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 ABSTRACT : This paper presents an 

experimental and numerical study of the 

mechanical behavior of ASTM A633 high-strength 

low-alloy (HSLA) steel plate specimens with edge 

crack at the middle during the tensile test. 

Experimental analysis and numerical method are 

used to analyze the load-displacement curve for the 

steel specimens with various edge crack length. 

Four A633 HSLA steel plate specimens are tested 

in FIU’s Material Laboratory using a high 

capacity universal testing machine, and results are 

compared with the mesh-free and finite element 

results. A mesh-free method called Reproducing 

Kernel Particle Method (RKPM) is used to 

calculate the J-integral and load-displacement. 

RKPM is a mesh-free technology which is used to 

analyze the domain of interest only with particles 

using Ramberg-Osgood stress-strain relationship. 

A numerical analysis was performed using the 

finite element program ANSYS to exhibit the 

efficacy of RKPM in analyzing crack problems. 

This paper studies the effect of crack length on the 

load-displacement curve and the J-integral of A633 

HSLA specimens after tensile tests. Results of load-

displacement curves and J-integral curves found 

using the experimental, finite element, and mesh-

free methods were compared and validated against 

each other for samples with various crack lengths.  

Keywords - Tensile Test, A633 HSLA, Steel Plate 

Specimens, Edge Crack, Reproducing Kernel 

Particle Method, Mesh-free Technology, Load-

displacement Curve, J-integral, Finite Element 

Method. 

I. INTRODUCTION 

In recent years, mesh-free methods have been 

increasingly utilized in solving various types of 

boundary value problems. One of the oldest 

approaches used in mesh-free methods is the 

Smooth Particle Hydrodynamics (SPH), which was 

first introduced in 1977 by Lucy Gingold and 

Monaghan [3]. Recent advances in mesh-free 

methods are: element-free Galerkin method 

(EFGM) by Belytschko [4] et al at 1994, 

reproducing kernel particle method (RKPM) by 

Liu, et al. [2] at 1996, and mesh-less local Petrov-

Galerkin (MLPG) by Atluri, et al. [5] at 1999. 

Among these methods RKPM and EFG have been 

demonstrated as most suitable for studying crack 

problems in structural analysis.  

 

In fracture mechanics problems, energy release rate 

is the energy dissipated during fracture. The 

concept of energy release rate was first introduced 

by Cherepanov (1967) and Eshelby (1970), but it 

was Rice [6] who first used this independent path 

integral in fracture mechanics problems. In 1968, 

Rice [6] presented the concept of energy release 

rate by means of J-integral.  The J-integral 

represents a way to calculate the strain energy 

release rate, or work (energy) per unit fracture 

surface area, in a material. An important feature of 

the J-integral is that it is path independent and it 

helps to calculate the J-integral at a distance far 

from the crack tip. In linear-elastic fracture 

mechanics, the J-integral has a direct relationship 

with the stress intensity factors (SIFs). In this study 

the J-integral has been used to calculate the SIF at 

the crack tip. 

 

Hugo Ernst [7] and et al. (1979) found the 

dimensional relationships between load, crack 

length, and plastic displacement in a cracked 

member or specimen. He also analyzed load-

displacement relationships to determine J-R curve 

and material properties. David J. Macon [8] also 

found and expression for the J-integral of a 

nonlinear elastic material for an advancing crack in 

a tapered double cantilever beam fractured 

specimen and how these energies correlates to the 

crack position. That is why the J-integral and load-

displacement curves are evaluated in this research 

at the same time using mesh-free and finite element 

methods. 

 

To evaluate the load-displacement curve, a tensile 

test is needed to be carried out for the samples. The 

tensile test is an important and widely used test to 
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determine the mechanical properties of steel 

material. In a tensile test, a specimen is pulled and 

the specimen deformation and applied load are 

recorded until its fracture in order to draw the load-

displacement and stress-strain curve. The stress-

strain diagram indicates the yield strength, ultimate 

tensile strength, elastic modulus, and ductility of 

the material. Metals including carbon steel have a 

linear stress-strain relationship up to the yield 

point. In some steels the stress falls after the yield 

point. After the yield point, steel will undergo a 

period of strain hardening, in which the stress 

increases again with increasing strain up to the 

ultimate strength. If the material is unloaded at this 

point, the stress-strain curve will be parallel to that 

portion of the curve between the origin and the 

yield point [9, 10].  

