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Abstract - Continuous industrial manufacturing processes 
are generally controlled by a set of continuous control 

variables. The process usually produces a steady flow of 

output material, such as cement, food, milk, chemicals, and 

sugar or electrical power in a power plant. Control 

variables may be electrical or fossil power, cooling or 

heating, lubrication, pressure, etc.  The process responds 

with a given flow of output measured in tons per day or 

power expressed in Megawatt. Dividing the input power 

response yields a variable proportional to the degree of 

efficiency of the process, which is a very important 

parameter in most cases. To understand, analyze or predict 
the process, in a first step, we will approximate the 

empirical response values by a smooth function, mapping 

the space of controls onto the interval [0,100%], using 

Machine Learning Techniques and Multivariate Statistics 

such as Tensor Flow or Generalized Linear Models (GLMs), 

respectively. Both approaches provide suitable 

approximation measures. In a second step, the process will 

be optimized within a given set of constraints concerning the 

control variables. This step will be illustrated by GLMs only 

due to their lack of overfitting and their continuous 

differentiability properties. This way, optimal set points, and 

sensitivity coefficients will be given. 

Keywords — Machine Learning, Tensor Flow, Generalized 

Linear Models, Nonlinear Optimization, Sensitivity 

Coefficients 

 

I. INTRODUCTION 
 Industrial processes, from the data processing point of 
view, are usually captured as a sequence of records along an 

equidistant time grid. Each record consists of a timestamp, a 

set of discrete switch variables, a set of control variables, and 

finally, a set of response variables. In this paper, we will look 

for continuous, preferably continuously differentiable 

functions, which will map, for each combination of switches, 

the space of controls to the set of responses. Whereas linear 

function fitting calls for univariate or multivariate linear 

regression, the multidimensional nonlinear case is what we 

consider here, using Machine Learning or Multivariate 

Statistics such as Tensor Flow or Response Surface 

Methodology, respectively, see [9] and [15]. 

In the context of Experimental Design, Process Analysis, 

Optimal Process Planning, etc., process optimization has 

been an ongoing endeavor in the manufacturing world for 

many years and from several points of view. For instance, in 
the context of Experimental Design, Response Surface 

Methodology has been widely applied in search of new 

operating points, see [14]. Quality assurance has brought 

about Statistical Process Control (SPC), mostly focusing on 

one-dimensional processes, see [10] or [13]. Process 

optimization has also been influenced by the emergence of 

Local Search Techniques such a Genetic Algorithms, see [4]. 

All of these efforts, however, have been struggling with 

either high dimensions or non-linearity or both. The current 

paper shows that multidimensional industrial processes can 

be both approximated and optimized efficiently. We show 

that there is a logical path from raw data to optimal set points 
and sensitivity coefficients using data analysis and 

mathematics. In the future, environmental and sustainability 

requirements will increasingly dictate industrial process 

optimization measures. It is shown that the slope of the linear 

part and the eigenvalues of the quadratic form in the response 

function provide a sufficient criterion for the suitability of a 

given rectangle when it comes to estimating sensitivity 

coefficients. We also show that the estimators of the 

sensitivity coefficients can be used to formulate a linear 

optimization problem on the control variables under cost 

constraints. Whereas this paper focuses on one response 
variable at a time, an approximation can be done on several 

variables simultaneously, such as efficiency, emissions, 

vibration, etc. Optimization, however, in this case, needs a 

multiple-criteria decision-making framework such as Pareto 

optimization, which is not considered here.  

