
SSRG International Journal of Mobile Computing & Application (SSRG – IJMCA) – Volume 2 Issue 1 Jan to April 2015

ISSN: 2393 - 9141 www.internationaljournalssrg.org Page 1

Load Rebalancing using Map reducing Task for

Distributed File Systems in Cloud

T.Janani, K.Balamurugan, Associate Professor

K.S.R College of Engineering

Abstract

 Cloud computing is emerging as a new

paradigm of large scale distributed computing. Load

balancing is one of the main Challenges in Cloud

computing which is required to distribute the dynamic

workload evenly across all the nodes. In the cloud

storage, Load balancing is a key issue. The Map

reducing task can be performed parallel over the nodes.

The file chunks are not distributed uniformly as

possible among the nodes. Emerging distributed

systems in production system strongly depends on a

central node for chunk reallocation. It would consume

a lot of cost to maintain load information. Proper load

balancing aids in minimizing resource consumption.

This concludes that all the existing techniques mainly

focus on reducing overhead, service response time and

improving performance etc. various parameters are

also identified, and these are used to compare the

existing techniques. This paper proposed for

centralized server is change in to the decentralized

server using Map reducing task.

 Keywords – load balancing algorithm, load balancing

challenges, cloud computing, distributed computing

I. INTRODUCTION

During the last several decades, dramatic

advances in computing power, storage, and networking

technology have allowed the human race to generate,

process, and share increasing amounts of information in

dramatically new ways. As new applications of

computing technology are developed and introduced,

these applications are often used in ways that their

designers never envisioned. New applications, in turn,

lead to new demands for even more powerful

computing infrastructure. It is now possible to assemble

very large, powerful systems consisting of many small,

inexpensive commodity components because computers

have become smaller and less expensive, disk drive

capacity continues to increase, and networks have

gotten faster. Such systems tend to be much less costly

than a single, faster machine with comparable

capabilities. Software challenges also arise in this

environment because writing software that can take full

advantage of the aggregate computing power of many

machines is far more difficult than writing software for

a single, faster machine Regardless of the exact

definition used, numerous companies and research

organizations are applying cloud-computing concepts to

their business or research problems including Google,

Amazon, Yahoo, and numerous universities.

A Cloud computing is emerging as a new

paradigm of large scale distributed computing. It has

moved computing and data away from desktop and

portable PCs, into large data centre’s [1]. It provides the

scalable IT resources such as applications and services,

as well as the infrastructure on which they operate, over

the Internet, on pay-per-use basis to adjust the capacity

quickly and easily. It helps to accommodate changes in

demand and helps any organization in avoiding the

capital costs of software and hardware [2] [3]. Thus,

Cloud Computing is a framework for enabling a

suitable, on-demand network access to a shared pool of

computing resources (e.g. networks, servers, storage,

applications, and services).These resources can be

provisioned and de-provisioned quickly with minimal

management effort or service provider interaction. This

further helps in promoting availability [4]. Due to the

exponential growth of cloud computing, it has been

widely adopted by the industry and there is a rapid

expansion in data centres.

 Load balancing in computer networks is a

technique used to spread workload across multiple

network links of computers [2]. It facilitates networks

and resources by providing a maximum throughput

with minimum time, thus it helps to improve

performance by optimally using available resources and

helps in minimizing latency and response time. Load

balancing is achieved by using multiple resources that

is, multiple servers that are able to fulfill a request or by

having multiple paths to a resource. Load balancing

helps to achieve a high user satisfaction and resource

utilization. When one or more components of any

service fail, load balancing facilitates continuation of

the service by implementing fair-over, that is, it helps in

provisioning and deprovisioning of instances of

applications without fail. It also ensures that every

computing resource is distributed efficiently and fairly

[5]

www.internationaljournalssrg.org

SSRG International Journal of Mobile Computing & Application (SSRG – IJMCA) – Volume 2 Issue 1 Jan to April 2015

ISSN: 2393 - 9141 www.internationaljournalssrg.org Page 2

Fig.1 Cloud Computing

Consumption of resources and conservation of

energy is not always a prime focus of discussion in

cloud computing. However, resource consumption can

be kept to minimum with proper load balancing which

not only helps in reducing costs but making enterprise

greener. Scalability, one of the very important features

of cloud computing, is also enabled by load balancing.

