
SSRG International Journal of Mobile Computing & Application (SSRG – IJMCA) – Volume 2 Issue 3 Sep to Dec 2015

ISSN: 2393 - 9141 www.internationaljournalssrg.org Page 13

A Light Weight Hybrid Approach to Detect

Code Clones
Dr.G.Anil Kumar

Sr. Assistant Professor CSE MGIT Hyderabad T.S. India

Abstract

Code cloning is the process of reusing the

code portions of different parts of the same project or

proven good portions of different projects. The

harmfulness of code clones are presented by the

literature of the code cloning. In this paper we are

proposing a hybrid light weight approach to detect

various types of clones.

CLONE DETECTION PROCESS

Several approaches are proposed by different

people and organizations in code clone literature. In this

paper the proposed clone detection process is discussed

in detail. In other words this paper explains theoretical

model of the proposed system.

 Clone Detection Process: Proposed Model

In a system‟s source text, a clone detector

locates pieces of code which are of high similarity. The

major difficulty is that it is hard to make out beforehand

about the code fragments that can be repeated multiple

times. Hence, each possible fragment should be

compared to every other possible fragment. This is an

expensive comparison from the view of computational

time. Many measures have been taken to reduce the

comparison domain before the performance of the

actual comparison.

If the potential cloned fragments are located

future analysis is taken up to identify the actual clones.

In the proposed method, to make out all varieties of

clones which are present in the source code, a hybrid

technique is adapted. This approach is based on textual

and metric analysis.

Clone detection technique which is text based

utilizes the transformation. This includes removal of

comments and removal of whitespaces. It is considered

as one of the fastest clone detection approaches. This is

because the syntactical or semantical analysis of source

is not performed by the text based technique. It deals

easily with type I clones and type II clones with

additional data transformation. Metric based technique

follows a different method. Instead of making

comparisons directly on the code, metric based

technique gathers different metrics of code and makes

the comparison of these metric values to detect clones.

For detecting similar codes, various clone detection

techniques use only metrics these days. The proposed

method can be implemented to find clones in JAVA.

The method which has system architecture is shown in

Figure 3.1

Metric based and text based techniques are

used by the proposed approach in order to detect clones.

These clones are divided into two stages. For the

selection of potential code metric based technique is

used in the first stage. In the second stage, metric match

is used to select potential clones. After the selection, the

potential clones are processed further along with text

based technique. The proposed research methodology

aims to trace out clones with textual analysis using

metrics. Clone detection process can be either textual or

one that has metric analysis traditionally. The

comparison is done line by line for potential clones in

order to determine if two potential clones are truly

clones of each other. Soon after the beginning of the

process, the method developed examines the given

input source code and recognizes the different methods

which are present.

SSRG International Journal of Mobile Computing & Application (SSRG – IJMCA) – Volume 2 Issue 3 Sep to Dec 2015

ISSN: 2393 - 9141 www.internationaljournalssrg.org Page 14

Figure 3.1: Clone Detection Architecture (block diagram)

There are many phases in clone detection

process. These phases involve input and pre-processing,

conversion of template, computation of metrics and

lastly detection of clone types. If the pairs show

similarity when textual comparison is done, those pairs

are listed as clones. The developed method for

detection does not use any external parsers. In

comparison to the methods, it needs less overhead when

it comes to complexity, and processing time in terms of

precision and recall values.

SSRG International Journal of Mobile Computing & Application (SSRG – IJMCA) – Volume 2 Issue 3 Sep to Dec 2015

ISSN: 2393 - 9141 www.internationaljournalssrg.org Page 15

Preprocessing and Input Selection

In this phase the source code which is

uninteresting for the comparison phase is filtered. File

integration, standardization of source code and source

code normalization are included in this phase. The

grouping of all the files of a project into one large

single file for external examination is done in file

integration. The concatenation of all the files which

belong to the same project is transformed into one large

file convenient for external parsing in file integration.

This involves white space removal, comments

and pre-processor statements. Once the uninteresting

code is removed, the remaining source code is divided

into source units. Aset of disjoint fragments are the

source units. Thelargest source code fragments which

are directly involved in clone relation with another

clone fragment are the source units. The presence of

source units can be of any level of granularity.

Examples are classes, files, methods or functions,

sequences of source lines of code, statements and

blocks of code.

