the regional level. 

 

4.3.2. Selective PCA Method 

Selective PCA was used to expand the highlight 

definition of a mineral class using the Crósta technique [32]. 

The band subsets were chosen based on the location of spectral 

signatures of alteration minerals, such as hydroxyl-bearing 

minerals and iron oxides, in the VNIR and SWIR bands. A 

subset comprising bands 2, 4, 5, and 6 were chosen and 

examined to map iron oxide-bearing minerals (Table 3), and a 

subset comprising bands 2, 5, 6, and 7 was chosen and 

examined to map hydroxyl-bearing minerals (Table 4). 

 

 
Fig. 10 RGB combination image using principal components as input 

bands (PC4, PC5, PC6). Different features are better distinguished, with 

urban areas represented in pink, iron oxide-rich zones represented in 

yellow and pink, and clay-rich areas represented in light blue 

 
The loading findings from PCA of bands 2, 4, 5, and 6 for 

iron oxide mineral enhancement are shown in Table 3. The 

eigenvalue loading matrix was interpreted similarly to the 

standard PCA. PC1 corresponds to the albedo image with 

72.35% variance data; PC2 shows the vegetated areas as darker 
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pixels with 25.8% variance (band five negative (-0.9732)); PC3 

shows the contrast of the SWIR band between the visible and 

NIR bands; and PC4 shows high positive and high negative 

eigenvector loading for band 2 (0.9577) and band 4 (−0.2878), 

respectively. 

 

From Table 4, albedo is represented by PC1 with 76.3% of 

the variance in the data; dense vegetated areas are highlighted 

as bright pixels (band 5) by PC2, with 21.6% of the variance in 

the data; hydroxyl-bearing minerals are highlighted as bright 

pixels by PC3, with 1.3% of the variance in the data; and the 

contrast between the visible/NIR and SWIR bands is described 

by PC4, with 0.23% of the variance in the data. The PC3 

picture was utilized as a hydroxyl image (Figure 12) in the 

Crósta composite, negating it to emphasize hydroxyl-bearing 

minerals in bright pixels. 

 

Similar to how hydroxyls in the SWIR bands react to them, 

vegetation in the NIR band (band 5) contributes negatively to 

this image. The selective PCA greyscale iron oxide and 

hydroxyl images in Figures 11 and 12 can be used to identify 

anomalous concentrations of each mineral subset, which are 

indicated by bright pixels. These pictures were combined to 

create an image that showed unusual levels of iron oxides and 

hydroxyl minerals (a combination of PC4 (Figure 11) and PC3 

(Figure 12)). By integrating the PC4, PC4-PC3, and PC3 

images, a Crósta composite image was produced, favourably 

enhancing the bright pixels (Figure 13).

  
Table 3. Eigenvector loadings for Principal Component Analysis of Landsat-8 bands 2, 4, 5, and 6 to map iron oxide-bearing minerals. 

 PC1 PC2 PC3 PC4 

Band 2 -0.1067 0.0415 -0.2642 0.9577 

Band 4 -0.3553 0.1702 -0.8729 -0.2878 

Band 5 -0.2052 -0.9732 -0.1032 -0.0092 

Band 6 -0.9057 0.1488 0.397 0.0021 

Eigenvalues 3934851 1402382 91946.76 8783.891 

Accounted variance 72.3589 25.7887 1.6908 0.1615 

Cumulative variance 72.3589 98.1476 99.8385 100 
 

Table 4. Eigenvector loadings for principal component analysis of Landsat-8 bands 2, 4, 5, and 6 to map hydroxyl-bearing minerals. 

 

 
Fig. 11 Selective PC4 indicates high positive and high negative 

eigenvector loading for band 2 and band 4, (bright pixels for iron oxide 

minerals). This PC4 image was referred as an iron oxide image during 

the Crósta composite processing. 
Fig. 12 Selective PC3 image highlights hydroxyl-bearing minerals in 

bright pixels, and it is used as a hydroxyl image. 

