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Abstract  

Direct numerical simulation of turbulent 

flow, wake flow, using the random vortex method 

involving vortex blobs is presented and implemented 

in this paper. The method is used to perform high-

resolution simulations of incompressible two-

dimensional, Navier-Stokes fluid flows. In the random 

vortex method, vorticity of the flow field is the 

primary variable. After generation on the cylinder 

wall, it is followed in two separate fractional time 

step in a Lagrangian approach, namely convection 

and diffusion. In this paper, the developed random 

vortex method applied to the flow past one 

impulsively started circular cylinder. the flow 

simulations are carried out in the high Reynolds 

number Re=140000. Instantaneous velocity vector 

field and Instantaneous velocity and position of each 

vortex element in the flow at same time are plotted. 

The code has been validated by using experimental 

data to demonstrate accuracy of produced solution 

without the effects of grid-based numerical diffusion.  
 

Keywords — Turbulence, Vortex, Random vortex, 

mesh-free, Vorticity. 

I. INTRODUCTION 

There is an involvement of lot of 

engineering problems pertaining to gases or liquids 

over solid bodies. If we consider the following 

examples i.e. air flow over cars and airplanes, the 

wind blowing over building and bridges, the slashing 

of sea waves against an offshore oil rig etc... There 

isn’t often any parallel connectivity between these 

flows and the contour of solid surface completely but 

instead away from these flows it creates a wake such 

as behind a ship. Conventional numerical schemes 

don’t come in handy while operating such separated 

flows. 

 

For the mesh-based methods as Re increases 

the scales of fluid motion reduce in size. For 

obtaining adequate solutions, the numerical schemes 

must model the smallest scales of motion and hence 

there is an increase in the computational power that is 

needed to solve the problem with the increase in 

Reynolds number. The numerical schemes are mostly 

mesh-based. As mentioned above there is some 

difficulties with grid-based which avoid in Vortex 

methods. 

 

Vortex methods are successful and attractive 

approach for the numerical simulation of 

incompressible viscose flow at high Reynolds number 

(Sarpkaya [18], Lorena A. Barba [14] and Leonard 

[12]) [11]. Vortex methods used a vorticity-velocity 

formulation .The vorticity field is discretized into a 

finite number of vortex elements with the specified 

strengths (rather than specifying it on a fixed grid). 

The velocity field is obtained from the vorticity field 

and track of a finite number of vortex elements are 

kept in a Lagrangian reference of frame. As, the 

vorticity is tracked in order to displace of individual 

particles, There is no necessity for a fixed grid on 

which the governing differential equations and the 

unknowns are identified. Rvm (random vortex 

method) is one off simple and completely grid-free 

vortex method, in which each time step is divided 

into two steps. In the first time step, the mechanism 

of diffusion is frozen and displacement of the center 

of elements which is due to convection of the flow 

field is calculated by applying fourth order Runge-

Kutta scheme and in the second time step, the effect 

of diffusion is considered using a random walk.  

        

The concept of random vortex and vortex 

blob is presented by Chorin [5]. The theoretical 

analysis of the random vortex method for two-

dimensional fluid flow with a free-space boundary is 

investigated by Goodman [9] and Long [13]. There 

are several advantages of vortex methods are 

investigated by Puckett, E. G. [16] Beale and Majda 

[2] Dutta [7]. The mathematical analyses of 

convergence and accuracy for inviscid fluid flow 

have been investigated by Anderson and Greengard 

[1], Hald [10], Cottet et al. [6]. Fogelson and Dillon 

[8], Roberts [17], Mortazavi et al. [15] and Leonard 

[12]. 