Source units need to be further divided into

smaller units. This again depends on the comparison

technique which is used by the method. For instance,

source units can be further divided into lines or even

tokens for comparison. The comparison units might be

derived from the syntactic structure of the source unit.

For instance, an 'if' statement might be divided into

conditional expression and else blocks.

It may be or may not be prominent the way in

which the units are compared (i.e. order of comparison)

within its corresponding source unit. This process

depends on the comparison techniques used. Sometimes

source unit as a whole can be utilized as a comparison

unit. As an example the metric values of a metric based

method might be computed from other source units.

Henceforth subdivision is not at all required in those

kinds of approaches. In a standard format the source

code is restructured in order to maintain the similarities

between the cloned fragments.

These steps are akin to normalization

procedure and come out with gain in the recall value.

Whitespace is disregarded in almost every approach,

despite maintenance of line breaks in line based

approaches. However, formatting and layout are used

by some metric based approaches for making the

comparison. In actual comparison, comments are

removed or ignored by many of the existing

approaches. Instead, they apply normalized variable

prior to making comparisons to trace out parametric

Type II clones. During normalizations, all the

identifiers are replaced by single identifier in the source

code.

Statement Normalization

In order to identify parametric Type II clones,

this approach uses identifier normalization before

comparison is made. In these normalizations, usually all

the identifiers are replaced by one common identifier in

the source code. In the method that has been followed

all identifiers are replaced with variable „S‟ as it is

shown in Figure 3.2. In order to normalize statements

many other methods are used. An order sensitive

indexing scheme is used by Baker in order to detect

consistently renamed Type II clones.

In normalization there is another process. In

that process the source code is converted to a

standardized form, which removes differences in layout

and spacing. This approach is generally used while

clone detection process is text –based. This process is to

detect clones which differ in lay out and spacing. Italso

generates an exclusive text file for potential clones in

the source code unit. In the literature of code cloning,

this process is called as pretty printing of source code.

Ifany code fragment changes the structure of the code,

other transformations are applied to it. With this,

minimal variations of the similar syntactic form may be

considered as a clone. For instance, in variable

declaration of the source code, removal of keywords

like global, static etc. takes place.

Template Conversion

The process in which, the transformation of

input source code into a set of predefined statements is

known as template conversion. This is nothing but

converting the original source code into a standard

intermediary form. Examples are renaming of variables,

data types, names of functions etc. The format which is

used in textual analysis is named template. The selected

candidates are compared textually during the detection

of Type II cloned methods. During the clone detection

process, the function identifiers, definition, names of

variables, types etc. are edited. This is done because

just the textual comparison is not sufficient.

After the conversion of the source code to a

template is completed, the template file and the source

file are stored in the database. This storage of files is

used for application of metrics on it. This

transformation varies from simple to complex. The

simple transformation would include removal of the

white space whereas the complex transformation would

include extensive source code transformations. For

every single comparison unit an attribute vector is

computed for those intermediary representations when

metric based methods are applied.

SSRG International Journal of Mobile Computing & Application (SSRG – IJMCA) – Volume 2 Issue 3 Sep to Dec 2015

ISSN: 2393 - 9141 www.internationaljournalssrg.org Page 16

SOURCE CODE TEMPLATE

inttemplconv(pmtra, buff1,leng, buff2) DAT FUN_NAME(S,S,S,S)

char buff1[]; DAT S;

intleng; DAT S;

intpmtrb; DAT S;

char buff2[]; DAT S;

{ {

int i; DAT S;

int j; DAT S;

While(i<=leng) LOOP

{ {

If(buff1[pmtra+j]!=buff2[pmtrb+j]) IF

return TRUE; RETURN;

}; };

i++; ASSIGNMENT STATEMENT;

j++; ASSIGNMENT STATEMENT;

Tembuf(pmtra)=’\0’; ASSIGNMENT FROM FUNCTION CALL

return TRUE; RETURN;

} }

Figure 3.2: An Example for Template Conversion

Metric Computation

Collection of different metrics from a specific

code fragment, such as a class or function and then

group these metrics together into a vector which is

usually called metric vector. Then the clone detection

process compares this metric vector instead of actual

source code. In this method all types of clones

including Type IV functional clones are detected.

