
SSRG International Journal of Mechanical Engineering Volume 7 Issue 11, 57-62, November 2020

ISSN: 2348 – 8360 /doi:10.14445/23488360/IJME-V7I11P108 © 2020 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

The study of tracking control for autonomous

vehicle

Wen-Kung Tseng#1, Hou-Yu Chen*2

Graduate Institute of Vehicle Engineering, National Changhua

University of Education, Taiwan

Abstract - The research and development of autonomous

vehicles are growing immensely. With the upgrading of

hardware equipment, autonomous vehicles are becoming

more advanced, and their development costs are also

increasing. This study's main objective is to construct an

autonomous vehicle tracking control system based on Robot

Operating System (ROS), integrating various ROS feature

suites, ROS library for self-driving control, SLAM, path

planning, and obstacle avoidance. The STM32 ARM

microcontroller is used to drive the autonomous vehicle

deceleration motor, and ROS is installed on the Raspberry

Pi 3B+ with low-cost optical LIDAR (light detection and

ranging) and Inertial Measurement Unit (IMU). These

enable the autonomous vehicle to complete functions such as

positioning, map construction, autonomous navigation, and

arrive at the desired destination through the planned path

with obstacle avoidance.

Keywords — autonomous vehicle, robot operating system,

Raspberry Pi, LIDAR, inertial measurement unit.

I. INTRODUCTION

With technology development, autonomous vehicles

have attracted great research attention, and hardware

equipment upgrades equipped autonomous vehicles with

attractive functions. As a result, the cost of autonomous

vehicle development is rising. Nowadays, various studies of

autonomous vehicles' development have been reported [1],

but few used low-cost computers for control of autonomous

vehicles.

This study uses low-cost computers with ROS [2] for

the control of the autonomous vehicle. Three different

mapping methods, G mapping SLAM [3], Karto SLAM [4],

and Hector SLAM [5], were compared, and the one with

minimum power consumption and optimized mapping

performance was selected. The map developed by the

selected method was used for self-guided navigation,

positioning, and obstacle avoidance functions of autonomous

vehicles, combined with cameras. In this way, autonomous

vehicles are enabled with the track-trajectory function.

In 2009, Quigley et al. proposed ROS, which is an

open-source operating system. This study discussed how

ROS is associated with the robot software framework and

described some application software using ROS [2]. In

2010, Wongwirat et al. proposed tracking the moving robot

using the Inertial Measurement Unit (IMU). The IMU

provides x, y, and z coordinates. In this study, experiments

were conducted to verify the IMU signals while tracking the

moving robot. The results demonstrated the limitations of

low-cost IMU sensors inaccuracy [6].

 In 2011, Kohlbrecher et al. proposed a fast e-learning

system that takes up grid diagrams. This system requires

reduced computing resources as it combines a robust scan

matching approach using a LIDAR system with a 3D attitude

estimation system based on inertial sensing. The use of fast

approximation of map gradients and multi-resolution meshes

enables reliable positioning and mapping in various

challenging environments. Additionally, its applicability in

embedded handheld mapping systems was also mentioned

[5].

 In 2013, Foote et al. presented the tf: conversion

library, which aims to provide a tracking coordinate system

and a standard method for data transformation across the

system so that individual component users can be confident

that the data is in the desired coordinate system without

having to know all coordinate systems in the system [7]. In

2016, Hess et al. proposed a method for LIDAR indoor

SLAM mapping. This method achieved real-time mapping

and loop closure at a 5 cm resolution [8]. In 2018, Ueda et

al. described the development of ROS robots using

Raspberry Pi. The article consists of three parts: development

environment, ROS basics, and ROS applications [9].

II. THEORY OF TRACKING CONTROL FOR

AUTONOMOUS VEHICLE

 ROS (Robot Operating System) is different from the

traditional Operating System such as Microsoft Windows,

Android, Apple macOS, BXD, and Linux. It is based on the

Linux operating system Ubuntu. The main function of the

system is as a communication framework between the

various components of the robot. Taking the robot arm as an

example, to move the robot arm to a certain position, it is

necessary to control its motor and its sensors to avoid

obstacles. Many similar functions like this one in the ROS

allow the motor control program and sensor control program

to communicate with each other. An example can be shown

in Fig. 1.

