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Abstract — An algorithm for the solution of non-

linear differential equations describing the steady-

state motion (T-periodical) of the mechanical systems 

with one of the finite numbers of degrees of freedom is 

presented. The initial approximation of the solution is 

obtained in a poly-harmonic form, one of the most 

significant merits of the proposed approach. Criteria 

for estimating the number of harmonics in the 

stationary solution minimizes the approximation's 

iterations. 

A first-order linear differential equation solves the 

problem defined in the paper with one degree of 

freedom. For the systems with a finite number of 

degrees of freedom, the method's application leads to 

an extreme task with many variables. 
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I. INTRODUCTION 

There are many successive approaches and methods 

for the solution of one and multidimensional non-

linear differential equations. Widely known are the 

methods of a small parameter, harmonic linearization, 

Bubnov-Galerkin's, Lyapunov – Linsted's, 

asymptotically of Bogoliybov-Mitropolsky, and others 

[1], [2], [3]. Many of them differ in accuracy, 

convergence, difficulty, range of applicability, and so 

on. Practically there is no universal algorithm or 

method for a solution in a poly-harmonically form 

applicable to any nonlinearities, respectively equations. 

This work proposes an approach and methodology 

for solving the classic equations of motion of 

mechanical /machine's unit/ systems with one of the 

finite numbers of the degree of freedom influenced by 

generalized forces depending on the positions and 

velocities. In this approach, it is very interesting that 

the non-linear equation(-s) solution in its initial 

approximation is obtained in poly harmonically form 

without no further solution of equations of a higher 

order.  

II. NOMENCLATURE 

( )iq q  – generalized coordinate 1q =  or, 

( )1....iq n= ; 

,M rQ Q  – driving, restoring forces; 

( )i M rQ Q Q Q= −  – generalized force; 

( )q q t T= +  – periodical motion; 

ij =IIEII – the symbol of  Kronecer, or unit matrix; 

( )m q  – generalized mass parameter(-s ). 

III. THEORETICAL CONSIDERATION 

The differential equation describing the motion of a 

mechanical system with one degree of freedom is well 

known and has the form [4], [5]: 

(1)     
( ) ( ) ( )

( )

( ) ( )

21

2

, ,M r r

dm q
m q q t q t

dq

Q q q Q q q Q

+ =

= − 

  

where 

 ( ) ( )TMm q m q q= + . 

The reduction of mass and inertia characteristics of 

a wide range of machines is a function of the position. 

Its principal character is depicted in Fig.1, where the 

ratio between the maximum of the variation maxm  

and the constant part 0m  is within the limits 

max

0

0 0,5
m

m


  ,  

or ( ) ( )0 TMm q m m q q= +  + . 

Within the steady-state (stationary) motion, a T–

periodic solution is sought [4], [5] in the form 

(2)     

( ) ( ) ( )

( ) ( ) ( ) ( )

0

0 ; ; .

q t q t T q t t

d
q t q t q t

dt



 

= +  +

= + =  
 

Assuming that the reduced driving ( ),MQ q q  and 

( ),rQ q q  resisting forces are represented by the 

average integral values of the small variations that 

depend on the position and velocity [2], [4], or 

(3)     
( ) ( ) ( )

( ) ( ) ( )
0

0

, , ;

, , .

M M M

r r r

Q q q Q q Q q q

Q q q Q q Q q q

= + 

= + 
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Decomposition of (3) in a series of Mac-Loren in 

the vicinity of 0q  and ( )0q t  represent only the linear 

members – i.e.: 

(4)  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0 0 00

0 0 00

, ,

, ,

, ,

, ,

M M M

M M

r r r

r

Q q q Q q v t Q q t q

d Q q q t d Q q q t

dq dq

Q q q Q q w t Q q t q

d Q q q t d q q t

dq dq



 



 

= + +  +

 
+ +

= + +  +

 
+ +

, 

where 

( ) ( )
0 0tan ; tan

M rdQ q dQ q
v w

dq dq
 =  = = . 