In this metric computation every code

fragment is given specific metric values. The

comparison of metric values instead of original source

code directly indicates that these metric vectors are

used for detecting similar code with an allowable

distance. Text based techniques are simple traditional

way of detecting code clones. It takes a line of source

code as a unit of code representation. To increase the

performance of a clone detection technique, textual

approach transformation of lines of code is required

using hashing function. With this process uninterested

code is removed before comparison.

Inorder to detect Type I, Type II, Type III and

Type IV clone methods, a series of 12 current method

level metrics are utilized which are as follows

i. LOC per method (i.e. Number of effective lines

of code in a method)

Count the number of lines of code

Subtraction of blank lines

Subtraction of comment lines

Subtractions of lines which consist of only block

constructs. (i.e. „{‟ & „}‟ are the begin and end

block constructs in java programming)

ii. Number of local variables present in a method.

A variable which is visible only in the block of code

in which it appears is considered as local. The

scope is also local. A local variable is valid only

within that function block in a method.

iii. Number of conditional statements in a method

The features of a programming language in computer

science are conditional expressions, conditional

statements and conditional constructs. These

features perform computations which are diverse

depending on a programmer specified Boolean

condition evaluation. It evaluates a Boolean

value true or false.

iv. Number of loops identified in a method.

If a statement is executed as many times as required,

then it is considered to be a looping statement.

SSRG International Journal of Mobile Computing & Application (SSRG – IJMCA) – Volume 2 Issue 3 Sep to Dec 2015

ISSN: 2393 - 9141 www.internationaljournalssrg.org Page 17

The looping statement is useful when some

constraints which have a specific value need to

be checked.

v. Number of passing parameters in a method.

The function called includes the specification of the

function name which is followed by the function

call operator and other values of data which the

function expects to receive. These values become

the parameters which are essential for the

function. The whole process is known as passing

arguments to the function.

vi. Number of function calls in a method.

An expression which not only contains a simple type

name but also a parenthesized argument list is a

function call. The argument list may contain

many expressions which are separated by

commas. This could also be empty in some

cases.

vii. Number of times the function has been called

from other methods.

If a function is declared and defined it can be called

from anywhere and any point within the

program, main function, from another function

and even from itself. This involves specification

of the name of the function followed by function

call operator and other data values which are

expected to be received by the function.

viii. Number of return statements in a function.

The processing of the current function is ended by a

return statement. It returns control to the caller

function from the called function. A return

statement which contains an expression is

included in a value returning function.

ix. Number of inheritance in each method.

Inheritance is a way to compartmentalize and reuse

code by creating collections of attributes and

behaviours called objects that can be based on

previously created objects.

x. Number of virtual functions in a method

 A virtual function or virtual method is a function

or method whose behaviour can be overridden

within an inheriting class by a function with the

same signature.

xi. Number of overriding functions in a method.

 Amethod can only be written in Subclass, not in

same class. The argument list should be exactly

the same as that of the overridden method. The

return type should be the same or a subtype of

the return type declared in the original

overridden method in the super class.

xii. Number of overloading constructors in a method

Overload constructor is multiple constructors which

differ in number and/or types of parameters.

However, for each diverse method that is

identified, the metrics are computed and the

corresponding values are stored in a database. Once the

metric values are computed, same set of values are

recognized by making a comparison of the records in

the database. These metric values may be same for two

different methods which are not similar, manual

analysis has to be done to finalize duplicated functions.

The proposed approach was able to identify most of the

duplicate methods. Textual comparison is done for the

short listed set of candidates to identify as clone pairs.

Table 3.1 shows the metric values for the code shown

in Figure 3.2.

SSRG International Journal of Mobile Computing & Application (SSRG – IJMCA) – Volume 2 Issue 3 Sep to Dec 2015

ISSN: 2393 - 9141 www.internationaljournalssrg.org Page 18

Table 3.1: Metric values for the code shown in Figure. 3.2

Textual Analysis

In textual analysis line by line comparison is

done which means total lines are textually compared to

each other using hash function for strings. The hash

function is used to identify the duplicated entries in a

Table; the same has been used here to identify the

duplicates in code. This is done by using an efficient

string matching algorithm (suffix tree string search

algorithm using hash function to map similar strings).

The transformation of the source code is not

used in textual approach before the application of

comparison. In the process of clone detection, the

source code is taken directly for comparison. The text

based approach which is considered to be an efficient

technique can detect only Type I clones.