 

Celentano [11] presented a large strain thermo-

viscoplastic formulation for the analysis of the 

solidification process of spheroidal graphite (S.G) 

cast iron in a green sand mold. This formulation 

includes two different non-associate constitutive 

models in order to describe the thermo mechanical 

behavior of each of such materials during the 

whole process. The performance of these models is 

evaluated in the analysis of a solidification test. 

Gozzi et. al [12] studied concerning the mechanical 

behavior of extra high strength steel. This is 

investigated by means of biaxial testing of flat 

cross-shaped specimens in the full σ1-σ2 plane, a 

concept developed earlier at Steel Structures, Luleå 

University of Technology. Furthermore, new 

specimen designs had to be developed to enable 

testing of a material with high yield strength and 

low ultimate over yield strength ratio, such as the 

extra high strength steel Weldox 1100. The tests 

are performed in two steps: one initial loading 

followed by unloading and a subsequent loading in 

a new direction. The test results, containing data 

from 15 biaxial tests, are characterized by a slightly 

anisotropic initial yield criterion where the proof 

stress in compression is consequently somewhat 

higher compared to the results in tension. 

 

The main objective of this work is to study the 

effect of crack length on the load-displacement 

curve of A633 HSLA specimens after tensile tests. 

This objective is evaluated using finite element 

method, meshless method and experimental work. 

 

II. Reproducing Kernel Particle Method 

(RKPM) 

SPH method first was introduced in 1977 by Lucy 

Gingold and Monaghan [3]. In the SPH method, 

system response is reproduced by invoking the 

notion of a kernel approximation for f(x) on domain 

ῼ by Equation (1): 

 

   


 dxuxu a

R )(

                    (1)                                                                                                                                               

where u
R
(ξ) is the approximation function, ῼ is the 

domain of interest, ϕa(ξ-x) is a kernel function, and 

a is the dilation parameter. This method is not 

accurate on the boundary conditions, or when few 

particles are considered on the domain unless the 

lumped volume is carefully selected, which is very 

hard and time consuming. RKPM is an alternative 

method to formulate the discrete consistency that is 

lacking in the SPH method. The foundation of the 

RKPM was proposed by Liu et al. [2] in 1993 and 

applied to computational mechanics. RKPM 

modifies the kernel function by introducing a 

correction function C(ξ;ξ-x). Adding the correction 

function in the kernel approximation significantly 

enhances the solution accuracy in comparison to 

the SPH method. The method of using corrected 

kernel approximation in reproducing a function is 

called Reproducing Kernel Particle Method. The 

reproduced kernel function of u(x) can be written 

as Equation (2): 

 

   


 dxxxuuR  ;)(

        (2)

                                

 

where  x ;  is the modified kernel function 

on domain ῼ that is expressed by Equation (3): 
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where )( xa   is window function, 

 xC ;  is a correction function, and a is the 

dilation parameter of the kernel function. Dilation 

parameter is defined in order to give more 

flexibility for the window function, and it will also 

control the expansion of the window function on 
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the domain. The correction function  xC ;  

proposed by Liu et al. is shown by a linear 

combination of polynomial including some 

unknown coefficients. These unknown coefficients 

will be computed after imposing the boundary 

conditions. In order to get the equations for 

reproducing an arbitrary function, consider the 

following Taylor series expansion: 

 
    









0 !

