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Abstract - Continuous industrial manufacturing processes
are generally controlled by a set of continuous control
variables. The process usually produces a steady flow of
output material, such as cement, food, milk, chemicals, and
sugar or electrical power in a power plant. Control
variables may be electrical or fossil power, cooling or
heating, lubrication, pressure, etc. The process responds
with a given flow of output measured in tons per day or
power expressed in Megawatt. Dividing the input power
response yields a variable proportional to the degree of
efficiency of the process, which is a very important
parameter in most cases. To understand, analyze or predict
the process, in a first step, we will approximate the
empirical response values by a smooth function, mapping
the space of controls onto the interval [0,100%], using
Machine Learning Techniques and Multivariate Statistics
such as Tensor Flow or Generalized Linear Models (GLMSs),
respectively.  Both  approaches  provide  suitable
approximation measures. In a second step, the process will
be optimized within a given set of constraints concerning the
control variables. This step will be illustrated by GLMs only
due to their lack of overfitting and their continuous
differentiability properties. This way, optimal set points, and
sensitivity coefficients will be given.

Keywords — Machine Learning, Tensor Flow, Generalized
Linear Models, Nonlinear Optimization, Sensitivity
Coefficients

I. INTRODUCTION

Industrial processes, from the data processing point of
view, are usually captured as a sequence of records along an
equidistant time grid. Each record consists of a timestamp, a
set of discrete switch variables, a set of control variables, and
finally, a set of response variables. In this paper, we will look
for continuous, preferably continuously differentiable
functions, which will map, for each combination of switches,
the space of controls to the set of responses. Whereas linear
function fitting calls for univariate or multivariate linear
regression, the multidimensional nonlinear case is what we
consider here, using Machine Learning or Multivariate
Statistics such as Tensor Flow or Response Surface
Methodology, respectively, see [9] and [15].

HSE)

In the context of Experimental Design, Process Analysis,
Optimal Process Planning, etc., process optimization has
been an ongoing endeavor in the manufacturing world for
many years and from several points of view. For instance, in
the context of Experimental Design, Response Surface
Methodology has been widely applied in search of new
operating points, see [14]. Quality assurance has brought
about Statistical Process Control (SPC), mostly focusing on
one-dimensional processes, see [10] or [13]. Process
optimization has also been influenced by the emergence of
Local Search Techniques such a Genetic Algorithms, see [4].
All of these efforts, however, have been struggling with
either high dimensions or non-linearity or both. The current
paper shows that multidimensional industrial processes can
be both approximated and optimized efficiently. We show
that there is a logical path from raw data to optimal set points
and sensitivity coefficients using data analysis and
mathematics. In the future, environmental and sustainability
requirements will increasingly dictate industrial process
optimization measures. It is shown that the slope of the linear
part and the eigenvalues of the quadratic form in the response
function provide a sufficient criterion for the suitability of a
given rectangle when it comes to estimating sensitivity
coefficients. We also show that the estimators of the
sensitivity coefficients can be used to formulate a linear
optimization problem on the control variables under cost
constraints. Whereas this paper focuses on one response
variable at a time, an approximation can be done on several
variables simultaneously, such as efficiency, emissions,
vibration, etc. Optimization, however, in this case, needs a
multiple-criteria decision-making framework such as Pareto
optimization, which is not considered here.

Il. INPUT DATA

Let T :={t;,..ty} be a set of time indices. Consider a
particular time t € T. Let n, be a number of binary switch
variables and z,; € {0,1} for all i € {1, ..., n,}. Furthermore,
let n. be a number of continuous, independent control
variables of the process under consideration and let x,; €
R,i €1,..,n.} be the corresponding variables. Finally, let
m
be a number of response variables and let y,; € R,i €
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{1, ..., m} be the corresponding values. Set, forall t € T

) 2z = (251 €{1,...,1p})
%)) xe = (x50 €41,...,n.})
(3) Ve = el €1{1,..,m})

The input data consist of a sequence of tuples

4 {zo,x, yeh t€T

And take the form of a table. With these data as input, we
can focus on the task of finding a function f:[0,1]™» x
R™ — R™ such that

() Ve = f(zZe, %) + €

whereby e, is an m-dimensional random variable with

<012 0)
0o - Ufn
for some given variances ¢?,..,02% and for all t€T.
Finding the function f is the objective of the regression step.

For the rest of the paper - for the sake of simplicity- we will
assume

®) Ele]=0

) Varle,]

(8) m=1

i.e.,, only one response variable will be considered, as
mentioned.  Furthermore, we assume that z,t €T is
constant throughout T and equal to one dominating
combination of switch variables z € {0,1}» Only
representing a full load situation, for example. The argument
z in f(z,x) will therefore be suppressed from now on, and
we set n == n,.