This approach cannot be taken for granted as

the structural type of clones which have diverse codes

but same logic cannot be detected. Inorder to trace Type

II clones, textual analysis techniques can be modified

and utilized. These modifications can include

normalization of the statements. After textual analysis

the clones that are type I are identified. In textual

analysis line by line comparisons are made but to

identify different clones the language constructs must

be compared. These constructs are divided into tokens.

Token Parsing Technique
In this approach the source code has been

transformed into tokens which are similar to tokens of

lexical analyzer which is present in a compiler. In this

approach parameter tokens like java variables and

identifiers are divided into transformed source code for

direct comparison, and the other tokens which are non-

literals are identified by applying a hash function on

them. These tokens are encoded with a position index

of their presence in the source code line. Finally these

indexed tokens are represented in suffix tree or abstract

syntax tree for comparisons and clones are detected

Clone Detection Using Tree Based Analysis

Actual process of clone detection starts with a

string matching technique. Token parsing and graph

matching techniques are applied on the processed data.

Though many string matching techniques are available,

thisapproach concentrated on suffix tree construction

method to find exact strings, substrings and

parameterized strings.

Token parsing is the process of dividing the

strings into tokens as per their language constructs.

These tokens have been compared with other tokens of

the original program. Any way the white spaces and

comments are removed in the earlier phases of the

process, only tokens of the language constructs are

compared. Finally Graph matching technique is applied,

which is done with ease using Abstract syntax tree

method. Abstract syntax tree (AST) method is used in

string matching technique for textual detection method

of clone detection technique.

Suffix tree method alone cannot find all

clones. In the proposed method, an Abstract Syntax

Tree is used in combination with suffix tree to find all

https://en.wikipedia.org/wiki/Rabin%E2%80%93Karp_string_search_algorithm
https://en.wikipedia.org/wiki/Rabin%E2%80%93Karp_string_search_algorithm
https://en.wikipedia.org/wiki/Rabin%E2%80%93Karp_string_search_algorithm

SSRG International Journal of Mobile Computing & Application (SSRG – IJMCA) – Volume 2 Issue 3 Sep to Dec 2015

ISSN: 2393 - 9141 www.internationaljournalssrg.org Page 19

the clones. The following section explains how a string

matching technique works.

String Matching Technique

To make string based techniques independent

of programming languages basic string transformation

and comparison algorithms are used. The techniques

which are used in this category are different in the

string comparison algorithm. Comparison of calculated

signatures per each line is one way of identifying

substrings that are matching. The other way of

comparison is line matching, in which there are two

variants. This type of comparison is considered as a

representative category because general string

manipulations are used.

The discovery of code fragments which

compute the same result is a major problem in clone

detection. In order to go ahead with this, the parts

which are willing to be compared must be first

fragmented. Later it has to be determined whether the

fragment pairs are equivalent. The determination of a

single fragment is not possible, so determination of two

arbitrary program fragments under the same

circumstances is impossible. Hence, it is difficult or

not possible in theory to determine that they compute

identical results. Deep semantic analysis traditionally

bounded by time limits can be utilized for equivalence

detection. This can be done because false negatives are

acceptable. In order to go ahead with equivalence

detection semantic definitions, theorem provers, etc.,

are essential. These are considered as considerable

infrastructure for detection of equivalence.

If many false positives cannot be produced, simpler

definitions of code equivalence may be sufficient. This

denotes that clone detection can be done by more

syntactic methods. The source lines can also be

compared. If source lines are equal, it is assumed that

the cloning process has not introduced any changes in

identifiers, comments, spacing or other non – semantic

changes. Hence this restricts clone detection to exact

matches.

Due to this, detection of near miss clones is

failed. Apractical possibility is to compare program

representations with explicit control and data flows. In

order to modify large software systems and to build

transformational tools (DMS) semantic designs are used

[9]. Before source programs are transformed, such tools

are typically parsed into ASTs as a first step.

Investigating and comparing syntax trees is chosen

because of the early product state of the proposed

method. This enables avoiding confusion and

uninteresting changes at the lexical level.

The clone detection process consists of few

steps. In the first step, the source code is parsed and an

AST is produced for it. In order to find clones, three

main algorithms are applied. The first algorithm is

Basic algorithm. This is used to detect sub-tree clones.

The second algorithm is sequence detection algorithm.