 
Fig 1: The reduced mass characteristic, as a function of q  

Fig.2 depicts the functions ( )
0MQ q and 

( )
0r

Q q the average angular velocity  , 

corresponding to the equivalence of the kinetic energy 

of the driving and resisting forces within the period 

that determines the machine unit's steady-state motion. 

 
Fig.2: The average integral values ( )

0MQ q  and ( )
0r

Q q  

After replacing (2) and (4) in (1) and neglecting the 

small members of a higher order, one obtains [4] 

(5)   

( ) ( )
( )
( )

( ) ( ) ( ) ( )

( ) ( )

020
0 0

0

0 00 0

0 0 0 0

1

2

, ,

M r

M r

dm q tdq
m m q t q

dt d q t

v w t Q q Q q

Q q t q Q q t q





 
 +  + + =  

 

= − + − +

+ + 

, 

or 

(6) 

( ) ( )

( )
( )

( )

( ) ( )

( ) ( )
( )

( )

0 0

0
0 0

0

0 0

0 0 0 0

2
0 0 0

0 0

2

0

, ,

1
0,5 .

M r

st

M r

dq
m Q q Q q q

dt

q const

v w
t t

m m q t

Q q t q Q q t q

q dm q t d q t
m m q t

f t

 

= −   =

= 

−
− =

+ 

=  −  −

− =
 − 

=

  

The condition of sustainable cooperation of the 

motor (the power) and the working machine is well 

known [4], [5] and could be described as follows:  

( ) ( )
0 0

0r M
d

Q q Q q
dq

 −
 

, 

from which it follows that 

( )0 0 0m m q t+   ,    
( )0 0

0
v w

m m q t

−


+ 
.  

The second equation in (6) is  represented by  

(7) 

( ) ( ) ( ) ( )

( )
( )

1 2

1
0 0

,x t f t x t f t

v w
f t

m m q t

+ =

−
= −

+ 

,  

where ( )x t=  ( ) ( )1;x t f t T= +  and ( )2f t T+  

are the functions in front of ( )t  and right of the (6). 

The equation (7) is a linear non - homogeneous 

equation of the first order whose solution has the form 

[5] 

 

(8)    ( ) ( ) ( )1 1
0 2.

f t dt f t dt
q t q e e f dt C

−  = + +  
  

 

The functions ( ) ( )1 2,f t f t   are periodic, satisfying 

the Dirihle criteria, and can be expanded in Fourier 

series to choose the number of harmonics. 

When the variation of the reduced mass 

characteristic ( )m q  is relatively small 
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max 00,2m m  (Fig. 1), then the second equation 

of (6) is represented by  

(9)    

( ) ( )

( )
( )
( )

( )

1 0 0
0

0
0 3

0

1
,

, 0,5

M

r

x t k x Q q t q
m

dm q t
Q q t q f t

d q t

+ =  −


− − =



 , 

where 

 

( ) ( )

( )

1 3 3
0

;

2
sin ;s s

s o

w v
k f t f t T

m

L spt p
T






=

−
= = + =

= + =

  

In this case, the solution of the differential equation 

(9) can be represented in the following form  

(10)    ( )
( )

0 2 2
1 1

sin
n

s s s
s o

is

l spt

q t q
k k p s

 





=

+ +

= +
+ 

, 

where 

 

2 2 2
1

1

: :s s s is
ps

l L k s p arctg E
k

 = + = =  . 

If the generalized force in the partial case is a 

function of the position and velocity of a detachable 

type like this: 

(11) ( ) ( ) ( )2
0 1 2,Q q q f q q f q= +  , 

so the equation (1) is reduced to a first-order linear 

equation concerning squared generalized machine's 

velocity, namely  

(12)  

( )

( ) ( )

( )

( )

( )

2
2 12 1

2 2
dm q f q f qdq

q
dq m q dq m q m q

 
+ − = 

  
, 

which  after integration has the form [5] 

(13)   

( )

( )
( ) ( )

( )
( )

22
12

22

1
2

f q
dq

m q

f q
dq

m q

f q dq
q e C

m q

e





  
  
 

 = + 
  
    

. 