I1l. REGRESSION
There are various approaches to finding f. One method
uses a Generalized Linear Model (GLM), see [5], another
one a Machine Learning approach, such as a Deep Neural
Network, see [1], [6], [15]. Before looking at the details of
the regression step, we fix a rectilinear region of the input
data. Therefore let

A= {x e R"}
L <x;<uy,.

©)

(10) <x

Sx,Su

-lln = Un

whereby [; and u;, i € {1, ...,n} are lower and upper bounds
of the continuous control variables. Figure 1 shows a typical
response surface in the case of two control variables:
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Figure 1: Typical response surface

A. Generalized Linear Models
Henceforth we assume

(12) f(x) =a-+ Z?=1 bl'xl' + 2?212?:1 Cij xl‘x]'

The Generalized Linear Model paradigm becomes obvious
when we introduce the following substitutions:

fl =n+n?

g(i)=li_TnJ,n+15iSﬁ

(12)

(13)

1 h(@=>{—-n)modn, n+1<i<
With
_ x,1<i<n
(15) V= {xg(i)xh(i),n +1<i<qn
16) ay=a

b,1<i<n

(7 @ = {Cg(l‘)’h(l‘),n +1<i<q

one obtains
18) f(v) =g+ XL, a;v;

Now, the usual way to determine the parameter vector a :=
= (ag, ... ;)" seeks to minimize the sum of squares of the
deviations between predicted and observed y —values.
Therefore, we define the |T| x (1 + n)- matrix H as

1 p® ,® N
’v1 T2 fl
(199 H=

1, w00 50T B0

With upper indices counting records and lower indices
counting variables. Let § == (¥, ...9r)" be the vector of
observed values. We then want to find that particular value
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a*, which solves the following minimization problem:

@) (Ha"—3)'(Ha" - 9)
= MinaeRn+1(Ha - y)T(HCZ - ﬁ)

Expanding, differentiating with respect to «a, setting the
result equal to zero and solving for a* yields

(1) a*=(HTH)"'9TH
provided (HT H) is non-singular, see [3]. Abbreviating

@) Vi) = pns
) 1<i<nl<j<n

and dropping the asterisk, we can express the expected
value of our response variable as

@4) f(x) = ag+ Xy ax; + Xioq Xleq Via XXy

upon replacing v;,i € {1, ..., ) by their definitions.

B. Neural Networks

The most prominent functional approximation technique
in use today is the so-called Deep Neural Network. Google’s
famous Tensor Flow package, as described in [1], is a very
convenient platform for the Deep Learning Technique. It can
be used both for classification as well as for regression
purposes. In the examples, we will show the extremely
precise approximation capability of this technique, which is
used in applications as diverse as time series forecasting and
image recognition.

However, to the knowledge of the authors, there is no
fast, functional differentiation routine of a Deep Neural
Network with respect to the input pattern. Therefore, in the
example shown below, we will use Deep Neural Networks
for the sole purpose of illustrating its approximation
capabilities and then proceed with the Generalized Linear
Model.

IV. NONLINEAR OPTIMIZATION
Now assume that we would like to find the maximum of
f(x) within aregion A € R", i.e.
@5  x":f(x7) = maxyeaf (x)

We must discriminate between two different cases:
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A. Continuous Differentiability

As a prototype for this case, we assume that f(x) is
represented by a Generalized Linear Model. Defining vector
a and matrix I" as

@6) a:= (ag,...,an)7"
Y11 Yin

en '=[ : :
Ynn

Yn1
we can express f(x) as
@) f(x)=ag+aTx+x"Tx

The first attempt to find x* requires finding the gradient of
f(x), setting it equal to zero and solving the resulting system
of equations, i.e.

@9 VIQ)|y=x= a+2I'x=0

B0) x* = —%F‘la

Now, if x* € A, we are done. This can be proven by
applying the set of inequalities (10) to x*. If however
x* & A, then either one of the following may be the
case:

x* is on one of the faces of A
x™ is on one of the edges of A

*

x* is in one of the corners of A

B. Local Search Procedures

In each of the cases above, there is no easy way to
find x* With methods using derivatives. In this case,
we must resort to derivative-free minimization or
maximization problems, such as Genetic Algorithms,
see [4] or the Simulated Annealing Local Search
Technique, see [8]. Local Search tries to find the
optimum in a sequence of approximations x* to x*.
Whereas Local Search can be very effective in the case
of discontinuous or non-differentiable response
functions, it tends to converge slowly. Therefore, in this
paper, we revert to Generalized Linear Models and
gradient descent.
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V. SENSITIVITY COEFFICIENTS
In many cases, it is of interest to study the impact of
each of the regressors on the response variable. One
possible way to measure this effect is by means of the
average partial derivative of the response with respect
to the regressor in question, whereby averaging is done
over the region of interest A. Let