II. INPUT DATA 

Let  𝑇 ≔ {𝑡1, … 𝑡𝑁} be a set of time indices. Consider a 

particular time 𝑡 ∈ 𝑇. Let 𝑛𝑏 be a number of binary switch 

variables and 𝑧𝑡,𝑖 ∈ {0,1} for all 𝑖 ∈ {1, … , 𝑛𝑏}. Furthermore, 

let 𝑛𝑐 be a number of continuous, independent control 

variables of the process under consideration and let 𝑥𝑡,𝑖 ∈
ℝ, 𝑖 ∈ 1, … , 𝑛𝑐} be the corresponding variables. Finally, let 

𝑚 

be a number of response variables and let 𝑦𝑡,𝑖 ∈ ℝ, 𝑖 ∈
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{1, … , 𝑚} be the corresponding values. Set, for all 𝑡 ∈ 𝑇 

 

(1) 𝑧𝑡 ≔ (𝑧𝑡,𝑖 , 𝑖 ∈ {1, … , 𝑛𝑏}) 

(2) 𝑥𝑡 ≔ (𝑥𝑡,𝑖 , 𝑖 ∈ {1, … , 𝑛𝑐}) 

(3) 𝑦𝑡 ≔ (𝑦𝑡,𝑖 , 𝑖 ∈ {1, … , 𝑚}) 

 

The input data consist of a sequence of tuples 

 

(4) {𝑧𝑡 , 𝑥𝑡 , 𝑦𝑡}, 𝑡 ∈ 𝑇 
  

And take the form of a table. With these data as input, we 

can focus on the task of finding a function 𝑓: [0,1]𝑛𝑏 ×
ℝ𝑛𝑐 → ℝ𝑚 such that  

 

(5) 𝑦𝑡 = 𝑓(𝑧𝑡 , 𝑥𝑡) + 𝜖𝑡 

 

whereby 𝜖𝑡 is an 𝑚-dimensional random variable with 
 

(6) 𝐸[𝜖𝑡] = 0 

(7) 𝑉𝑎𝑟[𝜖𝑡] =  (
𝜎1

2 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜎𝑚

2
) 

 

for some given variances 𝜎1
2, … , 𝜎𝑚

2  and for all 𝑡 ∈ 𝑇. 

Finding the function 𝑓 is the objective of the regression step. 

For the rest of the paper - for the sake of simplicity- we will 

assume  

 

(8) 𝑚 = 1 
 
i.e., only one response variable will be considered, as 

mentioned.  Furthermore, we assume that 𝑧𝑡 , 𝑡 ∈ 𝑇 is 

constant throughout 𝑇 and equal to one dominating 

combination of switch variables 𝑧 ∈ {0,1}𝑛𝑏 Only 

representing a full load situation, for example. The argument 

𝑧 in 𝑓(𝑧, 𝑥) will therefore be suppressed from now on, and 

we set 𝑛 ≔ 𝑛𝑐 .  

III. REGRESSION 

There are various approaches to finding 𝑓. One method 
uses a Generalized Linear Model (GLM), see [5], another 

one a Machine Learning approach, such as a Deep Neural 

Network, see [1], [6], [15]. Before looking at the details of 

the regression step, we fix a rectilinear region of the input 

data. Therefore let 

 

(9) 𝐴 ≔ {𝑥 ∈ ℝ𝑛} 
(10) 𝑙1 ≤ 𝑥1 ≤ 𝑢1, …, 𝑙𝑛 ≤ 𝑥𝑛 ≤ 𝑢𝑛 

 

whereby 𝑙𝑖 and 𝑢𝑖 , 𝑖 ∈ {1, … , 𝑛} are lower and upper bounds 

of the continuous control variables. Figure 1 shows a typical 
response surface in the case of two control variables: 

 

 

 
Figure 1: Typical response surface 

A. Generalized Linear Models 
Henceforth we assume 

 

(11) 𝑓(𝑥) = 𝑎 + ∑ 𝑏𝑖𝑥𝑖
𝑛
𝑖=1 + ∑ ∑ 𝑐𝑖𝑗

𝑛
𝑗=1

𝑛
𝑖=1 𝑥𝑖𝑥𝑗  

 

The Generalized Linear Model paradigm becomes obvious 

when we introduce the following substitutions: 

 

(12) �̃� = 𝑛 + 𝑛² 

(13) 𝑔(𝑖) = ⌊
𝑖−𝑛

𝑛
⌋ , 𝑛 + 1 ≤ 𝑖 ≤ �̃� 

(14) ℎ(𝑖) = (𝑖 − 𝑛) 𝑚𝑜𝑑 𝑛, 𝑛 + 1 ≤ 𝑖 ≤ �̃�  

 

