Study on Turbine Maintenance: Overhauling, Emergency shutdown, Fault tracing

Rukmin Juneja^{#1}, Hitesh Wadhwa^{*2}

 ¹Student, Department of Mechanical and Automation Engineering, Maharaja Agrasen Institute of Technology, Indraprastha University, New Delhi Address- 300 Forest Lane Neb Sarai, New Delhi, India-110068
²Student, Department of Mechanical and Automation Engineering, Maharaja Agrasen Institute of Technology, Indraprastha University, New Delhi Address- 627/17 Dharampura, Bahadurgarh, Haryana-124507

Abstract

An effective maintenance program should be such that the basic objective is achieved with minimum possible expenditure. The availability of turbine, and chiefly the operating reliability, depends on the satisfactory operation of its control, protection of ancillary equipment such as pumps etc. The study deals with the tests and maintenance necessary to ensure good operating reliability for the turbine.

Keywords— Fault tracing, Maintenance, Overhauls, Turbine.

I. INTRODUCTION

Maintenance- action necessary for retaining or restoring a piece of equipment, machine, or system to the specified operable condition to achieve its maximum useful life.

A system of components working in random environment is subjected to wear and damage over time and may fail unexpectedly. The components are repaired or replaced upon failure and such unpleasant events of failure at the same time are considered as opportunities for preventive maintenance on other components.

The earliest maintenance technique is basically breakdown maintenance which takes place only at breakdowns. A later maintenance technique is time based preventive maintenance which sets a periodic interval to perform preventive maintenance regardless of health status of a physical asset. With development of technology, products have become complex. Higher reliability is required. This makes cost of preventive maintenance higher. Thus, condition based maintenance is used to overcome this.

A. Benefits of Maintenance

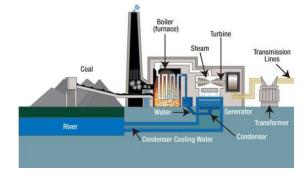
- Downtime of equipment decreases.
- Major repairs are reduced.
- Life expectancy of assets increases, it eliminate premature replacement of equipment.
- Improved safety for everyone.
- Economical

B. Types of Maintenance

- Breakdown maintenance
- *Preventive maintenance*
- *Corrective maintenance*
- *Routine maintenance*
- Opportunistic maintenance

1) Breakdown Maintenance

This is forced maintenance carried out when the equipment breaks down. Breakdowns of equipment are not desirable as it not only hampers the production but may also result in unsafe situation.


2) Preventive Maintenance

Preventive maintenance is the system of maintenance whereby specified checks are carried out to retain the healthy condition of equipment and prevent failure through the prevention of deterioration, periodic inspection or equipment condition diagnosis.

3) **Opportunistic Maintenance**

It is advantageous to follow opportunistic maintenance in multi-component system. When equipment is taken down for maintenance of one or few component, opportunity can be utilized for maintaining / changing other component even when they are not failed.

II. COAL FIRED PLANT WORKING

Fig 1. Coal plant

Coal power plants work by using several steps to convert stored energy in coal to usable electricity that we find in our home that powers our lights, computers etc. In a coal-fired steam stationmuch like a nuclear station—water is turned into steam, which in turn drives turbine generators to produce electricity. The process

A. Creation of heat

Coal is pulverized to the fineness of talcum powder before it is burned. Then it is mixed with hot air and blown into the firebox of the boiler. On burning, the coal/air mixture provides the complete combustion and maximum heat possible.

B. Water to steam

Highly purified water, pumped through pipes inside the boiler, changes to steam by the heat. Temperatures of about 1,000 degrees Fahrenheit and pressures of about 3,500 pounds per square inch is reached by steam. Then piped to turbine.

C. Turbine is turned by steam

Turbine shaft turns due to high pressure of steam pushing against series of giant turbine blades. The turbine shaft is connected to the generator shaft, where electricity is produced when magnets spin within wire coils.