Let us assume that, 

(14)     ( )

( )
( )

22
f q

dq
m q

q e
− 

= , 

(13)  is transformed into 

(15)   
( )

( )
( ) ( ) ( )

22
2

1
1

2

f q
dq

m q
q e q f q dq C

m q



 
 

 = +  
 
 

  

Under initial condition 0t =  ; 00;q q q= =  and 

( ) 00m m= , then [5] 

 

(16)  

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

20
0 2 0

22
0

0 1
0

0 2
2 2

0
2 2

q

q

mC
q q f q dq

qq
q m q m q f q dq

 

  

=
= − 

− = 

. 

It is noteworthy that the equation (16) corresponds 

to the first integral of (1) for a conservative system 

with one degree of freedom when the force is a 

function of the position ( )Q Q q=  then ( ) 1q = , 

respectively ( )2 0f q = . 

When the generalized force is a function only of the 

velocity 

( ) ( ) ( )M rQ q Q q Q q= − ,  

then in equation (6), the expression  

( ) ( ) ( ) ( )

( ) ( )

0 0 0 00 0

0 0 0 0

: :

: , , 0

M M r r

M r

Q q Q q Q q Q q

Q q t q Q q t q

 

 =  =

and the algorithm for obtaining the law of motion in 

the steady-state model remains the same.  

The steady-state motion of a wide range of machine 

aggregates (unites) with a finite number of degree of 

freedom is described by a system of differential 

equations of the first order of the type: 

(17)    ( ),
dx

f x t
dt

=  , 

where 

 1 2, ,.... nx x x x x=  – vector   of unknown values; 

 1 2, ,..., nf f f f=  – vector   of no-linear functions; 

( ) ( ), ,f x t f x t T= + . 

The search for a steady-state motion of the machine 

is sought in the area for arbitrary initial conditions  . 

There is only one continuous solution ( )0 ,x x x t= , 

whose derivatives are persistent with greater 

0

k

k
t

d x
k

dt
=

 
 −
 
 

. 

A T-periodical solution for (17) is  sought in the 

form [6] 

(18)    
( ) ( )

( ) ( )

, ,

, ,o o

f x t f x t T t

t t T t   

= + 

= + 
 . 

In accordance with the prerequisites made, it is 

assumed that, 

(19)    ( )0 0
1

2 2
, cos sin

n

ci si
i

t t t
T T

 
    

=

 
= +  

 
, 



V S Jivkov et al. / IJME, 5(1), 26-30, 2018  

29 

where n is a preselected number of harmonics to 

obtain the required accuracy, and the amplitudes of the 

harmonics in the Fourier series satisfy the following 

algebraic system [6], [8], [9]: 

(20)  
( ) ( ) ( )

( ) ( ) ( )

2 0
0

1
11

2 0
0

2
1 0,2,4....2

2
1 2,4....2

kk n k
ci

i

kk n k
si

i

i k n
T

i k n
T


 


 

=

−
−+

=

 
− = =  

 

 
− = =  

 

  

From the system of differential equations (17), one 

obtains 

(21)  

( )
( ) ( )

( )

( )

( )

( )
( )

( )

( )

0

0

2 2

02 2
00

2 2

02 2
0

,0

,0 ,0

....

t

tt

n n

t

dx dx
f x x

dt dt

f x f xd x x d x
x

x t tdt dt

d x d x
x

dt dt

=

==

=

= =

 
= + =

  

= =

  

If we fix 0  , the right-hand part of the system (20) 

is calculated from (21), and 
0c , ci  and si  are 

determined uniquely. The function thus defined (19) 

would be a solution of the differential equations (17) 

in the type (18) if the relation (22) is fulfilled. This 

dependence determines the initial condition of the 

desired T–periodic solution within the preselected 

poly-harmonic approximation. 