1
)(


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               (5)                                                                                

 

 

Substituting Equation (5) into Equation (2) leads 

to: 
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In order to simplify Equation (6), the α
th

 degree 

moment matrix of function ϕa̅(ξ;ξ-x) is defined by: 

     


 dxxxm a 

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                 (7)                                                                                               

 

Then Equation (6) will be rewritten in the form of 

Equation (8): 
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In order to exactly reproduce the n
th

 order 

polynomial function, the following conditions need 

to be satisfied; 
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Or in summary: 

  nm o ,...,2,1,0;                                                                                                      
(10) 

If a correction function including n+1 unknown 

coefficient is defined, n+1 Equations (10) can be 

satisfied simultaneously. The correction function is 

defined by Equation (11): 
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It can be also expressed in matrix form: 

)()();(  xPxC T     

                                                             (12)

 where P
T
(ξ - x) is a set of basic functions and 

including n+1 components and β(ξ) is a set of 

unknown coefficient. Substituting Equation (12) 

into Equation (10) and considering definition of 

moment matrix in Equation (7) leads to Equation 

(13): 
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From Equation (13) the unknown coefficient sets of 

βi(ξ) are obtained. Equation (13) can also be 

rewritten as Equation (14). 
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Or it can be shown in matrix form as Equations 

(15) and (16): 
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Moment matrix M can be shown as Equation (17): 

dxxxPxPM a

T )()()()(   

 
                    (17)                        

 

Since the window function is always positive, all 

the components of moment matrix are linearly 

independent with respect to ϕa. Therefore, the 

moment matrix is nonsingular. Hence, 

simultaneously solving Equation (16), the unknown 

coefficient sets of βi(ξ) are obtained: 

 

)0()()( 1 PM  
                

(18)

                                           
 

After obtaining the unknown coefficient sets βi(ξ), 

the correction function can be easily calculated 

from Equation (11). After obtaining the unknown 

coefficient sets of βi(ξ), the correction function is 

determined and the function u(x) or its derivatives 

can be obtained using the reproducing function. 

Equation (18) can be discretized in order to apply 
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to various problems. Equation (19) is the result of 

the discretization in the reproducing equation using 

the trapezoid integration method.   

     
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where NP is the total number of particles 

distributed throughout the domain ῼ. Equation (19) 

can be rewritten as Equation (20): 
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and ψi(ξ) is called shape function:
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where i is the particle number on the domain, xi is 

the coordinate of that particle, ϕa(ξ-x) is the kernel 

function, and ψi(ξ) is defined as the shape function 

of particle i with coordinate of ξ. Two most regular 

kernel functions which are used in mesh-free 

methods are the Gaussian and Spline functions. All 

the Spline functions are symmetric around x=0 

axis. In this study, the cubic Spline function is 

employed as the kernel function, which is: 
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By considering Equation (20) and deriving from 

the Equation (21) with respect to , the definition 

of the derivative of the 
th 

shape function becomes: 
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in two dimensional RKPM ix = iS , where iS  

is the area pertinent to the i
th

  particle. In a random 

distribution of particles, the computation of iS  is 

problematic. Hence for simplicity iS = 1 has 

been mainly incorporated in the literature [13].  

 

 

 

III. Assessment of Plane-Strain Condition 

Using RKPM 

The main purpose of fracture mechanics is to 

determine the status of cracks during different 

loading stages. Stress, strain, displacement, and 

energy fields are required to obtain a driving force 

for crack growth. SIF and J-integral are two 

important concepts of crack problems. SIF is used 

to quantify the stress field around the crack tip. 

Many methods have been developed to determine 

the stress intensity factor. One of these methods to 

calculate the stress intensity factor is the J-integral. 

If a node is considered with distance r and angle α 

with the x-axis in the vicinity of the crack edge, 

then the stress field in this node is calculated 

according to the Irwin method in different crack 

modes [14]. Therefore, stress field in the crack tip 

for linear elastic materials is calculated by Equation 

(24): 

)(
2




 ijij f
r

K
                 

                                         (24) 

K parameter is the SIF for different modes in the 

crack tip, and shown KI, KII, and KIII are for the 

first, second and third mode. Values of these 

coefficients are determined according to the 

dimensions and loading condition of the problem. 

Therefore, the SIF relationship is calculated from 

the analysis of the geometrical and loading 

condition. KI, KII, and KIII are physically the 

intensity of force transfer at the crack tip due to 

creation of the crack in the material. SIF plays an 

important role as a failure parameter. Rice (1968) 

also showed that this integral has linear elastic 

attitude with the energy release rate and was 

independent of the path around a crack. The two-

dimensional J-integral was defined as Equation 

(25): 
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x

u
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i
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where W is strain energy density, and u is the 

displacement vector. The strain energy density is 

given by: 
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And it can be represented equally by the alternate 

forms 



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where  is the work producing of load point 

displacement for the load, P.  In the analysis, it is 

convenient to divide J-integral into elastic and 

plastic parts, Jel and Jpl. then the J-integral form in 

Equation (27) may be written: 
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The first item in the Equation (28) is the linear-

elastic component, and the second term is the 

nonlinear-plastic component. The second term in 

Equation (28) can be reinterpreted by referring to 

Figure 1. This Figure shows load-displacement 

curves for two different cracks sized a and a+da. 