With  

(15) 𝑣𝑖 ≔  {
𝑥𝑖 , 1 ≤ 𝑖 ≤ 𝑛

𝑥𝑔(𝑖)𝑥ℎ(𝑖), 𝑛 + 1 ≤ 𝑖 ≤ �̃� 

 

(16) 𝛼0 = 𝑎 

(17) 𝛼𝑖 = {
𝑏𝑖 , 1 ≤ 𝑖 ≤ 𝑛

𝑐𝑔(𝑖),ℎ(𝑖), 𝑛 + 1 ≤ 𝑖 ≤ �̃� 

 

one obtains 

 

(18) 𝑓(𝑣) = 𝛼0 + ∑ 𝛼𝑖𝑣𝑖
�̃�
𝑖=1  

 

Now, the usual way to determine the parameter vector 𝛼 ≔
= (𝛼0, … 𝛼�̃�)𝑇 seeks to minimize the sum of squares of the 

deviations between predicted and observed 𝑦 −values. 

Therefore, we define the |𝑇| × (1 + 𝑛)- matrix 𝐻 as 

 

(19) 𝐻 = [
1, 𝑣1

(1)
, 𝑣2

(1)
⋯ 𝑣�̃�

(1)

⋮ ⋱ ⋮

1, 𝑣1
(|𝑇|)

, 𝑣2
(|𝑇|)

⋯ 𝑣�̃�
(|𝑇|)

] 

 

With upper indices counting records and lower indices 

counting variables. Let �̂� ≔ (�̂�1, … �̂�|𝑇|)
𝑇  be the vector of 

observed values. We then want to find that particular value 
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𝛼∗, which solves the following minimization problem: 

 

(20) (𝐻𝛼∗ − �̂�)𝑇(𝐻𝛼∗ − �̂�) 

= 𝑀𝑖𝑛𝛼∈ℝ𝑛+1(𝐻𝛼 − �̂�)𝑇(𝐻𝛼 − �̂�) 

 

Expanding, differentiating with respect to 𝛼, setting the 

result equal to zero and solving for 𝛼∗ yields 

 

(21) 𝛼∗ = (𝐻𝑇𝐻)−1�̂�𝑇𝐻 

 

provided (𝐻𝑇𝐻) is non-singular, see [3]. Abbreviating 

 

(22) 𝛾𝑖𝑗 = 𝛼𝑖∗𝑛+𝑗 ,  

(23) 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑛 

 

and dropping the asterisk, we can express the expected 

value of our response variable as 

 

(24)    𝑓(𝑥) = 𝛼0 + ∑ 𝛼𝑖𝑥𝑖 + ∑ ∑ 𝛾𝑘𝑙𝑥𝑘𝑥𝑙
𝑛
𝑙=1

𝑛
𝑘=1

𝑛
𝑖=1  

 

upon replacing 𝑣𝑖 , 𝑖 ∈ {1, … , �̃�) by their definitions. 

 

B. Neural Networks 

The most prominent functional approximation technique 

in use today is the so-called Deep Neural Network. Google’s 

famous Tensor Flow package, as described in [1], is a very 

convenient platform for the Deep Learning Technique. It can 

be used both for classification as well as for regression 
purposes. In the examples, we will show the extremely 

precise approximation capability of this technique, which is 

used in applications as diverse as time series forecasting and 

image recognition.  

However, to the knowledge of the authors, there is no 

fast, functional differentiation routine of a Deep Neural 
Network with respect to the input pattern. Therefore, in the 

example shown below, we will use Deep Neural Networks 

for the sole purpose of illustrating its approximation 

capabilities and then proceed with the Generalized Linear 

Model.  

 

IV. NONLINEAR OPTIMIZATION 
Now assume that we would like to find the maximum of 

𝑓(𝑥) within a region 𝐴 ⊆ ℝ𝑛, i.e.  