9f (x)
erA ax;

@Y Pia=
It is obvious that the averaging step as applied above
can destroy meaningful information when the variance

of % Across A is large. It is reasonable, therefore,
4

to concentrate on small enough regions A. Therefore,

we formulate the following lemma:

Lemma 1: Let f(x)be Lipschitz continuous with
Lipschitz constant L. Then, for any x; € 4, x, € A we
have

32 If(x) — fle)| < Llx; — x|

Proof: The proof is straightforward by the definition of
Lipschitz continuity. On a detailed account of Lipschitz
continuity and its use in the calculus of variations, see,
for instance [2].

Corollary 1: Since lemma 1 holds for the two special
variables

@) L=y, .., )"
@Ga) ur= (Uq,...,uy)7"

one obtains for any Lipschitz continuous function f(x)
for the maximum variation of f(x) across A - termed
V(f)4 for the time being —

@) V(fa<Llu—I

Lemma 2: Let I' be asymmetric, positive definite
matrix and let p;,A;,i € {1,...,n} be the eigenvectors
and eigenvalues of matrix I, respectively. If f(x) can
be expressed as our quadratic regression function, the
difference between the response values for two
arbitrary regressor values w € A and v € A takes the
following form:

@) f(w) —f(w) =a"(w—v) +

17

+ X A (wp)? — (v pi)?
Proof: Express both w and v in terms of the
eigenvectors of I, ie, w=XY" (wi'p)p; and v =

1(wp)p; . Then
@n f(w) —ao +aTw +

n

+ZZ(W PP T W'pj)p; =

i=1j=1

=aot+a’w+ ZPi(WTPi)Z
i=1

And analogously for f(v).

Corollary 2:

38 V(fla = maxyeapealfW) = f()| <

< maxyeapeaflallw —v|
n

£ AP = @Tp)?)
i=1

Proof: Using the above lemma on both f(w) and f(v)
we have foranyw € A andv € A

39 fw)—f()=a"(u-v)+
+ 2 4 (W) (vTpy)?)

Taking the maximum with respect to w and v proves the
statement. Assuming that the maximum is obtained for w =
u and v = [, we can say that

40 V(fla=a"(w—1+2L (@ p)* - A"p)?)
This corollary provides a sufficient criterion for the
suitability of region A, when it comes to estimating the
sensitivity coefficients by averaging over this region. That
means that if — within the largest distance possible inside A —
variation V(f)4 is small enough, then A is appropriate. From
a practical point of view, it might be important to rank p; 4,
with respect to size for a very simple reason: If maximizing
f(x) is the goal dictated by business, then it would be
plausible to increase — within technical limits — those
regressors with either maximum sensitivity and/or minimal
cost.

Assume that changing the value of x; by an amount of
Ax; amounts to c¢; * Ax; cost units. The overall cost arising
from changing regressor i,i € {1,...,n} by an amount Ax; is
then given as
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(41) Ac(Ax) =X ¢ Ax;

defining the vector of changes as Ax := {Ax,, ..., Ax,). The
approximate amount by which the response variable changes
is

“2) Af(Ax) = XiLipialx;

An interesting linear program is then given by

43) Maxpyern Af (Ax) = 2i_qpiadx;

such that

(44) Ac(Ax) =Xl cAx; < ¢

for some ¢, and
45) Axt<x; <Ax¥i€{l,...,n}
Are lower and upper limits for the possible changes.

VI. EXAMPLES

Here we look at two examples. Example 1 illustrates the
precise approximation capabilities of the Tensor Flow Deep
Learning Technique. Example 2 uses gas turbine data and
illustrates — in addition — the optimization and the sensitivity
analysis step. Hereby we replace efficiency with power,
which, when applied in combination with a given set of
control variables, will be almost equivalent to efficiency
when the region of interest is small. In this case, there will
be no wide change in the fuel flow, meaning that power is
nearly proportional to efficiency.