This is used essentially to detect statement and

declaration sequence clones. The third algorithm traces

out for more complex near-miss clones. This attempts

to generalize combinations of other clones. The

remaining clones which are detected can be pretty

printed. Clone removal is not carried out. The above

mentioned algorithms find three different string

matching patterns.

i. Exact string matching

ii. Parameterized matching and

iii. Substring matching

Exact String Matching

 The first variant of line matching is Exact

string matching. In this, both detection phases are

straight forward. Only minor transformations using

string manipulation operations are applied. They

operate using very limited knowledge about possible

language constructs. The removal of empty lines and

white spaces is known as transformation. When

comparison is done, all lives are compared with one

another with the help of a string matching algorithm.

This results in large search space. The space is

generally reduced using hashing buckets. Before all the

lines are compared, they are hashed into one of the

possible buckets. Later, all the pairs in the same bucket

are compared.

Parameterized Line Matching

Another variant of line matching is

parameterized line matching. This detects code

fragments which are both identical and similar. They

can be considered as changeable parameters because

identifier names and literals undergo a change when a

code fragment is cloned. Hence, identical fragments

are allowed. These fragments differ only in the naming

of these parameters. The set of transformations is

extended with an additional transformation to enable

parameterizations. This replaces all identifiers and

literals with one common identifier symbol like $P.

The comparison becomes independent of the

parameters because of this additional substitution.

Hence, no additional changes are required to the

comparison of algorithm of itself.

Substring Matching

After source text normalization substrings are

generated. The process of substring generation is

SSRG International Journal of Mobile Computing & Application (SSRG – IJMCA) – Volume 2 Issue 3 Sep to Dec 2015

ISSN: 2393 - 9141 www.internationaljournalssrg.org Page 20

controlled by the user. In a substring, the length of the

characters has to be mentioned where as in a large

system the number of lines has to be mentioned as a

parameter for generating substrings. With these

substrings a suffix tree is constructed to find the

potential clones. Sometimes these identified substrings

are overlapped due to the length that has been

mentioned.

Analysis of Clone Pairs and Clone Clusters

Identifying the potential clones and clone pairs

is done by making a line by line comparison for the

normalized and standardized source code clone

detection method for Type I. In this process, the

identical code fragments are chosen leaving aside

differences in comments, layout and white spaces. The

comparison of templates is done for Type II clones. In

the process, only the syntactically identical fragments

are taken, leaving aside the identifiers, types, literals,

layout, white space, and comments. For the fragments if

there are some modifications and some similarities,

they must be considered as Type III clones by

comparing template with exact code. The code

fragments which are copied with some changes like

modified, removed or added statements along with

differences in types, identifiers, white space, literals,

comments and layout are considered as Type III clones.

If the code fragments are totally different but

the output is similar for different inputs, then such

fragments are considered as Type IV clones. When the

functionalities of the two code fragments are similar or

identical, then they are regarded as Type IV clones.

When similar computation is performed by

two or more code fragments and the implementation is

done by various syntactic variants, then they are said to

be Type IV clones. Clustering is done separately for

each identified clone method. These clusters are

numbered uniquely. A clear image as to how the

methods have been cloned can be understood by

clustering. This enables a review process that is easier.

Clone Refactoring

The clarifications of systems which are

affected because of duplicated code are supported by

very few methods. A code duplication detection method

is proposed to guide the process of refactoring. The

purpose is not to completely automate the process, but

to help re-engineering process. This is to stress the fact

that a first analysis of the situation can be done and

provide a solution if possible.

Extract method and Pull up method which are

considered as existing refactoring patterns are used to

remove code clones. In Extract method, a fragment of

source code is extracted and redefined as a new method.

This type is applied to very lengthy method or a part

which is too complex. Extract method is used as a

common new method in order to extract code clone

fragments.

In Pull–Up Method, the methods which are

defined in child classes are pulled up to its parent class.

Because of design pattern, this pattern is performed.

When two or more child classes have a common parent

class and when they have a clone method, pull up

method is used. This is used to remove clones.

In order to trace out the refactoring pattern

applicable to each code, the characteristics are

measured. For instance,Extract Method means

extraction of a code fragment. The variables defined

outside it are not referred and assigned in it. When such

variables are used, it is compulsory to provide them as

parameters for the new method. Hence, the amount of

such variables is measured.