D. Steam is re-converted to water

When its work on the turbine is done, the steam is drawn into a condenser, a large chamber in the basement of the power plant. In this step, gallons of cool water are pumped through a network of tubes running through the condenser from a nearby source. Steam is converted back into water by cool water in tubes that can be used again and again in plants.

Boiler gets the steam water to repeat the cycle and the cooling water is returned to its source without contamination.

III. TURBINE

Mainly a device extracting thermal energy from pressurized steam using it to do mechanical work on an output shaft which is rotating. Turbine is best suited to drive an electric generator because of its nature of generating rotary motion. The steam turbine is steam driven rotary engine. The steam turbine's principle is that the steam energy is converted into mechanical energy by expansion through the turbine. Expansion occurs through a series of fixed blades (nozzles) and also moving blades. In each row fixed blade and moving blade are called stage.

Components-

- 1) Casing
- 2) Rotor
- 3) Blades
- 4) Control valve
- 5) Oil befell, steam befell

- 6) Governor
- 7) Bearing (general and thrust)
- 8) Gear box (epicyclic)
- 9) Oil pumps

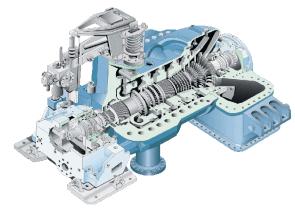


Fig 2. Turbine

IV. TURBINE MAINTENANCE

The availability of turbine, and therefore chiefly the operating reliability, depends on the satisfactory operation of its control, protection of ancillary equipments such as pumps, etc.

Conditions of turbine determine whether maintenance work must be carried out during operation or during short interruptions in service.

By means of efficiency measurements or stage pressure measurements it is possible to discover, for example whether there is any build up deposits in the turbine blades which will have to be removed by wet steam washing.

It is necessary to shut down the plant and appropriate measures must be taken to prevent corrosion of various parts of the turbine.

Overhauls – take a part or piece of a machine to examine it and also repair it if necessary. The following intervals between overhauls are recommended:

Minor overhaul after not more than 3 years or 20,000 to 25,000 operating hours. Major overhaul after 10 to 12 years or 1,00,000 operating hours. If possible this overhaul should be carried in manufacturers assistance.

A. Minor Overhaul

- Couplings: check for teeth condition, visual inspection for cracks and bend in coupling bolts. Check for radial runouts and axial float.
- Bearings: check for bearings condition- scoring, bearing clearance, bedding and D.P. test and check for fit of the bearing in bearing housing.
- Oil glands: check for radial and axial runouts if necessary to be repaired/replaced.

- Bearing housings and casing supporting elements: spring/washers to be cleaned and assembled.
- Emergency stop valves, governing valves, bypass valves are to be opened and checked.
- Drains are to be checked for chocking.
- Main oil pump to be opened- Bearing, sealing rings, rotor, impeller etc, to be checked.
- Complete governing system and protection equipment to be cleaned and checked.

B. Major Overhaul

In this overhaul, all elements are to be checked thoroughly including turbine casing, rotor and blading. Besides all the checks that will be done under minor overhaul, the following checks are to be carried out-

- Bearing housing is to be lifted out and the bearing.
- Casing to be checked for parting place clearance in free condition- parting plane to be checked. Check cracks.
- Supporting elements of inner casing to be checked.
- High temperature zone bolts are to be measured in length. Check for deformation/elongation.
- Rotor
- a. Check for rubbing marks
- b. Check for runouts
- c. Check for lock blade condition
- d. Check for thrust collar
- Guide blades including nozzles to be cleaned thoroughly and checks to be made for cracks.
- Oil tank to be emptied. Oil quality to be checked.
- Oil cooler: tune bundles to be taken out. Tubes to be cleaned mechanically and chemically. Check for leaks.
- Oil piping should be checked for leakages.
- Piping supports and hangers to be checked and adjusted if required.

