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Abstract 
In the paper, we compare the stress distribution in a 

thick tube. On the one hand, we consider isotropic 

material and, on the other hand, an anisotropic 

structure. These materials are subjected to elongation 

and compression. Different models like those of 

Holzapfel, Delfino, and Fung are used to compare 

them at the level of radial and azimuthal stresses and  

 

their influence depending on whether the material is 

isotropic or anisotropic. 
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I. Introduction 

The modeling of mechanical systems has long been 

of interest to the scientific world in recent years. The 

study's purpose was to establish parametric 

relationships between the geometry, rigidity, 

pressures, and corresponding forces to which a 

material can be subjected. These studies made it 

possible to apprehend certain mechanical properties 

of the structures [1]. Each mechanics problem can be 

formulated from the fundamental equilibrium 
relations of the mechanics of continuous media, 

specifying three characteristics: the geometry, the 

relation of behavior, and the loading applied. 

Pseudoelastic, viscoelastic, or poroelastic behavioral 

relationships have been used to describe the behavior 

of certain materials such as tubular structures. 

Pseudoelasticity dissociates loading and unloading by 

considering them perfectly elastic. For their part, 

viscoelastic formulations include mechanical 

responses to model creep or relaxation phenomena. 

To consider the hyper-elastic, incompressible or 

compressible, homogeneous, or heterogeneous nature 
of a material, an energy function is introduced [2]. 

Certain mathematical criteria such as convexity, 

ellipticity, and objectivity must be satisfied when 

using strain energy functions. These must take into 

account the principle of material indifference [2]. 

The energy potential depends on the gradient tensor 

of the deformation and the model's various 

parameters [3]. For example, among the energy 

functions commonly used to describe a tube's 

mechanical behavior, we have pseudoelastic, 

randomly elastic, poroelastic, or viscoelastic energy 
functions [3]. 

Fung et al. [4] developed a small diameter soft tube's 

pseudoelastic model after observing physical changes 

during repeated loading/unloading. 

Holzapfel and Weizsacker [5] developed an 

incompressible nonlinear viscoelastic 3D model of a 

thick-walled and fiber-reinforced tubular structure. 

Their energy function has been decoupled into an 

elastic part and a viscoelastic part. 

Delfino et al. [6] have proposed a finite element 

pseudoelastic model that uses anisotropic energy 

function in incompressible exponential form to 

describe a cylindrical tube's behavior. 

Despite the abundant literature on tubular structures' 

mechanical properties, many models have been 

developed, not without criticism. They provide ratios 

between deformation, pressure, and stress fields in 
equations [7, 8]. 

In this paper, after a mathematical formulation, we 

have solved semi-analytically a problem of 

elongation and compression of tubular material, 

hyperelastic, and incompressible. 

As an application, we compared the influence of 

elongation and compression on radial and azimuth 

stresses across the Holzapfel, Delfino, and Fung 

models. 

 

II. Mathematical considerations 

 
In this study, the chosen coordinate system is 

cylindrical. A material point is identified by its 

coordinates in the undistorted 

configuration and
 

 in the deformed 

configuration. We consider a hollow cylindrical tube 

of the inner radius and  respectively before and 

after deformation. The following deformation 

kinematics describes the deformation: 
 

  

 (2-1) 

The gradient of the transformation is given by: 
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  (2-2) 

The incompressibility condition is defined by: 

 

  (2-3) 

with as boundary condition [9]: 

 

  (2-4) 

according to equations (2-1) and (2-2), the condition 

of incompressibility is given by: 

 

  (2-5) 

or 

 (2-6) 

 

with  and defined by: 

 

 

 (2-7) 

where  and  are respectively the lengths of the 

tube before and after deformation. 

The tensors of deformations of Cauchy Green left

and right  give respectively: 

 

      and    

  (2-8) 

The invariants of the Cauchy deformation tensor, in 

isotropy  and in anisotropy are 

given by: 

 

  (2-9) 

 

Where  is the adjoint of , the vector defined 

by gives the orientation of the fibers in the 

deformed configuration, and the vector gives the 

orientation of the fibers in the undistorted 

configuration. 

Using (2-10) in (2-9), we obtain: 

 

 

 

(2-11) 

 

The constraint tensor of Cauchy in incompressible [8] 

is given by: 
 

   (2-12) 

where and the 

energy function, a multiplier of Lagrangeassociated 

with the constraint of incompressibility and  the 

identity tensor. 

In cylindrical stress tensor gives: 

 

 (2-13) 

whose non-zero components are: 

 

 

 

 (2-14) 

 

With the relations (2-10), the invariants  

defined in (2-11) become functions of . 