The removal of identical methods in child

classes to the parent class is known as Pull–Up Method.

It is obligatory that the child classes have a common

parent class. Hence, the position and distance of clones

in the class hierarchy is measured. This characterization

enables to determine how each clone can be removed.

The decision of how a code clone must be addressed for

refactoring depends totally on the metric analysis.

These methods of refactoring approaches are

clearly discussed in detail in the literature of code

cloning.

Conclusion

The proposed methodology uses a systematic

approach like any other model to detect clones. It

allows preprocessing the statements to remove white

spaces, comments and normalization to reduce number

of comparisons. It is effective to detect all types of

clones by textual and metric analysis. It also uses

template conversion to reduce the syntax tree

comparisons so that it is recognized as light weight

method. It shows a solution in the form of refactoring

for the problem of code cloning.

REFERENCES
[1] IEEE. Standard for Software Maintenance.IEEE Standard

1219, 1998.

[2] ISO/IEC. Software Engineering - Software Maintenance.

ISO/IEC 14764, 1999.

[3] L. Arthur. Software Evolution: The Software Maintenance

Challenge. Wiley, 1988.

[4] S. W. L. Yip and T. Lam.A software maintenance survey. In

Proc. of the 1st Asia-Pacific Software Engineering

Conference, pages 70–79, Dec 1994.

SSRG International Journal of Mobile Computing & Application (SSRG – IJMCA) – Volume 2 Issue 3 Sep to Dec 2015

ISSN: 2393 - 9141 www.internationaljournalssrg.org Page 21

[5] S. Chidamber and C. Kemerer.A metric suite for object-

oriented design. IEEE Transactions on Software Engineering,

25(5):476–493, Jun 1994.

[6] ClearCase. http://www-

306.ibm.com/software/awdtools/clearcase/.

[7] Robert Tairas, “Clone detection and refactoring”, Proceeding

of OOPSLA '06 Companion to the 21st ACM SIGPLAN

symposium on Object-oriented programming systems,

languages, and applications, pp. 780-781, New York, USA,

2006

[8] Chanchal K. Roy, James R. Cordya and Rainer Koschkeb,

“Comparison and Evaluation of Code Clone Detection

Techniques and Tools: A Qualitative Approach”, Journal

Science of Computer Programming, Vol. 74, No.7, pp. 470-

495, May 2009.

[9] Ira D. Baxter, Andrew Yahin, Leonardo Moura, Marcelo

Sant Anna and Lorraine Bier, “Clone Detection Using

Abstract Syntax Trees”, Proceedings of the International

Conference on Software Maintenance, pp. 368, Washington

DC, USA 1998

[10] G.Anil Kumar, Dr.CRK.Reddy, Dr.A.Govardhan “Code

duplication in Software Systems: A survey”, International

Journal of Software Engineering Research & Practices Vol.2,

Issue 1, Jan 2012

[11] M. Fowlor. Refactoring: improving the design of existing

code. Addison

Wesley, 1999.

[12] R. H. Page. http://www.refactoring.com/.

[13] MagielBruntink, Arie van Deursen,Remco van Engelen, and

Tom Tourwe, "On the Use of Clone Detection for Identifying

Crosscutting Concern Code", Ieee Transactions On Software

Engineering, Vol. 31, No. 10,pp. 804-818, October 2005

[14] Abouelhoda M.I., Kurtz S.andOhlebusch E, "The enhanced

suffix array and its applications to genome analysis", In Proc.

Workshop on Algorithms in Bioinformatics, vol. 2452,pp.

449–463, Berlin, 2002

[15] Hamid Abdul Basit and Stan Jarzabek, "Detecting Higher-

level Similarity Patterns in Programs", European Software

Engineering Conference and ACM SIGSOFT Symposium on

the Foundations of Software Engineering, pp 1-10 Lisbon,

Sept. 2005

[16] Lingxiao Jiang, Zhendong Su and Edwin Chiu, “Context-

based detection of clone-related bugs”, Proceedings of the

6th joint meeting of the European software engineering

conference and the ACM SIGSOFT symposium on The

foundations of software engineering, pp. 55 – 64, New York,

USA, 2007.

[17] Chanchal Kumar Roy and James R Cordy, “A Survey on

Software Clone Detection Research”, Computer and

Information Science, Vol. 115, No. 541, pp. 115, 2007