C. Emergency Shutdown

In an emergency, the turbine can be shutdown at any output level by tripping either directly at emergency trip gear or by using the solenoid valve for remote tripping.

- Possible reasons for an emergency shutdown include:
- Sudden rise in vibration amplitudes.

 Limit values of the lube oil or bearing metal temperatures at the axial or radial bearings being reached or exceeded.
Excessive expansions.

V. FAULT TRACING

TABLE I

A. Serious Faults

Fault Other Symptoms(Serious	Cause	Remedy
Faults)		
Load Rejection		
0	Davalaan	Control malana
-Turbine generator	Breaker	Control valves
remains in	opens as a	and extraction
operation after	result of an	valves closed
short-time rise in	internal or	by the turbine
speed.	external	governor to
	fault.	stop the steam
		flow through
The distribution of the		the turbine
Load rejection with		manual
turbine trip		intervention is
-Turbine speed	D	not possible as
reaches trip speed	Breaker	automatic
of overspeed trips.	opens as a	shutdown is
An overspeed	result of	too fast.
failure on a big	internal or	Eman
steam is one of the	external	Emergency
most frightening	fault;	Shutdown and
industrial accidents.	Advrse	investigate
Talia Taia	conditions	conditions.
Turbine Trip	during load	We can also
-Turbine tripped by	rejection;	use electrical
protective devices.	Control malfunction	overspeed
	manunction	shutdown
		system.
		Stop and
		Stop and control valves
		and extraction
		valves close;
		Generator
		disconnected
Turbine-generator		from system
unit in imminent		by reverse
danger		power
0		protection
		relay;
		Speed drops;
		Auxiliary oil
Shaft assembly runs		pump cuts in
down without		due to loss of
lubricating oil		pressure as
-Fault in auxiliary		speed drops;
and main oil		Turning gear
pumps, jacking oil		operation
pump in operation;		commences;
-Fault in jacking oil		Reduce
pumps		condenser
		vacuum to
		shorten
		coastdown
		-open vacuum

					-
Fire or fire hazard	Leakage of	breaker;	limits or the	Suspected	Caution: Stop
during operation	oil and steam	-stop air	range of the	damage , e.g.	turbine
		extraction;	measuring	broken blades	immediately
		-allow air to	system	or metal to	even with
		enter	(alarm of	metal rubbing	accuracy of
		condenser	instrument	Clearances	readings is
		plant.	display)	eliminated by	doubtful;
		~	1.Loud noises	causing	Check whether
		Check bearing	and/or the	distortion	increased
		metal	following		vibration is
		temperatures;	operating	CI	maintained after
		If permissible	parameters	Clearances	load is reduced
		high, inspect	exceed their	eliminated by	and when
		bearings	limits.	casing	running down;
		Danger of	Wall	distortion	Measure the
		bearing	temperatures	Axial	time taken to
		whipping check bearing	because of rapid	clearances eliminated	run down; Listen for
		metal	temperature		
			changes.	bearing	U
		temperatures; Check		damage	this period
		bearings;	Casing	Unstable	Reduce turbine
		ocarings,	differential	running due to	load
		Set off fire	temperatures	self excited	immediately
		alarm;	temperatures	vibration	until vibration
		Follow fire	Differential	violution	decreases;
		protection	expansion		Examine
		rules; do not	Bearing metal		vibration;
		pour water on	temperatures.		Load turbines
		hot turbine.	1		slowly to
Escape of stream	Leakage in	Localize	2.Low frequency		stability limit.
L.	piping or	steam leakage	vibration,		-
	other turbine	immediately	Vibration		
	components	and de-	frequency less		
		pressurize	than rotational		
		system	frequency.		
		concerned, if	Irregular point		
		possible;	trace from		
		If there is a	recording		
		rupture hazard	instrument		
		(pre-rupture			
		leak), shutdown	C. Bearing Tem Fault	C. Bearing Temperature	
		turbine		Cause	Remedy
		generator unit	Bearing Temperatures	If a fault in	Shutdown
		immediately;	High	temperature	turbine
		Carefully	-Rapid rise of	measuring	immediately to
		consider rist	one or more	equipment can	prevent
		erosion at	bearing metal	be ruled out ,	consequential
		sealing surface	temperatures to	the bearing is	damage;
		and decide on	the preset alarm	damaged .	Check bearing,
		the time of	level; similar	cumugou .	clarify and
		shutdown;	temperature rise		remedy causes of
	1	, , , , , , , , , , , , , , , , , , , ,	mot observed	-Inadequate	bearing damage
B. Vibration Faults	1		before under	oil supply	Check oil
Papid or			aomnarahla	11 2	