A. Crusher Data in a Cement Plant

A crusher in a cement plant will take large chunks of raw
material and grind them into smaller, pebble-like structures.
Table 1 shows a section of the training input data, consisting
of 32000 records:

TABLE 1: CEMENT DATA

main shaft position

[main drive power consumption oil flow - lubrication outside {pressure - main shaft {speed pinion shaft _:temperature - oil return line

0.518979088193857 0.91014158827904 10.468144025294824. 0.993775085519781 |0.903030164314039 10.647789362410654.
0.518841685184021 0. 0.459833797154332 0.992896126100275 |0.899393856164181 10.586852135196408
0.518566879164347. 0.91. 0.671745136483904 0. 404 {0 0.4593061 219

0.518841685184021
0.518738632926643
0.518566879164347.
0.519116491203694
0.518979088193857
0.519082140451235.
0.519253894213531
0.518738632026643

0.913319863431265 10.440443194379662
0.913271712200454 {0.61288001041554
0.912934609496972 |0.426592805339652
0.911586257466784 10.351800567152227
0.912164116324321 {0.451523542596269
0.910141569909121 10.460526320568968
0.909563714725568 10.371191117091756
0.908937697280253 |0.373961223959086
0.911586257466784 |0.418282550781589
0.912645687416171 0.418282524364018
0.91230859573464 _0.425000281925015
0.911201032024361 10.41274238988207

0.992815863742966 10.890909137147846 {0.431114425618463
0.992374387095259 |0.887878764759411 {0.531027485073757
0.991170344564008 |0.884848392370975 {0.653419436126978
0.992936263403022 |0.881212084221117 {0.46766849519043
0.99257505217467__|0.878787878787879 |0.471808250259705
0.994682144211124 |0.878787878787879 {0.368541978586125
0.994019897088078 |0.878787878787879 10.27475575230637
0.990066645289625 |0.878787878787879 {0.160570873834513
0.991772355112472 10.878787878787879 10.204171219025 767
0.991049920407583 |0.878767878787879 10.451730413380404
0.9931 0. 183653 |0.184115748754324
0.992735601385657 10.886060541326349 {0.224167908027731

518841685184021
0.518728632026643
0.518979088193857

Please note that this example was computed with variables
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normalized to values between 0 and 1. The validation file
will consist of 8000 corresponding records. The main
purpose of this section is the application of the Tensor Flow
Deep Learning Technique as a means to approximate the
main drive power consumption response variable.
Representing the response as a function of the remaining
variables, we obtain the graph shown in figure 2:

EEE—

Relative Value

e

Figure 2: Main drive power observed vs. approximated-
Training Data

When applying the Deep Learning approximation
technique to the validation data, we obtain figure 3:

Main drive power consumption observed and approximated - Validation data

Relative Value

Figure 3. Main drive power observed vs. approximated -
Validation Data

These figures show that Tensor Flow can cope very well
with virtually discontinuous steps in the data. However, due
to its tendency to overfit and since there is no convenient
analytical derivative routine available, only the Generalized
Linear Model is being used to do process optimization in a
second step.

B. Gas Turbine Data

As another example, we look at the data of a gas turbine. We
have a dataset of 1533 records; see table 2. The file will be
split into a file with 1226 training records, used to do the
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nonlinear regression step and 317 validation records. The
dataset contains a timestamp, 12 control variables, and
power as the response variable.

TABLE 2: GAS TURBINE DATA

[fime c1 €2 iCs ca ics Co POWER iC7 C 10 cii i1
%08

ich 9
2

0501300 TG, 3182078 00TIIT]_1GSISIIS_S600H08, 3630590271 _ 015829 3009867 s 1090315
05012010 1116, 54372709, 001ISTIRT] 10061415, SS9RS7S| S8 I AN, K005 15534 11003570
Y 100819 355097 SM01T58 | LT 3850125 30145038 720215, 11000904

I006iAls 8000300 3178 | 3L1IIT 389 3005270 e aamezr 0, odesa] 11012201

loetets sssears 3moeise] L3 dases] 30024008 7591} 2270627 0025392 11009529

05012010 1200]53,570951] 0.01399900]  I0.7m06 85 oeams | amraial aiassisl sas7eins| ssesser | Ss7.iaeoe] 2amoszee 0 7os03e1] 110300657
12012010 150 5357055 00sny7e| Ingaoess Ssdessss] 3e633628] 26278 9sdos3s| 3,190 75| sssoamel] | 2 0ssmouss| 0s,asse
120101055 S5mse ogumna  topaney  ssosssal sesmeresl amasie i 2emsos 5| ssesoml asiassa o7e7eass) iion i
120120101555, $3,1807 0027 03812 s seisas] 36 res] aedsass sl omse ssaoseslzeseen o, 1o
140120101843 527888 004 1053625, 853645A1 SRISTE] 3065678 : 2255108 0758AT 105202173
16012010 1548, 51991922 0018037 1038816 S50A] 36331581 36247 2037508 07086708 1102129
140120101857, 52.389307 ORISA, 10001085 85501834 303,15308] | 3058588 y 2sea] 2092778, foos57] 11000189
10012010197 527518 00T 1061833 85975653 369s0671] 30720785 s misi | 256376l 682m6iea Ssaiisns] 22a7ises 07629914] 1105207
1e01200 192653182009, 00isen] 105927 msseiaaal emosiral | 0seses ss v 2sransiy sessarr | ssezses] aameses07se7eoll 11ess0ss)
1012010 1526] 5230851 00uiser] Inseisy Ssoesnl  denouer  osesss 3635|2084 60088 35836253 227062m 0 76i0614a] 10793553