The area between is noted to be Jplda, which is 

integrated over elements of the area by [7]: 

 

                                     

 

              (29)                                                                                      

 

Figure 1: Load-displacement for two different 

crack lengths [7] 

 

An important feature of the J-integral is that it is 

path-independent, and this helps to calculate the J-

integral at a distance far from the crack tip. If Γ is 

considered as path-independent around an inclined 

crack tip, which has angle of α with the x-axis, then 

the J-integral will be can be shown in matrix form 

as: 
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σn, and τn are the stresses in an arbitrary direction 

which has angle of α with x-axis. 
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un, and νn are displacement in the same direction: 

 sincos vuun                

 sinsin vuvn        (32) 

                               

Substituting Equations 31 and 32 in Equation 30 

the J-integral will be easily calculated. Figure 2 

shows that Q1Q2Q3Q4 is considered as a path for 

the J-integral in a fully elastic domain.  

 
Figure 2: J-integral Path at the Crack Tip 

First, the shape of the integral path is described, 

and then the value of integral is calculated on each 

separate path for two plane stress and plane strain 

condition. It is obvious that stress is  .D in 

elastic condition and it can be stated in matrix 

form: 
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Then strain energy density is calculated from: 
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 TW
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Substituting Equation (33) in Equation (34), strain 

energy density will be: 
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And the J-integral on the closed path is: 
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With what was stated previously, and using a 

FORTRAN program that was written for solving 

the liner-elastic on a steel plate with specified 

dimension using RKPM, the stress, strain, and 

displacement fields in x and y directions in all 

computational particles and the J-integral under 

plane-strain conditions are obtained. Penalty 

method is used to apply the boundary conditions. 

Penalty coefficient, β, is adopted as 10
6
 E, in which 

E is Young’s modulus. To construct the shape 

functions in the vicinity of the crack and crack-tip, 

the diffraction criterion is employed and the crack 

tip region is also refined using more particles 

arrangements. A rectangular steel plate is selected 

with dimensions of 0.5   1.5 in
2
. An edge crack is 

considered with various crack length in the middle 

of the plate. A tensile stress of 60 ksi is applied at 

the bottom and the top of the plate. The loading 

increment is set to 5 ksi. Roller constraint is used 

for the plane in front of the crack, and pin 

constraint is used for the front face of the plate 

(Figure 3a). Spline 3
rd

 degree is used as a window 

function. The modulus of elasticity of the plate is 

30,000 ksi, Poisson ratio of 0.3 and hardening 

parameter n=10. The problem is investigated with 

800 particles uniformly scattered on the surface of 

the plate, and 72 particles positioned on the circles 

with angles of 30 degree around the crack tip as 

shown in Figure 3b. Figure 4 shows the load-

displacement curve for various crack length using 

RKPM. 

(a)        

(b)  

Figure 3: (a) Domain and Boundary Conditions, (b) 

Particle Arrangement 

 Figure 4: Load-displacement Curve, 

RKPM Results 

IV. Finite Element Model 

A numerical analysis was performed using the 

finite element program ANSYS12 to exhibit the 

efficacy of RKPM in analyzing crack problems. 