B. Vibration Faults

Rapid or		comparable
instantaneous		operating
increase in		conditions.
vibration over		
the permissible		

of

flow

pressures upstream

damaged

bearing; Check

-Dirt

-Rapid rise of all bearing metal temperatures	-Tilting of bearing (incl. thrust bearing) -Excessive thrust(in thrust bearing) Fault in oil temperature control system.	restrictor setting, check filters for contamination; Check bearing signs of wear; Take oil samples; Check bearing installation; Clarify cause of excessive thrust;
	-Fault in controller -Fault in cooling water supply -Cooling water temperature high -Oil cooler fouled	Check oil temperature down stream of cooler; Switch off controller Establish normal oil temperature; Establish oil temperature manually; Check water flow through cooler; shut down turbine generator unit if temperatures reach the permissible limits in the event of cooling water supply failure; Start up standby oil cooler; Change over to stand by oil cooler

VI. RESULT

This paper provides a brief about procedures and steps regarding the maintenance of turbine. Maintenance of turbine is an important issue to keep it in operation conditions without disturbing its function.

VII. CONCLUSION

The study includes the Overhauling (Major and Minor Overhaul), emergency shutdowns, fault tracing and maintenance of turbine. The availability of turbine, and therefore chiefly the operating reliability, depends on the satisfactory operation of its control, protection of ancillary equipment such as pumps etc. The study deals with the tests and maintenance necessary to ensure good operating reliability for the turbine. At the same time it is possible to assess the condition at anytime in respect of any necessary action to be taken during overhaul or to decide the time for overhaul.

ACKNOWLEDGEMENT

It gives me immense pleasure to express my deepest sense of gratitude and sincere thanks to my highly respected and esteemed guide Mrs, .Rachna Chawla of Mechanical and Automation Engineering Department of MAIT,Delhi for her valuable guidance, encouragement and help for completing this work. Her useful suggestions for this whole work and cooperative behaviour are sincerely acknowledged. I would also like to thank Dr. V.N Mathur, (Head of Department) for the whole hearted support. I also wish to express our indebtedness to my parents whose blessings and support always helped us to face the challenges ahead.

REFERENCES

- B.M. Alkali and P. McGibney (2014) "Opportunistic maintenance and adaptation of warranty maintenance tasks for Power Plant equipment" research paper.
- [2] JavidKoochaki(2012) "CBM in Multi-component Systems".
- [3] DuyQuang Nguyen and Miguel Bagajewicz 2008"Optimization of Preventive Maintenance Scheduling in Processing Plants.
- [4] Pravin P. Tambe and Makarand S. Kulkarni "An Opportunistic Maintenance Decision of A Multi-Component System Considering the Effect of Failures on Quality"
- [5] Joel P. Varghese and Girish Kumar 2014 "Availability Analysis with Opportunistic Maintenance of a Two Component Deteriorating System"
- [6] Fangfang Ding, ZhigangTian (2011) "opportunistic maintenance strategies for wind turbine system which are defined by age threshold value(s) of the components"
- [7] AashishKhaira, Amitkumar Jain (2012) "An Optimized Decision for Opportunistic Maintenance or Event-Driven Maintenance of Industrial System".