Regression using Neural Networks: Applying Tensor
Flow to the input data and modeling gas turbine power
as a function of the control variables shows the results
as given in figures 4 and 5:

Gas turbine power ohserved and approximated - Training data

Relative Value

Time Index

Figure 4: Tensor Flow approximation of the power signal
on the training Data

Gas turbine data observed and approximated - Validation data

VA

Relative Value

Figure 5: Tensor Flow approximation of the power signal
on the validation data

These figures show that Neural Networks have a tendency to
overfit the training data. As a consequence, the goodness of
approximation is less good on the validation data than on the
training data. Applying the GLM model to the training data

and the validation data results in figures 6 and 7:

Gas turbine power observed and approximated - Training data

Absolute Value

Time Index

—Pow

Figure 6: GLM approximation of the power signal on the
training Data

Gas turbine power observed an approximated - Validation data

Absolute Value

Figure 7: GLM approximation of the power signal on the
validation data

Optimization: For the rest of this paper, we will use the
GLM method exclusively, the reason being that we will
make extensive use of the gradient of the response function,
which is very convenient to compute for GLM and less easy
for Neural Networks. When it comes to optimizing the
response variable in a given domain A, we must specify the
latter. One simple way to do this is to give lower and upper
limits for the individual regression variables, as shown in
table 3:

TABLE 3: SPECIFYING THE FEASIBLE REGION

Control Lower bound Upper bund

C2 0.00815 0.01669

C3 10.4632 11.1656

C6 22.8760 33.7115

Cr7 2.75611 3.16896

C8 62.9648 71.8008
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Table 4 shows the optimization results, i.e., the values for
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the regressors which will achieve maximum power.

TABLE 4: OPTIMIZATION RESULTS

Contro | Lower Upper | Empirical | Theoretical | Empirical
| bound bound | Max. Max. Max. abs.
relative relative

C2 0.00815 |0.0167 | 0.3634 0.150 0.0112
C3 10.4632 ]11.1656 | 0.6074 0.95 10.8898
C 6 22.8760 33.7115| 0.4391 0.80 27.6339
C7 2.7561 3.1690 | 0.9185 0.60 3.13453
C_8 62.9648 71.8008| 0.9359 0.75 71.2344
Power | 37.0313 41.1406| 0.8251 0.9999 40.4219

Sensitivity Coefficients: If we want to know by how much
the response variable changes when we change the
regressors by 10%, we will again be asked for the region in
which this analysis should take place, see table 3:

TABLE 5: SENSITIVITY COEFFICIENTS -ACTIVE

REGION
Control Lower bound Upper bound
C2 0.0082 0.0167
C3 10.4632 11.1656
C 6 22.8760 33.7115
C7 2.7561 3.1690
C8 62.9648 71.8008

Results are shown in Table 6:
TABLE 6: SENSITIVITY COEFFICIENTS

Control | Relative Absolute Abs. Change for 10%
Sensitivity | Sensitivity change in control

C2 -0.0996 -47.8959 -0.0409

C3 0.3966 2.3201 0.1630

C_ 6 0.1511 0.0573 0.0621

C7 0.1226 1.2199 0.0504

C.8 0.8696 0.4044 0.3573

VII. Conclusions

On the path to finding optimal set points in a
controlled industrial process with regard to power in a
constrained operating region, two necessary steps were
established: Approximating the process by a smooth
response surface and finding an optimal point within
the constraints and on the response surface. The
approximation step requires tools from Machine
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Learning or Multivariate Statistics such as Tensor Flow
or Generalized Linear Models, respectively. Two
examples have been studied. The first example simply
served to illustrate the extreme goodness of fit for
Tensor Flow, even in the presence of steep steps in the
response. The second example showed that Tensor
Flow, on the data considered, tends to overfit.
Therefore — and due to the fact that Tensor Flow, in
contrast to a Generalized Linear Model — has no
straightforward derivative computation interface — we
proceeded with Generalized Linear Models, which
approximate well and can be used to do nonlinear
optimization and to compute sensitivity coefficients.
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