Hence, improving resource utility and the performance

of a distributed system in such a way will reduce the

energy consumption and carbon footprints to achieve

Green computing [1]. The objective and motivation of

this survey is to provide a analytic survey of existing

load balancing techniques in cloud computing. In this

paper, we are interested in studying the load

rebalancing problem in distributed file systems

specialized for large-scale, dynamic and data-intensive

clouds. (The terms “rebalance” and “balance” are

interchangeable in this paper.) Such a large-scale cloud

has hundreds or thousands of nodes (and may reach

tens of thousands in the future). Our objective is to

allocate the chunks of files as uniformly as possible

among the nodes such that no node manages an

excessive number of chunks. Additionally, we aim to

reduce network traffic (movement cost) reduce
network traffic (or movement cost) caused by

rebalancing the loads of nodes as much as possible
to maximize the network bandwidth available to
normal application.

Applications need information on both when

and how to rebalance;

The three load balancing steps are:

1. Evaluate the imbalance;

2. Decide how to balance if needed;

3. Redistribute work to correct the imbalance.

We address the first two requirements and

derive complete information on how to perform the

third; the application must be able to redistribute its

work units as instructed by our framework (a

requirement also imposed by partitioners. Our load

model couples abstract application information with

scalable load measurements. We derive actionable load

metrics to evaluate the accuracy of the information. Our

load model evaluates the cost of correcting load

imbalance with specific load balancing algorithms. We

use it to select the method that most efficiently balances

a particular scenario. We demonstrate this methodology

on two large-scale production applications that simulate

molecular dynamics and dislocation dynamics. Overall,

we make the following contributions.

Load rebalances in the distributed file system

carried out using the map reducing task in cloud which

helps in arranging files in nodes of every chunk i.e.

stores the files in related nodes of the chunks. Objective

of this project is to allocate the chunks of files as

uniformly as possible among the nodes such that no

node manages an excessive number of chunks and also

to reduce network traffic and maximize the network

bandwidth available to normal applications. Using the

distributed file system, arranging the file system in a

cloud: that is the file chunks are no distributed

uniformly as possible among the nodes because the load

is put under workload that is linearly scaled with the

system and to increase the performance of the

transformation of the file. This performance of the

proposal is implemented to be used in the clustered

environment.

II. SYSTEM OVERVIEW

The load rebalancing problem in distributed

file systems specialized for large-scale, dynamic and

data-intensive clouds. Suggest offloading the load

rebalancing task to storage nodes by having the storage

nodes balance their loads spontaneously. The storage

nodes are structured as a network based on distributed

hash tables (DHTs) discovering a file chunk can simply

refer to rapid key lookup in DHTs, given that a unique

handle is assigned to each file. DHTs enable nodes to

self-organize and -repair while constantly offering

lookup functionality in node dynamism, simplifying the

system provision and management. Present a load

rebalancing algorithm for distributing file chunks as

uniformly as possible and minimizing the movement

cost as much as possible. Nodes perform their load-

balancing tasks independently without synchronization

or global knowledge regarding the system. This project

not only takes advantage of physical network locality in

the reallocation of file chunks to reduce the movement

Cost but also exploits capable nodes to improve the

overall system performance. Algorithm reduces

overhead introduced to the DHTs as much as possible.

Additionally, our load-balancing algorithm exhibits a

www.internationaljournalssrg.org

SSRG International Journal of Mobile Computing & Application (SSRG – IJMCA) – Volume 2 Issue 1 Jan to April 2015

ISSN: 2393 - 9141 www.internationaljournalssrg.org Page 3

fast convergence rate. The Architecture can be shown

in figure 2.

A. Storage Node Creation

In cloud server simultaneously create node,

serve computing and storage functions; a file is

partitioned into a number of chunks allocated in distinct

nodes. In this module, a cloud partitions the file into a

large number of disjointed and fixed-size pieces (or file

chunks) and assigns them to different cloud storage

nodes (i.e., chunk servers). Each storage node then

calculates the frequency of each unique word by

scanning and parsing its local file chunks. User creates

a storage node after successful register our account.

Fig.2 Storage Node Creation

B. Distributed Hash Table

DHTs guarantee that if a node leaves, then its

locally hosted chunks are reliably migrated to its

successor; if a node joins, then it allocates the chunks

whose IDs immediately precede the joining node from

its successor to manage. Our proposal heavily depends

on the node arrival and departure operations to migrate

file chunks among nodes. Interested readers are referred

to for the details of the self-management technique in

DHTs. While lookups take a modest delay by visiting n

nodes in a typical DHT, the lookup latency can be

reduced because discovering the l chunks of a file can

be performed in parallel. Proposal is independent of the

DHT protocols. To further reduce the lookup latency,

can adopt state-of-the-art DHTs such as Amazon’s

Dynamo in that offer one-hop lookup delay.