 

II. GOVERNING EQUATIONS 

By applying Curl Operator on Navier Stocks 

equations and then merging it with incompressible 

continuity equation we can gain vorticity transfer 

equation in two-dimensions. 
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As it can be seen in equation (3), for solving 

the vorticity transfer equation there is no need to 

calculate the pressure field. By removing dimension 

from (2) and (3) with regard to the reference 

velocity, smU /1
, and cylinder’s diameter, D, we 

get: 
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Where *P , *V   and *t  are pressure, velocity 

and dimensionless time respectively.   is kinematic 

viscosity  ,   is dynamic viscosity, and   represent 

density. 

No-slip condition due to fluid viscosity and 

no-penetration are boundary conditions and inviscid 

(Potential) flow throughout the field is initial 

condition. 
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of body. As mentioned before, equation (3) is solved 

in two steps. First step related to convection 

mechanism and the second step related to diffusion 

mechanism. The equation relating to convection 

mechanism is in fact Euler equation in the form of 

vorticity which emphasizes vorticity remain constant 

for each particle along the direction of motion. 

 

In the convection mechanism we have 

inviscid flow ( 0 ). Therefore by omitting the term 




 from vorticity equation, the equation relating to 

convection mechanism is: 
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Diffusion mechanism (second step) is 

investigated considering the effect of fluid viscosity 

and Brownian motion of vortices. Diffusion equation 

is gained by omitting the term  

.V , so:  
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In the convection mechanism (first step) 

vortices induce velocity on their surrounding and 

each other. Induce velocity by thj  vortex on the 

point
iz , is as follows: 
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h
  is vortex core or radius of each vortex,

 N  is 

the number of vortices, 
j  is circulation of thj  vortex, 

h is the length of segments that must be equal and 

iuW  is conjugation of velocity. To eliminate 

the normal velocity on the surface, we locate sinks 

and sources on the center of segments. Induced 

velocity which resulting from sinks and sources 

located on
jz , on the point 

iz  is as follows: 
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Where 
j is the strength of thj  source or sink that is 

negative for sinks and positive for sources.
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Fig. 1   Flow past a cylinder at R = 140000. Plot of the Instantaneous velocity vector field (left). Plot of the 

Instantaneous velocity and position of each vortex element in the flow at same time (right). t = 0.75 
 

 

 

a)                                        
 

b)                                          
 

Fig. 2   Flow past a cylinder at R = 140000. Plot of the Instantaneous velocity vector field(left). Plot of the 

Instantaneous velocity and position of each vortex element in the flow at same time (right). a) t=1  ,b) t=1.5 
 

Effect of sources and sinks on each other 

induces an equal velocity, but in the opposite direction 

of the induced velocity by vortices and satisfying no-

slip boundary condition. By solving a series of 

N equations and N  unknowns, strength of sink and 

source is calculated as follows [8]: 
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Where A  is the coefficients matrix. In the 

convection mechanism (second step) random motion 

of vortices takes place based on Gaussian random 

variable. Relevant equation, (8), is the heat equation 

and can be solved using Green’s function for (2-D). 
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Green’s function is equal to the probability density 

function of Gaussian variable with zero mean and 

variance  . Therefore, probability density function of 

Gaussian variable can be shown as:  
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By comparing (15), (16) we find out that the above 

function is a random variable Gaussian function with 

zero mean and variance of
Re

2t
 . So  tz j

is a 

position of thj  vortex in tT  , its position in 

ttT  can be calculated as: 

 

j

source

vortexpot

jj t

tjW

tjWjW
tZttZ 
























),(

),()(
)()(

.

       

(17) 

Where T denoted the time. 

 

III. RESULT AND DISCUSSION  

By using random vortex method the 

impulsively started flow past one circular cylinder is 

studied in considerable detail. In all of the numerical 

calculations done on the one circular cylinder, the 

boundary of the circle is divided into M=100 pieces, 

the length of each piece denoted by Mh /2  .  

 

The circle has radius r=0.5. The Reynolds 

number is Re=140000, mainly because simulation in 

high Reynolds number is the important feature of 

RVM method.  