 

(25) 𝑥∗: 𝑓(𝑥∗) =  𝑚𝑎𝑥𝑥∈𝐴𝑓(𝑥) 

 

We must discriminate between two different cases: 

A. Continuous Differentiability 

As a prototype for this case, we assume that 𝑓(𝑥) is 

represented by a Generalized Linear Model. Defining vector 

𝛼 and matrix 𝛤 as  

 

 

(26) 𝛼: = (𝛼1, . . . , 𝛼𝑛)𝑇 
 

(27) 𝛤 = (

𝛾11 ⋯ 𝛾1𝑛

⋮ ⋱ ⋮
𝛾𝑛1 ⋯ 𝛾𝑛𝑛

) 

 

we can express 𝑓(𝑥) as  

 

(28) 𝑓(𝑥) = 𝛼0 + 𝛼𝑇𝑥 + 𝑥𝑇𝛤𝑥 

 
The first attempt to find 𝑥∗ requires finding the gradient of 

𝑓(𝑥), setting it equal to zero and solving the resulting system 

of equations, i.e.  

 

(29) 𝛻𝑓(𝑥)|𝑥=𝑥∗ =  𝛼 + 2𝛤𝑥 = 0 
 

i.e. 

 

(30) 𝑥∗ =  −
1

2
𝛤−1𝛼 

 

Now, if 𝑥∗ ∈ 𝐴, we are done. This can be proven by 

applying the set of inequalities (10) to 𝑥∗. If however 

𝑥∗ ∉ 𝐴, then either one of the following may be the 

case: 

 

 x∗  is on one of the faces of A  

 x∗  is on one of the edges of A  

 … 

 𝑥∗  is in one of the corners of 𝐴 

 

B. Local Search Procedures 

In each of the cases above, there is no easy way to 

find 𝑥∗ With methods using derivatives. In this case, 

we must resort to derivative-free minimization or 

maximization problems, such as Genetic Algorithms, 

see [4] or the Simulated Annealing Local Search 
Technique, see [8]. Local Search tries to find the 

optimum in a sequence of approximations 𝑥𝑘  to 𝑥∗. 

Whereas Local Search can be very effective in the case 

of discontinuous or non-differentiable response 
functions, it tends to converge slowly. Therefore, in this 

paper, we revert to Generalized Linear Models and 

gradient descent. 
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V. SENSITIVITY COEFFICIENTS 

In many cases, it is of interest to study the impact of 
each of the regressors on the response variable. One 

possible way to measure this effect is by means of the 

average partial derivative of the response with respect 
to the regressor in question, whereby averaging is done 

over the region of interest 𝐴. Let 

 

(31) 𝜌𝑖,𝐴 =
1

|𝐴|
∑

𝜕𝑓(𝑥)

𝜕𝑥𝑖
𝑥∈𝐴  

 

It is obvious that the averaging step as applied above 

can destroy meaningful information when the variance 

of   
𝜕𝑓(𝑥)

𝜕𝑥𝑖
 Across 𝐴 is large. It is reasonable, therefore, 

to concentrate on small enough regions 𝐴. Therefore, 

we formulate the following lemma: 
 

Lemma 1: Let 𝑓(𝑥) be Lipschitz continuous with 

Lipschitz constant 𝐿. Then, for any 𝑥1 ∈ 𝐴 , 𝑥2 ∈ 𝐴 we 

have 
 

(32) |𝑓(𝑥1) − 𝑓(𝑥2)| ≤ 𝐿|𝑥1 − 𝑥1| 
 
Proof: The proof is straightforward by the definition of 

Lipschitz continuity. On a detailed account of Lipschitz 

continuity and its use in the calculus of variations, see, 
for instance [2]. 