Fig.3 Identify Storage Node

Fig.4 Distributed Hash Table

Fig.5 Overall Data Flow Diagram

C. Distributed Load Balancing

A large-scale distributed file system is in a

load-balanced state if each chunk server hosts no more

than A chunks. In our proposed algorithm, each chunk

server node i first estimate whether it is under loaded

(light) or overloaded (heavy) without global

knowledge. A node is light if the number of chunks it

hosts is smaller than the threshold. In contrast, a heavy

node manages the number of chunks. In the following

discussion, if a node i departs and rejoins as a successor

of another node j, then represent node i as node j+ 1,

node j’s original successor as node j + 2, the successor

of node j’s original successor as node j + 3, and so on.

For each node I∈ V, if node i is light, then it seeks a

heavy node and takes over at most A chunks from the

heavy node.

Chunk

User
Create Storage

Node

SN1

SN2

SNn

.

.

.

Chunk

SN1

SN2

SNn

.

.

.

DHT

Update DHT

Re-balancing Algorithm

Identify Storage Node

Load

Chunk

User

SN1

SN2

SNn

.

.

.

DHT

Update DHT

Search File

Lookup DHT

Chunk

User
Create Storage

Node

SN1

SN2

SNn

.

.

.

DHT

Update DHT

Re-balancing Algorithm

Identify Storage Node

LoadSearch File

Lookup DHT

www.internationaljournalssrg.org

SSRG International Journal of Mobile Computing & Application (SSRG – IJMCA) – Volume 2 Issue 1 Jan to April 2015

ISSN: 2393 - 9141 www.internationaljournalssrg.org Page 4

Fig.6 Load Rebalancing Architecture Diagram

D. File Distribution

A DHT node is an overlay on the application

level. The logical proximity abstraction derived from

the DHT does not necessarily match the physical

proximity information in reality. That means a message

traveling between two neighbors in a DHT overlay may

travel a long physical distance through several physical

network links. In the load-balancing algorithm, a light

node i may rejoin as a successor of a remote heavy

node j. Then, the requested chunks migrated from j to i

need to traverse several physical network links, thus

generating considerable network traffic and consuming

significant network resources (i.e., the buffers in the

switches on a Communication path for transmitting a

file chunk from a source node to a destination node)

and distribute the files for requesting users efficiently

and effectively.

III. PRELIMINARY RESULTS

Some preliminary results on load rebalancing

are presented. In the following subsections contains

DHT formulation, File chunks, and then map reducing

task.

A. DHT Formulation

Distributed hash table is given unique identity

of each every file. So files are stored in one hash table.

The hash table performed given results The storage

nodes are structured as a network based on distributed

hash tables (DHTs), DHTs enable nodes to self-

organize and repair while constantly offering lookup

functionality in node dynamism, simplifying the system

provision and management.. For each entity, it provides

many web pages. File chunks size can be taken as

example.

B. File Chunks

The distribution of chunks after performing the

HDFS loads balancer.

 File chunks =500

 Data nodes =20

 =500/20=25.0

C. Map Reducing Task

The map reducing task is separated for all

data’s. This result is shown in figure7.all chunks are

stored in goggle apps engine. This paper using map

reducing task evaualate the balance and redistribute the

balancing nodes are solving.

Table 1 : Comparison of File Chunk Size

File Chunks Size Data nodes

250 25

300 30

400 40

450 20

500 20

IV. RESULTS

The entire system is implemented in .Net using

eclipse Platform. In computer programming, eclipse is

an integrated development environment comprising a

base work phase and an extensible plug in system for

customizing the environment. It is written mostly in

java. It can be used to develop application in java, and

by means of various plug-ins other programming

languages including Ada, C, C++, COBOL,

FORTRAN, Haskell, JavaScript, lasso, Perl and

Erlang.It can also be used to develop packages for the

software mathematics. Development environment

includes the eclipse data development tools for java and

scala .Eclipse CDT for C/C++ and Eclipse PDT for

PHP among others. The initial codebase originated

from IBM VisualAge.The Eclipse software

development tool is mean for java developers. User can

extend its abilities by installing plug-ins written for the

Eclipse Platform. Such as development toolkit for other

programming languages, other programming languages,

and can write contribute their own plug-in modules.

Java contains many JAR file. JAR files help to extract

the plain text from the web pages. The result is shown

in fig. 7.