 

 
Fig. 3  Experimental Result for one Impulsively Started 

Cylinder Bouard. R and Coutanceau(1980)[3] 
 

 

 
Fig. 4  Structure of α-phenomenon 

 
The cylinder is impulsively set into motion at time t=0, 

where t is measured in non-dimensional units. ∆t is 

chosen to be 0.2 or 0.05. After some experimentation 

we chose  0.01max  .  

 

A. Velocity and Vorticity Field 

The Velocity and vorticity field are plotted in 

fig (1-5). 183 vortex elements are initially generated in 

order to satisfy the tangential boundary conditions. 

These vortices by the mechanism of convection and 

diffusion which drown from random walks method 

move towards the rear of the cylinder. The length of 

the vectors in the figures corresponds to the speed of 

the fluid at that point, and the arrow indicates the 

direction of the flow. 

        

By evaluation of time variation of vorticity 

creation on the boundary and distribution of vortices 

around the cylinder we can understand the mechanism 

of vorticity transfer and mechanisms of the 

development of secondary vortices.  

        

At t=0.75 (fig. 1) it can be seen that eddies in 

rear of the cylinder are just beginning to take form. At 

t=1(see fig. 2a), a complex flow pattern emerges. The 

plot shows that there are two distinct regions. The 

larger of these regions is the main vortex. This vortex 

has quit strong vorticity and the center of it moves 

toward downstream. The second region which located 

close to the separation point is a region of high 

concentration of vortices.  

      

At t=1.5 (see fig 2.b), the structure of wake 

consists of three vortices which including the one big 

vortex in the rear of the cylinder and a pair of 

oppositely rotating vortices in the secondary vortex 

region. This structure is called α-phenomenon. The 

structure of α-phenomenon is showed in (fig. 3) and 

(fig. 4). 

    

  According to (fig. 5) eddies are merging due 

to diffusion and at time t=4 one of eddies grows larger 

even larger than the cylinder itself. 

 
B. U-Velocity for One Cylinder 

U-velocity (Component of the velocity vector 

along x  direction) around one cylinder are obtained 

for several section which proportional to the flow 

direction at Re=140000.the results obtained for one 

cylinder are compared with experimental result of 
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Cantwell and Coles [4]. It can be seen very good 

agreement between obtained result and experimental 

result. Note that the simulation parameter is: 

Re=140000,
 

 0.01max    ,  0.05t    . And result 

obtained for 300 iteration. Fig. 6 is related to U-

velocity around one cylinder. 
 

 

a )     b)          
 

Fig. 5   Flow past a cylinder at t = 4 and R = 140000. (a) Plot of the Instantaneous velocity vector field. (b) Plot of the 

Instantaneous velocity and position of each vortex element in the flow at same time. The flow is asymmetric 

 

 

 
Fig. 6  Obtained results (solid line) for distribution of u-velocity around one cylinder and compared with 

experimental results (symbol)  0.01max    ,  0.05t   ,  300itr , Re=140000, X=0 to X=1.4 
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IV. CONCOLUSION  

A grid-free random vortex method is used to 

study the unsteady flow development behind an 

impulsively started circular cylinder at Reynolds 

numbers 140000.the flow development is very 

complex and fast. By tracking the vortex elements we 

are able to find the relation between the areas of 

recirculation in the wake and the vortex structures. 

Our simulation gives detail about the mechanism that 

controls the development of the wake at very high 

Reynolds numbers. We indicate that our solution 

have very good agreement with experimental result. 

some advantages of vortex methods is as follows :(1) 

The physical mechanisms in actual flow can be 

simulated easily by the interactions of computational 

vortices, (2) the method can be easily used for 

complex body geometry because it is a grid free 

method, (3) vortex methods are self- adaptive (4) the 

method provides an economical simulation of the 

flow field at high Reynolds numbers when the 

vorticity is concentrated to narrow regions like wakes 

and boundary layers, therefore, can be resolved more 

accurately. 
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