 

Corollary 1: Since lemma 1 holds for the two special 

variables 
 

(33) 𝑙 ≔ (𝑙1, … , 𝑙𝑛)𝑇 

(34) 𝑢: = (𝑢1 , . . . , 𝑢𝑛)𝑇  

 

one obtains for any Lipschitz continuous function 𝑓(𝑥) 

for the maximum variation of 𝑓(𝑥) across 𝐴 - termed 

𝑉(𝑓)𝐴 for the time being –  

 

(35) 𝑉(𝑓)𝐴 ≤ 𝐿|𝑢 − 𝑙| 
 

Lemma 2: Let 𝛤 be asymmetric, positive definite 

matrix and let 𝑝𝑖 , 𝜆𝑖 , 𝑖 ∈ {1, . . . , 𝑛} be the eigenvectors 

and eigenvalues of matrix 𝛤, respectively. If 𝑓(𝑥) can 

be expressed as our quadratic regression function, the 

difference between the response values for two 

arbitrary regressor values 𝑤 ∈ 𝐴 and 𝑣 ∈ 𝐴 takes the 

following form: 

(36) 𝑓(𝑤) − 𝑓(𝑣) = 𝛼𝑇(𝑤 − 𝑣) +

                         + ∑ 𝜆𝑖((𝑤𝑇𝑝𝑖)² −𝑛
𝑖=1 (𝑣𝑇𝑝𝑖)² 

 

Proof: Express both 𝑤 and 𝑣 in terms of the 

eigenvectors of 𝛤, i.e., 𝑤 = ∑ (𝑤𝑇𝑝𝑖)
𝑛
𝑖=1 𝑝𝑖 and 𝑣 =

∑ (𝑣𝑇𝑝𝑖)𝑛
𝑖=1 𝑝𝑖 . Then 

(37) 𝑓(𝑤) = 𝛼0 + 𝛼𝑇𝑤 + 

+ ∑ ∑(𝑤𝑇𝑝𝑖)𝑝𝑖
𝑇𝛤

𝑛

𝑗=1

𝑛

𝑖=1

(𝑤𝑇𝑝𝑗)𝑝𝑗 = 

= 𝛼0 + 𝛼𝑇𝑤 + ∑ 𝑝𝑖(𝑤𝑇𝑝𝑖)²

𝑛

𝑖=1

 

And analogously for 𝑓(𝑣). 

 

Corollary 2:  

 

(38) 𝑉(𝑓)𝐴 =  𝑚𝑎𝑥𝑤∈𝐴,𝑣∈𝐴|𝑓(𝑤) − 𝑓(𝑣)| ≤  
 

                             ≤ 𝑚𝑎𝑥𝑤∈𝐴,𝑣∈𝐴{|𝛼||𝑤 − 𝑣|

+ ∑ 𝜆𝑖|(𝑤𝑇𝑝𝑖)² −

𝑛

𝑖=1

(𝑣𝑇𝑝𝑖)²|} 

Proof: Using the above lemma on both 𝑓(𝑤)  and 𝑓(𝑣) 

we have for any 𝑤 ∈ 𝐴  and 𝑣 ∈ 𝐴  

 

(39) 𝑓(𝑤) − 𝑓(𝑣) = 𝛼𝑇(𝑢 − 𝑣)+ 

                                  + ∑ 𝜆𝑖((𝑢𝑇𝑝𝑖
𝑛
𝑖=1 )²- (𝑣𝑇𝑝𝑖)²) 

 

Taking the maximum with respect to 𝑤 and 𝑣 proves the 

statement. Assuming that the maximum is obtained for 𝑤 =
𝑢  and 𝑣 = 𝑙, we can say that 

 

(40) 𝑉(𝑓)𝐴 ≈ 𝛼𝑇(𝑢 − 𝑙) + ∑ 𝜆𝑖((𝑢𝑇𝑝𝑖)² −𝑛
𝑖=1 (𝑙𝑇𝑝𝑖)²) 

 

This corollary provides a sufficient criterion for the 

suitability of region 𝐴, when it comes to estimating the 
sensitivity coefficients by averaging over this region. That 

means that if – within the largest distance possible inside 𝐴 – 

variation 𝑉(𝑓)𝐴 is small enough, then 𝐴 is appropriate. From 

a practical point of view, it might be important to rank 𝜌𝑖,𝐴 

with respect to size for a very simple reason: If maximizing 

𝑓(𝑥) is the goal dictated by business, then it would be 

plausible to increase – within technical limits – those 

regressors with either maximum sensitivity and/or minimal 

cost.  