 ROS is an excellent hierarchical framework for

robotics, consisting of three levels: Filesystem Level,

Computation Graph Level, and Communication Level [9].

Filesystem Level: ROS internal structure, file structure, and

http://www.internationaljournalssrg.org/IJME/paper-details?Id=351
http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Wen-Kung Tseng & Hou-Yu Chen / IJME, 7(11), 57-62, 2020

58

𝑀 𝑆𝑖 𝜉

required core files are at this level. Understanding the ROS

file system is the foundation for getting started with ROS.

The structure of a ROS program is several folders that are

distinguished by different functions. The general folder

structure is:

Workspace folder (workspace) → Source File Space

folder (src), Compile Space folder (build) and Development

Space folder (devel); source file space folder, and further

place the feature pack.

Computation Graph Level: Refers to communication

between nodes, such as Fig. 2. ROS creates a network that

connects all the programs. Through the interaction of these

nodes, information is shared, and information is obtained

from other nodes.

Communication Level: This refers to the acquisition

and sharing of ROS resources, such as ROS Wiki, the ROS

Knowledge Center. It includes various ROS documentation

and tutorials. Github is the repository for ROS related

documents and packages, and ROS Answers allows users to

ask questions about ROS and its related areas. Through an

independent online community, we can share and access

knowledge, algorithm, and source code. The support of the

open-source community enables ROS systems to grow

rapidly.

Localization, Mapping, and Path Planning have three

issues that need to be resolved to enable the robot to navigate

autonomously. Simultaneous Localization and Mapping

(SLAM) are the intersections of positioning and mapping.

SLAM technology uses data obtained by sensors to calculate

its closest position and movement in an unknown

environment and continuously construct and update two-

dimensional or three-dimensional spatial information for that

environment. The robot uses SLAM technology to obtain

effective spatial information and then plan motion through

ROS Navigation for autonomous navigation. The following

is ROS Navigation and a brief description of the three

SLAMs used in this lab.

G mapping is the most widely used 2D slam method

using 2D plane laser Rangefinder and mileometer

(Odometry) sensor data as input sources for the algorithm to

produce a two-dimensional map. The G mapping SLAM

algorithm was developed based on the Rao-Blackwellized

Particle Filter (RBPF). The RBPF was proposed to solve

grid-based SLAM problems, and it requires odometry

information and the sensor's observations(i.e., scans).

 G mapping was developed by Grisetti et al. [6] to improve

the performance of the RBPF-based SLAM. The main idea

of the RBPF is in an unknown environment; the robot starts

from the starting position. During the movement, the

odometer is used to record its motion information 𝑢𝑡−1. and

environmental information 𝑍𝑡 obtained by external sensors,

estimate the robot trajectory 𝑥𝑡 and construct an

environmental map 𝑚. At the same time, use the created map

and sensor information to achieve self-positioning. This joint

posterior is denoted as 𝑃 𝑥𝑡 , 𝑚 ∣∣ 𝑍𝑡 , 𝑢𝑡−1 and can be

factorized into Eq. (1) through the Rao-Blackwellization

technique [9]:

 𝑃 𝑥𝑡, 𝑚 ∣ 𝑍𝑡 , 𝑢𝑡−1 = 𝑃 𝑚 ∣∣ 𝑥𝑡 , 𝑍𝑡 ⋅ 𝑃 𝑥𝑡 ∣∣ 𝑍𝑡 , 𝑢𝑡−1 1

 Using the odometry and observation information, the

algorithm's estimation with the highest probability in the

associated map can be obtained. G mapping allows you to

build indoor maps in real-time, with less computational

power and more accurate calculations required to build small

scene maps. As the scene increases, the number of particles

required will also increase because each particle carries a

map. Therefore, the amount of memory and calculation

required when building a large map will increase, so G

mapping is less suitable for building a large scene map.