DHT

file request

CHUNK

sn2

Data

Owner

Distributed

ReBalancing

Cloud User

sn1
SnN

CHUNK

sn2sn1 snN

CS

www.internationaljournalssrg.org

SSRG International Journal of Mobile Computing & Application (SSRG – IJMCA) – Volume 2 Issue 1 Jan to April 2015

ISSN: 2393 - 9141 www.internationaljournalssrg.org Page 5

Fig. 7 Chunks Stored in Google Apps Engine

V. CONCLUSION

A load-balancing algorithm to deal with the

load rebalancing problem in large-scale, dynamic, and

distributed file systems in clouds has been presented in

this project. Proposal strives to balance the loads of

nodes and reduce the demanded movement cost as

much as possible, while taking advantage of physical

network locality and node heterogeneity. In the absence

of representative real workloads (i.e., the distributions

of file chunks in a large-scale storage system) in the

public domain, To have investigated the performance of

our proposal and compared it against competing

algorithms through synthesized probabilistic

distributions of file chunks. The synthesis workloads

stress test the load-balancing algorithms by creating a

few storage nodes that are heavily loaded.

Proposal is comparable to the centralized

algorithm in the Hadoop HDFS production system and

dramatically outperforms the competing distributed

algorithm in terms of load imbalance factor, movement

cost, and algorithmic overhead. Particularly, our load-

balancing algorithm exhibits a fast convergence rate.

The efficiency and effectiveness of our design are

further validated by analytical models and a real

implementation with a small-scale cluster environment.

Consider a DHT with an ordered id space I with size N

=|j| and a branching factor B such that log N is integral.

The branching factor is used by each chunk to construct

its routing table.

To provide consistency with previous work,

reconsider Chord as a tree-based routing DHT. It is

straightforward to show that Chord finger tables are

constructed like tree-based routing tables.

REFERENCES
[1] J. Dean and S. Ghemawat, “MapReduce: Simplified Data

Processing on Large Clusters,” Proc. Sixth Symp. Operating
System Design and Implementation (OSDI ’04), pp. 137-150,

Dec. 2004.

[2] A.W. M. Smeulders, M. Worring, S. Santini, A. Gupta, and
R. Jain, “Content-based image retrieval at the end of the early

years”, IEEE Transaction Pattern Analysis Machine

Intelligence, Antony Rowstron and Peter Druschel, “Pastry:
Scalable, Distributed Object Location and Routing for Large-

scale Peer-to-Peer Systems,” in Proc. Middleware, 2001.

[3] John Byers, Jeffrey Considine, and Michael Mitzenmacher,
[4] “Simple Load Balancing for Distributed Hash Tables,” in

Proc. IPTPS, Feb. 2003

[5] David Karger and Matthias Ruhl, “New Algorithms for Load
[6] Balancing in Peer-to-Peer Systems,” Tech. Rep. MIT-LCS-

TR-911, MIT LCS, July 2003.

[7] J. Westbrook, “Load balancing for response time,” in
EuropeanSymposium on Algorithms, 1995, pp. 355–368.

[8] Micah Adler, Eran Halperin, Richard M. Karp,and Vijay V.

Vazirani. A Stochastic Process on the Hypercube with
Applications to Peer-to-Peer Networks. In Proceedings

STOC, pages 575–584, 2003.

[9] Tanveer Ahmed, Yogendra Singh, Analytic study of load

balancing techniques using tool cloud analyst.

[10] Zenon Chaczko, Venkatesh Mahadevan, Shahrzad
Aslanzadeh and Christopher Mcdermid, Availabilty and load

balancing in cloud computing, 2011

InternationalConference on Computer and Software
Modeling, IPCSIT vol.14 (2011) ACSIT Press, Singapore

[11] Giuseppe Valetto, Paul Snyder, Daniel J. Dubois, Elisabetta

DiNitto and Nicolo M. Calcavecchia, A self-organized load
balancing algorithm for overlay based decentralized service

networks

[12] Nidhi Jain Kansal, Inderveer Chana, Cloud Load balancing
techniques: A step towards green computing, IJCSI

International Journal of Computer Science Issues, Vol. 9,

Issue 1, No 1, January 2012.
[13] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A.

Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and

W. Vogels, “Dynamo: Amazon’s Highly Available Key-
value Store,” in Proc. 21st ACM Symp.

[14] Hadoop Distributed File System, “Rebalancing Blocks,”

http://developer.yahoo.com/hadoop/tutorial/module2.html#re
balancing.

[15] HDFSFederation,http://hadoop.apache.org/common/docs/r0.

23.0/hadoop-yarn/hadoop-yarn-site/Federation.htm
[16] D. Karger and M. Ruhl, “Simple Efficient Load Balancing

Algorithms for Peer-to-Peer Systems,” in Proc. 16th ACM

Symp. Parallel Algorithms and Architectures (SPAA’04),
June 2004, pp. 36–43.

www.internationaljournalssrg.org