Assume that changing the value of 𝑥𝑖 by an amount of 

𝛥𝑥𝑖 amounts to 𝑐𝑖 ∗ 𝛥𝑥𝑖 cost units. The overall cost arising 

from changing regressor 𝑖, 𝑖 ∈ {1, . . . , 𝑛} by an amount 𝛥𝑥𝑖 is 

then given as 
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(41) ∆𝑐(∆𝑥)  = ∑ 𝑐𝑖
𝑛
𝑖=1 ∆𝑥𝑖 

 
defining the vector of changes as ∆𝑥 ∶= {∆𝑥1, … , ∆𝑥𝑛). The 

approximate amount by which the response variable changes 

is 

 

(42) ∆𝑓(∆𝑥)  =  ∑ 𝜌𝑖,𝐴∆𝑥𝑖
𝑛
𝑖=1   

 

An interesting linear program is then given by 

 

(43) 𝑀𝑎𝑥∆𝑥∈ℝ𝑛  ∆𝑓(∆𝑥) =  ∑ 𝜌𝑖,𝐴
𝑛
𝑖=1 𝛥𝑥𝑖         

 

such that 

 

(44) ∆𝑐(∆𝑥)  = ∑ 𝑐𝑖∆𝑥𝑖 ≤ 𝑐0
𝑛
𝑖=1           

 

for some  𝑐0   and   

 

(45) ∆𝑥𝑖
𝑙 ≤ 𝑥𝑖 < ∆𝑥𝑖

𝑢 , 𝑖 ∈ {1, . . . , 𝑛}           
 

Are lower and upper limits for the possible changes. 

 

VI. EXAMPLES 

Here we look at two examples. Example 1 illustrates the 

precise approximation capabilities of the Tensor Flow Deep 

Learning Technique. Example 2 uses gas turbine data and 

illustrates – in addition – the optimization and the sensitivity 

analysis step.  Hereby we replace efficiency with power, 
which,  when applied in combination with a given set of 

control variables, will be almost equivalent to efficiency 

when the region of interest is small. In this case, there will 

be no wide change in the fuel flow, meaning that power is 

nearly proportional to efficiency.  

A. Crusher Data in a Cement Plant 
A crusher in a cement plant will take large chunks of raw 
material and grind them into smaller, pebble-like structures. 

Table 1 shows a section of the training input data, consisting 

of 32000 records: 

 

TABLE 1: CEMENT DATA 

 
 
Please note that this example was computed with variables 

normalized to values between 0 and 1. The validation file 

will consist of 8000 corresponding records. The main 

purpose of this section is the application of the Tensor Flow 

Deep Learning Technique as a means to approximate the 

main drive power consumption response variable. 
Representing the response as a function of the remaining 

variables, we obtain the graph shown in figure 2: 

 

 
 

Figure 2: Main drive power observed vs. approximated- 

Training Data 

When applying the Deep Learning approximation 

technique to the validation data, we obtain figure 3:  

 
Figure 3. Main drive power observed vs. approximated - 

Validation Data 

These figures show that Tensor Flow can cope very well 

with virtually discontinuous steps in the data. However, due 
to its tendency to overfit and since there is no convenient 

analytical derivative routine available, only the Generalized 

Linear Model is being used to do process optimization in a 

second step. 

B. Gas Turbine Data 

As another example, we look at the data of a gas turbine. We 

have a dataset of 1533 records; see table 2. The file will be 

split into a file with 1226 training records, used to do the 
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nonlinear regression step and 317 validation records. The 

dataset contains a timestamp, 12 control variables, and 

power as the response variable.  