Because there is no Loop Closure Detection, the map may be

misplaced when the loop is closed. Although increasing the

number of particles can close the map, it is at the expense of

more calculation and memory consumption.

Karto SLAM is a graph-based SLAM approach

developed by SRI International's Karto Robotics, extended

for ROS by using a highly-optimized and noniterative

Cholesky matrix decomposition for sparse linear systems as

its solver [5]. Graph optimization is the mainstream

optimization method in visual slam. The so-called graph

optimization is to express the general optimization problem

in the form of a graph. The graph consists of vertex and edge.

In common slam problems, the robot's position is a vertex,

and the relationship between the positions at different times

constitutes an edge. The vertices and edges that are

continuously accumulated form a graph structure and the

graph is optimized. The goal is to satisfy the edges by

adjusting the vertices' pose as much as possible. Among

them, building diagrams from the sensor accumulates

information is called the front end in slam, and the

optimization process of adjusting the position to meet

constraints becomes the back-end.

Hector SLAM combines a 2D SLAM system based on

robust scan matching and 3D navigation technique using an

inertial sensing system [6]. Hector SLAM mainly uses the

Gaussian Newton method to solve the problem of scan-

matching. The algorithm seeks to find the optimum

alignment of the laser scan's endpoints with the constructed

map by finding the rigid transformation ξ= 𝑝𝑥, 𝑝𝑦, 𝜓 𝑇 that

minimizes:

 𝜉∗ = arg𝑚𝑖𝑛
𝜉

∑[1 − 𝑀 𝑆𝑖 𝜉]
2

𝑛

𝑖=1

 2

Where the function returns the map value at 𝑆𝑖 𝜉 which is

the world coordinates of the scan point. To

minimize Eq. (2), given a starting estimate of ξ and the step

transformation Δξ, the value of Eq. (3) should first be

minimized [9].

Wen-Kung Tseng & Hou-Yu Chen / IJME, 7(11), 57-62, 2020

59

 ∑[1 − 𝑀 S𝑖 𝜉 + Δ𝜉]2
𝑛

𝑖=1

→ 0 3

Therefore, applying first-order Taylor expansion to

𝑀 S𝑖 𝜉 + Δ𝜉 and setting the partial derivative concerning Δ𝜉

to zero yields the Gauss-Newton equation for the

minimization problem [9]:

 Δ𝜉 = H−1 ∑ [∇𝑀 S𝑖 𝜉
∂S𝑖 𝜉

∂𝜉
]
𝑇

𝑛

𝑖=1
[1 −

𝑀 S𝑖 𝜉] 4

Where:

 H = [∇𝑀 S𝑖 𝜉
∂S𝑖 𝜉

∂𝜉
]

𝑇

[∇𝑀 S𝑖 𝜉
∂S𝑖 𝜉

∂𝜉
] 5

Hector SLAM requires a higher radar update

frequency. The ideal speed for the self-driving vehicle speed

control during the mapping process is relatively low.

Because it has no loops (loop close), no mileage is required,

so aerial drones and ground trolleys can be used in the map

of uneven areas. Laser beam raster is optimized to estimate

the representation of laser points in the map and the

probability of occupying the mesh; the state estimation in

navigation is added to the Inertial Measurement System

(IMU). Navigation Stack is a set of related programs that

allows robots or automated vehicles to move steadily in

space. It is an important tool for using ROS. In general use,

we assume that you have already built a 2D map in the

environment with SLAM, then when you start navigation,

you can use the built map as a static map to the Global

planner. When we have started navigation, we need to give

the robot a goal, which can be given via Rviz or send a

message tomove_base_simple/goal this topic.

 When a goal is sent, the Global planner first creates a

track that does not encounter obstacles in the static map, the

Global Path. However, with this Global path, the robot can

only navigate a static environment, because as long as the

scene is different from a static map, the Global path may hit

an obstacle. To solve this problem, the approach here is to

use the Global path as the approximate route and then add a

local planner for dynamic obstacle avoidance. This local

planner must always be aware of any new obstacles, so the

local planner needs sensor data as input.