 PC1 PC2 PC3 PC4 

Band2 0.0921 -0.017 -0.0261 0.9953 

Band5 0.1147 0.9716 -0.2069 0.0006 

Band6 0.7785 0.041 0.6239 -0.055 

Band7 0.6102 -0.2324 -0.7532 -0.0803 

Eigenvalues 
5336376.4 

26 

1504943.5 

23 

93709.8 

822 

16038.3 

021 

Accounted variance 76.7706 21.6505 1.3481 0.2307 

Cumulative variance 76.7706 98.4211 99.7693 100 
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Fig. 13 Crósta composite image combining the selective PC4, PC4+PC3, 

and PC3 images. The combination of these images highlights anomalous 

concentrations of both iron oxides and hydroxyl minerals. 

The white to pale light blue alteration zones in the image 

Figure 13 are argilized and iron-stained, and they are thought 

to be more conducive to the occurrence of minerals (most 

promising locations). The light blue and blue areas are those 

that are more argilized than iron stained. The alteration type 

associated with highly iron-stained, silicified, or argilized 

rocks may be represented by intense dark or deep blue pixels 

that are connected with alteration colors. These pixels have a 

higher reflectance in band 7 than in band 6 [30]. In the 

hydroxyl pictures, this change is identified by extremely dark 

pixels that are tightly paired with light pixels, indicating 

locations that have undergone hydroxyl alteration. However, 

the intense dark blue-to-black regions do not always match 

rocks that have undergone hydrothermal alteration. 
 

4.4. Landsat-8 Structural Feature Extraction 

Integration of Digital Elevation Models (DEMs) from the 

Shuttle Radar Topography Mission (SRTM) and visual 

interpretation of the false color composites structural 

lineament extraction was accomplished. For many geospatial 

initiatives, including terrain analysis and hydrological 

modelling, Digital Elevation Models, or DEMs, are crucial. 

One of the most popular DEM datasets is provided by the 

Shuttle Radar Topography Mission (SRTM). 
 

After eliminating artificial lineaments, vegetation  
alignments, and other surface features, lineaments are 

recognized by physiographic traits found as a result of sudden 

discontinuities in image brightness and tone changes in 

satellite data (Figure. 14).  

Fig. 14 Structural feature lineaments 

 

4.5. Landsat-8 Data Validation and Field Observation 

The outcomes of the Landsat-8 remote sensing image 

processing were verified by consulting and analysing the pre-

existing exploration data and field observations.  

 

The remote sensing results were validated via information 

from geochemical soil sampling conducted by the SOTB 

mining company. To connect with the results of image 

processing, the previously collected data of the mineralized 

zones were projected on a map (Figure. 15). 
 

Fieldwork was undertaken to verify the mineralized zones 

identified by remote sensing. Field geological mapping gave 

immediate proof of mineralization in the form of sulfide-

bearing rocks and iron oxide minerals. In recently exposed 

outcrops, unmistakable sulfide minerals were found in the 

material sampled. The sulfides often showed weathering 

characteristics, including solution cavities formed by the 

oxidation and leaching of sulfide minerals (figure. 16). 

 

4.4. Discussion 

The integration of several analytical methods, such as band 

ratio techniques, Principal Component Analysis (PCA), and 

false color composites, greatly improves discrimination 

between various lithological units and alteration zones. The 

study adequately shows how different Red-Green-Blue (RGB) 

spectral band combinations can reveal different landscape 

features, including vegetation cover, urban growth, and 

hydrothermally altered rocks with mineralization. One of the 

techniques applied in this research is the creation of true-color 

and false-color composite images. These combinations 
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emphasize significant geological structures and mineralized 

zones by delineating spectral contrast between rock 

compositions.  

 

Band ratios highlight specific spectral signatures and 

attenuate background interference, thereby being especially 

suitable for mineral identification. The 4/2 band ratio is 

commonly used for iron oxide minerals, which are prominent 

indicators of hydrothermal alteration and gold mineralization 

potential. The 4/2 band ratios are effective in delineating zones 

with high iron oxide content, which correspond to mineralized 

horizons. Similarly, 6/5 and 6/7 band ratios are being used 

efficiently in detecting zones of abundant ferrous minerals and 

clay minerals, such as alunite, which are related to 

hydrothermal alteration. These ratios provide important 

insights into the spatial distribution of the altered rock units, 

informing us about the region's geological evolution and 

mineralization history. Identifying hydrothermally altered 

zones could be effectively used to locate areas of gold 

mineralisation. 