 

TABLE 2: GAS TURBINE DATA 

 
 

Regression using Neural Networks: Applying Tensor 
Flow to the input data and modeling gas turbine power 

as a function of the control variables shows the results 

as given in figures 4 and 5: 
 

 
Figure 4: Tensor Flow approximation of the power signal 

on the  training Data 

 
Figure 5: Tensor Flow approximation of the power signal 

on the  validation data 

These figures show that Neural Networks have a tendency to 

overfit the training data. As a consequence, the goodness of 

approximation is less good on the validation data than on the 

training data. Applying the GLM model to the training data 

and the validation data results in figures 6 and 7: 

 

 
Figure 6: GLM approximation of the power signal on the 

training Data 

 

Figure 7: GLM approximation of the power signal on the 

validation data 

Optimization: For the rest of this paper, we will use the 

GLM method exclusively, the reason being that we will 

make extensive use of the gradient of the response function, 

which is very convenient to compute for GLM and less easy 

for Neural Networks. When it comes to optimizing the 

response variable in a given domain 𝐴, we must specify the 

latter. One  simple way to do this is to give lower and upper 

limits for the individual regression variables, as shown in 

table 3: 

TABLE 3: SPECIFYING THE FEASIBLE REGION 

Control  Lower bound  Upper bund 

C_2 0.00815 0.01669 

C_3 10.4632 11.1656 

C_6 22.8760 33.7115 

C_7 2.75611 3.16896 

C_8 62.9648 71.8008 

 

Table 4 shows the optimization results, i.e., the values for 
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the regressors which will achieve maximum power. 

 

TABLE 4: OPTIMIZATION RESULTS 

Contro

l   

Lower 

bound 

Upper 

bound 

Empirical 

Max. 

relative 

Theoretical 

Max. 

relative 

Empirical 

Max. abs. 

C_2 0.00815 0.01 0.0167 0.3634 0.150 0.0112 

C_3 10.4632 111 11.1656 0.6074 0.95 10.8898 

C_6 22.8760 33.7115 0.4391 0.80 27.6339 

C_7 2.7561 3.1690 0.9185 0.60 3.13453 

C_8 62.9648 71.8008 0.9359 0.75 71.2344 

Power 37.0313 41.1406 0.8251 0.9999 40.4219 

 

Sensitivity Coefficients: If we want to know by how much 

the response variable changes when we change the 

regressors by 10%, we will again be asked for the region in 

which this analysis should take place, see table 3: 

 

TABLE 5: SENSITIVITY COEFFICIENTS -ACTIVE 

        REGION  

Control Lower bound Upper bound 

C_2 0.0082 0.0167 

C_3 10.4632 11.1656 

C_6 22.8760 33.7115 

C_7 2.7561 3.1690 

C_8 62.9648 71.8008 

 

Results are shown in Table 6: 

TABLE 6: SENSITIVITY COEFFICIENTS      

Control Relative 

Sensitivity 

Absolute 

Sensitivity 

Abs. Change for 10% 

change in control 

C_2 -0.0996 -47.8959 -0.0409 

C_3 0.3966 2.3201 0.1630 

C_6 0.1511 0.0573 0.0621 

C_7 0.1226 1.2199 0.0504 

C_8 0.8696 0.4044 0.3573 

 

VII. Conclusions 

On the path to finding optimal set points in a 

controlled industrial process with regard to power in a 

constrained operating region, two necessary steps were 
established: Approximating the process by a smooth 

response surface and finding an optimal point within 

the constraints and on the response surface. The 
approximation step requires tools from Machine 

Learning or Multivariate Statistics such as Tensor Flow 
or Generalized Linear Models, respectively. Two 

examples have been studied. The first example simply 

served to illustrate the extreme goodness of fit for 

Tensor Flow, even in the presence of steep steps in the 
response. The second example showed that Tensor 

Flow, on the data considered, tends to overfit. 

Therefore – and due to the fact that Tensor Flow, in 
contrast to a Generalized Linear Model – has no 

straightforward derivative computation interface – we 

proceeded with Generalized Linear Models, which 
approximate well and can be used to do nonlinear 

optimization and to compute sensitivity coefficients. 
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