(22) ( )0
0

, , 0
T

t t dt   =     

By introducing a small artificial parameter 1 =  in 

the right part of (17), the provision of the preselected 

precision is evaluated using the function 

( )

( )( )2 1
sin

2

sin
2

n t

t
t



 


+ −

− 
−

  

where 

(23)    

( ) ( ) ( )

( ) ( ) ( )

0

0

1
,

1
, ,

T

T

f x f x t d
T

f x t f x t d
T

    

     

 = − −  

 
 − − −  

 

. 

Following the basic idea of the method of the small 

parameter [1], [9], the solution of (17) is expressed by 

the following power series  

(24) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 1 22 ....x t x t x t x t = + + . 

The periodic solution of the infant system  

(25)    

( )
( ) ( ) ( )

0
0

0

1 Tdx
f x t d

dt T
     = −   

, 

is obtained in the manner mentioned above. 

The differential equation in the first approximation 

has the form 

(26)    

( )
( ) ( )( ) ( )

( )( ) ( )( ) ( )

1
1 0

0

0 0

0

1
,

1
, , ,

T

T

dx f
x x t d

dt T x

f x t f x t d
T

   

   


= − +



+ − −

 

which makes it possible to estimate the degree of 

approximation of the desired solution of (17). 

Dependency 
( ) ( ) ( ) ( ) ( ) ( )1 1 1

x t x t x t= + was 
( )1

x  

the superposition of the first n harmonics, and the 

higher harmonics of the order of magnitude greater 

than n allows separate operation (26). 

The degree of satisfaction with inequality 

( )( ) ( )( ) ( )

( )( )

0 0

0

0

1
, ,

1

T

f x t f x t t d
T

f x t

  − −

, 

The magnitude of the correction given by the higher 

harmonics of the solutions in the first approximation 

or the authenticity of the priori has chosen poly-

harmonic approximation gives information on the 

magnitude of the correction given by the higher 

harmonics of the solutions in the first approximation.  

IV. NUMERICAL EXAMPLE 

One of the periodic solutions of the equation: 

(27)    
3 0,2cosx x t+ = . 

Was found in [10]. 

The non-linear equation (22) defining the initial 

condition 0
0 ,

d

dt



 
 
 

 in this concrete case is as 

follows: 

(28)   
( )

( )

2
30

1 0
0

2
30 0

2 0
0

, 0,2cos 0

, 0,2cos 0

d
g x t dt

dt

d d
g t x t dt

dt dt








 


 
= − + = 

 

 
= − − + = 

 

  

The solution of the equations (28) with an accuracy 

of 
55.10− , if  n is equal to 3, is the point with 

coordinates 0 0,2069 = −  , 0 0,0000
d

dt


=  for 

which the harmonic series of  Fourier has the form 

( ) 0,2067cos 0,0002cos3x t t t= − − .  
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Fig.3: Values of h (28), calculated in the neighbourhood of the 

initial point 

 

The values 
2 2
1 2h g g= +  calculated in the 

neighbourhood of the initial point are depicted in 

Fig.3. 

V. CONCLUSION 

The difficulties for obtaining approximate solutions 

of such differential equations are well known when 

the classical method (Liapunov – Linsted, asymptotic, 

etc.) of the small parameter is applied. It is necessary 

to solve these equations by approximations of a higher 

order. 

The advantages of the proposed algorithm for 

obtaining the approximate T-periodic solutions 

(steady-state mode of motion) of mechanical systems 

with one and the finite number of degrees of freedom 

is that the desired solution in its initial approximation 

is obtained in poly-harmonic form using the criteria 

for the extreme number of the harmonics. 

The proposed approach to obtaining T-periodic 

solutions of multidimensional mechanical systems 

leads to a problem searching for an extreme of a 

vector-function (22). 
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