 

 
Fig. 15 Pre-existing data plotted on a map to correlate with the findings 

from image processing 

 

Principal Component Analysis (PCA) is a sophisticated 

method used to extract useful information from Landsat-8 

imagery by removing redundancy and accentuating the key 

spectral variations. PCA identifies principal components that 

account for the variance in the data when multiple bands are 

considered together; thus, it is a very effective tool in 

geological structure separation. PCA accentuates 

hydrothermally altered minerals in particular, which are a key 

indicator of mineralization potential. Furthermore, the 

selective PCA technique enhances the analysis by targeting 

specific subsets of bands that highlight specific mineral 

classes. This focused approach enables enhanced 

identification of iron oxide and hydroxyl-bearing minerals, 

which is vital in determining the gold mineralization potential. 

The outcome indicates that Principal Component Analysis 

(PCA) significantly enhances the discrimination of geological 

features, thus being an effective tool for geospatial analysis. 

With the splitting of useful spectral data from multispectral 

data sets, PCA promotes remote sensing efficacy for mineral 

exploration. Merging satellite-derived data with ground-based 

geological surveys lends credence to the outcomes. The 

comparison of processed Landsat-8 imagery with existing 

geochemical soil sampling data provides compelling evidence 

of the reliability of the remote sensing methods used in 

detecting these mineralized zones. Field observations 

confirmed the presence of sulfide minerals in the outcrops of 

fresh rocks, which further reinforced the presence of 

hydrothermally altered mineralised zones (Figure. 16). 
 

 
Fig. 16 Sulfide minerals in the outcrops of fresh rocks, which reinforced 

the identification of mineralized and hydrothermally altered zones 

5. Conclusion  
Geological mapping of gold potential areas in the 

Butihinda-Muyinga region was achieved by using several 

satellite imaging processing techniques to localise iron oxide 

and hydroxyl-bearing minerals associated with gold via 

Landsat-8 image treatment. Using RGB combinations, band 

ratios, and PCA algorithms, hydrothermal alteration minerals 

were mapped to the spectral bands of Landsat-8 on the basis 

of the spectrum absorption properties of iron oxides and 

hydroxyl-bearing minerals. Certain RGB combinations, such 

as 573 and 567, were able to enhance the modification of rock 
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outcrops and discern various characteristics. However, this 

method of imagery analysis is the most difficult to understand 

since it is highly susceptible to noise, and it is difficult to 

distinguish signals from various mineral compositions. The 

best results for this strategy can be found in less vegetated 

areas and in distant locations free from urban signal pollution. 

Band ratios were used to improve the spectral features and 

remove topographic impacts and noise. Iron oxides were 

highlighted via the band ratio combination of 4/2, whereas 

ferrous minerals were mapped via the band ratio 6/5. Regio 

nal lithological interpretation was aided by both band ratios. 

A band ratio of 6/7 was utilized to map minerals that contain 

hydroxyl groups. The findings indicate a concentration of clay 

minerals along drainage and water lines, which can be linked 

to structural features such as faults. 

 

The band ratio method was found to be more effective 

than single band RGB combinations in mapping 

hydrothermally altered rocks, but it also has several 

limitations. PCA methods were found to be the most reliable 

and effective in identifying iron oxides and hydroxyl-bearing 

minerals. Both standard and selective PCA outputs showed the 

ability to effectively discriminate different features and 

highlight areas that may have undergone hydrothermal 

alteration. Selective PCA is even more effective in 

distinguishing between hydroxyl-bearing minerals and iron 

oxides in defining unique PCs for particular mineral subsets. 

Lineaments were recovered by applying the SRTM elevation 

model and visual interpretation of remote sensing data. Faults 

and joints are interesting geological lineaments because they 

can act as channels for fluids that mineralize. Lineaments can 

be identified via multispectral imaging analysis to characterize 

the textural properties of structures. 

 

The NNE-SSW structures around hydrothermally altered 

rocks possibly served as conduits for mineralising fluid for 

gold deposition.  

 

To more specifically designate the areas of interest, 

masking any noise sources, drone imaging, and lineament 

extraction using computational techniques could be used to 

refine the data obtained. 
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