 In Navigation Stack, the algorithm used by default is the

DWA (Dynamic-Window Approach) proposed by S.Thrun

[9]. This method is a velocity space search method that

considers robot dynamics. It is mainly divided into three

stages. The first stage eliminates the speed that the robot

cannot reach. In the second stage, the speed that could not be

stopped before hitting an obstacle was eliminated. In the

third stage, DWA evaluates an admissible velocity set by

maximizing its objective function shown in Eq. (6). DWA

will predict the results of each speed pair candidate for the

final heading angle, the minimum distance to obstacles, and

linear speed value, and choose the best speed pair by

maximizing the objective function:

 𝐺 𝑉, 𝑤 = 𝜎[𝛼 heading 𝑉, 𝑤 + 𝛽 dist 𝑉, 𝑤
+ 𝛾 velocity 𝑉, 𝑤] 6

The heading function heading 𝑉, 𝑤 represents the

approximate value of the angle to the target, and its value

will increase when the heading of the robot approaches the

target position. The purpose of the distance function

 dist 𝑉, 𝑤 is to promote safe navigation. It calculates the

minimum distance from the trajectory obtained from the

speed pair to the obstacle. The velocity function

 velocity 𝑉, 𝑤 calculates the linear velocity values in the

velocity set. Coefficients 𝛼，𝛽 and 𝛾 are weights of these

functions, and 𝜎 is a smoothing operator. Maximizing this

objective function will cause the safety trajectory to reach the

objective as soon as possible.

 The main idea of this algorithm is that the robot

generates a lot of random speed options, then simulates the

robot to follow those speeds for a short period of time, and

then scores each speed option's position. The basis for

scoring includes distance to the goal, distance to obstacles,

etc. The algorithm selects the speed option with the highest

score as the local plan at this time, and it will become a

command and be sent to /cmd_vel to let the robot move.

After waiting for the next position, the algorithm randomly

generates multiple speed options until the global plan is

completed, as shown in Fig. 3.

III. EXPERIMENT AND RESULTS

This section describes the system tests and experimental

results associated with autonomous vehicles. First, an

overview of the experiment environment has been presented.

A comparison of the three SLAM mapping effects and

system energy consumption have been evaluated. Then the

self-driving navigation and obstacle avoidance has been

verified. Finally, self-driving line-tracking performance has

been presented. The experiment has also been performed in

the laboratory. Due to many chairs and personal belongings

in the seating area, the part close to the seating area should

be enclosed with cardboard boxes to reduce the interference

during the experiment.

This experiment uses three different SLAM

algorithms, G mapping, Karto, and Hector, for verification.

We use s-tui during the mapping process to monitor the CPU

Utilization and compare the mapping results to select a

SLAM algorithm that is suitable for Raspberry Pi with low

energy consumption and high accuracy. The mapping and

CPU utilization results are shown in Fig. 4(a)~(f), in the

order of G mapping, Karto, Hector. After comparing the

resulting map, it can be seen that the Karto mapping effect is

similar to the actual map. No skew generated. CPU

utilization is maintained at 30~ 40% level, and the system

consumes less energy. G mapping effect is suboptimal, the

Wen-Kung Tseng & Hou-Yu Chen / IJME, 7(11), 57-62, 2020

60

end of the map is slightly skewed, footing and other map

information scanning are less complete, CPU utilization

fluctuates between 40 and 60%, and the system has high

energy consumption. Hector mapping effect is poor; the end

of the map is seriously skewed. The table footing and other

map information are not completed. CPU utilization is stable

at 60%, and the system energy consumption is high.

Therefore this experiment uses the Karto diagram

results from the previous paragraph for navigation and

obstacle avoidance. The experiment environment is divided

into three phases. The first part is the navigation. Given

coordinate points 0 and 1 on Rviz, the navigation node plans

the path. After reaching coordinate 0, it moves to coordinate

1, as shown in Fig. 5(a)~(e). When there is a fixed barrier

between the self-drive and the specified coordinate point, as

shown in Fig. 6, navigation systems automatically map the

path to avoid obstacles. It also selected various paths to reach

the target, as shown in Fig. 7(a)~(e).