The model considered the measured geometry, 
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material properties and initial edge crack at the 

middle of the plate. Quadratic plane strain elements 

were used throughout the entire domain with a 

mesh size of 0.01  0.01.  Ideal boundary 

conditions were chosen as shown in Figure 3. A 

cubic steel plate is selected with dimensions of 

1.273.81 cm
2
 (1.50.5 in

2
) and thickness of 0.64 

cm (0.25 inch) as shown in Figure 5. An edge crack 

is considered with various lengths of 0.254, 0.381, 

0.508, and 0.635 cm (0.1, 0.15, 0.2 and 0.25 inch) 

in the middle of the plate. A tensile force of 35.6 

KN (8000 lbs) is applied at the bottom and the top 

of the plate. Thirteen thousand and forty five 

(13045) elements are used for the sample with 

0.2W crack length. One quarter (1/4) of the sample 

is modeled in ANSYS and finer mesh is used in the 

crack tip (Figure 6). Figures 7 and 8 show the stress 

and displacement contour in Y-direction 

throughout the plate for samples with 0.2W and 

0.4W crack lengths using ANSYS. Figure 9 shows 

the load-displacement curve for various crack 

length using FEM. 

        
Figure 5: 3-dimensional Crack Modeling in 

ANSYS                

    
Figure 6: Meshing and Boundary Condition 

 

(a) a=0.2W  

  
(b) a=0.4W 

Figure 7: Stress Contours in Y-direction  

 
(c) a=0.2W 
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(d) a=0.4W 

Figure 8: Displacement Contours in Y-direction  

 

 Figure 9: Load-displacement Curve, Finite Element 

Results 

 

Figure 10 shows the J-integral value for various 

crack length using FEM and RKPM. It can be seen 

that the FEM results are higher than RKPM for J-

integral values. 

 

 Figure 10: J-integral versus Crack Length using 

FEM and RKPM 

 

Experimental Work 

In the laboratory, four steel samples are tested 

using a high capacity universal testing machine 

shown in Figure 12. The tests were run at a 

constant displacement rate of 0.8 mm/sec. The 

width of the plates is 0.5 in and their length is 1.5 

in with 0.25 inch thicknesses. Tests were carried 

out on four samples with various crack lengths: (a 

is the crack length and W is the width of the plate) 

 

Sample A1: a=0.2W, Sample A2: a=0.3W, Sample 

A3: a=0.4W, Sample A4: a=0.5W 

 

 
Figure 11: Samples A1 (a=0.2W), A3 (a=0.4W) 

 

The steel specimens with the edge crack were 

tested using a universal testing machine at FIU’s 

Material Laboratory. This machine is designed for 

accurate testing under axial loads (tensile and 

compression testing) up to 31 KN (7000 lbs) with 

standard displacements of 100 mm (3.94 in) as 

shown in Figure 9. The plate dimensions were 2 cm 

in length, 1 cm in width, 0.5 cm in thickness with 

an edge crack length of 0.2 cm. The steel material 

is ASTM A36 with yield strength of 250 MPa (36 

ksi), and ultimate strength of 400 MPa (58 ksi) [1]. 

The plate was tested with a rate of 0.8 mm/sec, and 

a maximum force of 30 KN. Figures 13 through 17 

shows the force versus displacement plots for this 

plate. 
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Figure 12: Universal Tensile Testing Machine 

 

 
Figure 13: Load-displacement Curve, Experimental 

Results 

 

Figure 14 shows the ultimate load of the A633 

HSLA samples with various crack lengths. The 

experimental results show that the ultimate 

strengths of samples A1 and A2 is 12.5 percent, of 

sample A3 is 25 percent, and of sample A4 is 50 

percent less than that of the sample without any 

cracks. 

 

 Figure 14: Ultimate Load versus Crack Length 

 

V. CONCLUSION 

The results of load displacement curves found 

using the experimental, finite element and mesh-

free methods for samples with various crack 

lengths were found to be consistent. The yield 

strength, ultimate tensile strength, and fracture 

stress showed to decrease with the increase in the 

crack length.  

 

The ultimate load of A633 HSLA samples with 

various crack lengths was shown. The experimental 

results show that the ultimate tensile strengths of 

samples A1 and A2 is 12.5 percent, A3 is 25 

percent, and A4 is 50 percent less than the ultimate 

tensile strength of sample without crack. 

 

The J-integral, which is the energy discharge rate 

for a fully elastic analysis is less than the elastic-

plastic analysis using the Ramberg-Osgood model. 

The reason is that in the elastic-plastic condition, 

the material at the crack tip experiences more strain 

than in the fully elastic condition, and more energy 

discharge for very small crack growth. 
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