As a result, we can write the energy function as a 

function of these three variables by asking: 

 

  (2-15) 
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We can then express the components of the stress 

tensor as follows: 

 

 

 (2-16) 
 

Because of the deformation kinematics, equilibrium 

equations in a cylindrical system are reduced to: 

 

  (2-17) 

 

Using the  and ,boundary 

conditions, equation (2-17)1 gives: 

  (2-18) 

 

With the radial component and the circumferential 

component of the tensor of the stresses defined in (2-

14), the difference between these two expressions 
gives: 

 

 (2-19) 

III. Results and applications 

 

A. Holzapfel model 

Holzapfel et al. [10] proposed an extension of their 

hyperelastic model, taking into account the tubular 

structure's viscosity. The strain energy function has 

been decoupled into an elastic part and a viscoelastic 

part. The potential of energy that these authors 

proposed is written: 

 

 (3-1) 

 

Where and are constants related to the 

material. 

The derivatives concerning the invariants of the 

energy function, defined in (2.12), are given by: 

 

 

 (3-2) 

 

The tensor components of the constraints defined in 
(2-14) and relative to the potential (3.1) are written: 
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we deduce the difference 
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Consider the invariants as functions of the 

eigenvalues  

We get another expression of the system (3.2): 

 

  (3-5) 

with 

 

 

Thus, the difference between the radial stress and the 
circumferential stress in equation (3.4) gives: 

 

  (3-6)
 

 

where 
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We arrive at the expression of the pressure defined in 

(2.18), in the model of Holzapfel: 
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B. Delfino model 

Delfino et al. [11] chose an isotropic deformation 

energy function of the exponential two-parameter 

form: 

 

  (3-8) 

the non-zero components of the constraint whose 

general expressions have been given in (2.14) give 

with this model: 
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From the study made in paragraph (2), the pressure 

, with this Delfino model results in: 

 

 

(3-11) 

 

C. Fung model 

Fung et al. [12] proposed an exponential energy 

function assuming that the stress tensor's principal 

directions coincide with the radial, circumferential 

and axial directions of the tubular structure. 

 (3.12) 

 and are constants related to the 

material. 

 

The partial derivatives of the energy potential (3.12), 

concerning the invariants, are given by: 
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These three expressions reported in (3.14) make it 

possible to obtain the equation: 
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Taking into account the , equations 

(3.15) and (2.18), we obtain the expression of the 

intralaminar pressure through the tubular structure: 

 

 (3.16) 

IV. Simulation 

In this section, we simulate the influence of an 

elongation (Fig.1) and a compression (Fig.2) on the 

distribution of radial and azimuth stresses 

developed in paragraph 3. The material used 

parameters are those of a thick tubular structure of a 

small diameter [13]. 
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deformation's influence through the different models described in the previous section. 

radial stress (Mpa) vs radius in (m)-   Fig 1:   -   circumferential stress (Mpa) vs radius in (m) 

 

 

 

radial stress (Mpa) vs radius in (m)-   Fig 1:   - circumferential stress (Mpa) vs radius in (m) 

 

 

 

We find that the constraints from the Delfino model 

are much higher than those of Holzapfel and Fung. 

This is explained by the fact that the Delfino model 

is isotropic, unlike the other two, which are 

anisotropic models. We can deduce that the fibrous 
contribution proposed by Holzapfel and Fung does 

not have a very great influence on the behavior of 

the tube. 

On the other hand, during this elongation, the 

simulated constraints are increasing in the Delfino 

model. Because of the kinematics of radial 

deformation described in paragraph 2, we note that 

the greater the radius, the higher the stresses if we 

assume the isotropic material. 

The forms of energy potentials also have a strong 
influence on the stress distribution. Fung and 

Delfino propose exponential forms, unlike 

Hozapfel, which develops a model as the sum of a 

polynomial function (isotropic part) and 

exponential one (anisotropic contribution). 
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Anisotropy is not only manifested by a dependence 

of stiffness, depending on the direction of the 

stresses. More confusing phenomena may occur 

when the material is biased in any direction, neither 

parallel nor perpendicular to the fibers. 

The deformation of the volume element is more 

complicated than an isotropic model would have 

predicted; not only does the element become longer 
and narrower, but moreover, it twists. In other 

words, longitudinal and transverse deformation and 

shear deformation are obtained while the element is 

stressed in pure tension. 

 

V. Conclusion 

This article has highlighted differences in the 

distribution of stresses in a small diameter 

cylindrical tube. These differences are all the 

greater as the material is isotropic or fibrous. The 

forces of the energy potentials also have a strong 
influence on the stresses. 

The stresses noted in Fung's anisotropic exponential 

model are much higher than those from Holzapfel 

and Delfino. In elongation, it is the isotropic model 

of Delfino that offers more important constraints. 

We have shown that the shape of the energy 

potential, depending on whether its isotropic part is 

exponential or polynomial, also plays a no less 

negligible role in distributing radial and azimuth 

stresses. 

When modeling mechanical problems, the 
hypothesis of homogeneous medium with isotropic 

behavior is very commonly adopted for the 

configurations, which are often considered 

deterministic. However, in reality, these simplified 

models are sometimes too ideal. 

For some materials, heterogeneity and anisotropy 

may exist at all scales, and the lack of knowledge of 

some information may require modeling with some 

degree of uncertainty. 
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