IV. CONCLUSIONS

This study's main objective is to construct a tracking

control system for autonomous vehicles, with functions of

SLAM mapping, path planning, obstacle avoidance, and

trajectory tracking. Meanwhile, low cost, low power

consumption, and utilization of the Robot Operating System,

which facilitates the development of various programs, could

be achieved. The Raspberry Pi was employed as the drive

computer, and low-cost optical radar was employed for

obstruction detection. Combined with inertial sensor signals,

accurate positioning of the vehicle was achieved.

 G mapping SLAM, Karto SLAM, and Hector SLAM

were compared with each other in terms of accuracy and

power consumption. The results demonstrated that Karto

SLAM has high accuracy and low power consumption.

Hence, it is an ideal candidate for the development of

Raspberry Pi autonomous vehicles. It also operated

accurately on navigation, obstacle avoidance, and trajectory

tracking. However, the combination of face recognition and

control of autonomous vehicles is beyond the proposed

system's computing power. Meanwhile, scanning using a

single optical radar is limited by issues such as those

obstacles in different planes that cannot be detected. Future

studies may fuse scanning results by two radars on different

planes to obtain improved obstructions scanning capability.

REFERENCES
[1] C. Chatzikomis, A. Sorniotti, P. Gruber, M. Zanchetta, D. Willans,

and B. Balcombe, -Comparison of Path Tracking and Torque-

Vectoring Controllers for Autonomous Electric Vehicles, IEEE

Transactions on Intelligent Vehicles, (2018) 559-570.
[2] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. B. Foote, J. Leibs, -

ROS: An open-source robot operating system, Proc. ICRA Open-

Source Softw. The workshop, 2009.
[3] G. Grisetti, C. Stachniss, and W. Burgard, -Improved Techniques for

Grid Mapping With Rao-Blackwellized Particle Filters, IEEE

Transactions on Robotics, (2009) 34-46.
[4] R. Vincent, B. Limketkai and M. Eriksen, -Comparison of indoor

robot localization techniques in the absence of gps, Detection, and
Sensing of Mines Explosive Objects Obscured Targets XV, 2010.

[5] S. Kohlbrecher, J. Meyer, O. Von Stryk, U. Klingauf, -A Flexible and

Scalable SLAM System with Full 3D Motion Estimation, Safety
Security and Rescue Robotics (SSRR), (2011) 155-160.

[6] O. Wongwirat and C. Chaiyarat, -A Position Tracking Experiment of

Mobile Robot with Inertial Measurement Unit (IMU), International
Conference on Control, Automation and Systems, pp. 27-30, 2010.

[7] T. Foote, -tf: The transform library, Technologies for Practical Robot

Applications (TePRA), (2013) 1-6.
[8] W. Hess, D. Kohler, H. Rapp, and D. Andor, -Real-time loop closure

in 2D LIDAR SLAM, Robotics, and Automation (ICRA), (2016)

1271-1278.
[9] Lentin Joseph, -ROS Robotics Projects, Packt Publishing Ltd, 2018.

Fig. 1 ROS control process

Fig. 2 ROS Computational Level

Fig. 3 Navigation stack.

Wen-Kung Tseng & Hou-Yu Chen / IJME, 7(11), 57-62, 2020

61

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 4 Results of the mapping and CPU utilization (a) G

mapping SLAM results (b) G mapping SLAM CPU

utilization (c) Karto SLAM results (d) Karto SLAM CPU

utilization (e) Hector SLAM results (f) Hector SLAM

CPU utilization.

(a)

(b)

Wen-Kung Tseng & Hou-Yu Chen / IJME, 7(11), 57-62, 2020

62

(c)

(d)

(e)

Fig. 5 Navigation schematic diagram.

Fig. 6 Obstructions with cartons in the lab area.

(a)

(b)

(c)

(d)

(e)

Fig. 7 Mapping the path to avoid obstacles.

