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Abstract - The research and development of autonomous 

vehicles are growing immensely. With the upgrading of 

hardware equipment, autonomous vehicles are becoming 

more advanced, and their development costs are also 

increasing. This study's main objective is to construct an 

autonomous vehicle tracking control system based on Robot 

Operating System (ROS), integrating various ROS feature 

suites, ROS library for self-driving control, SLAM, path 

planning, and obstacle avoidance. The STM32 ARM 

microcontroller is used to drive the autonomous vehicle 

deceleration motor, and ROS is installed on the Raspberry 

Pi 3B+ with low-cost optical LIDAR (light detection and 

ranging) and Inertial Measurement Unit (IMU). These 

enable the autonomous vehicle to complete functions such as 

positioning, map construction, autonomous navigation, and 

arrive at the desired destination through the planned path 

with obstacle avoidance.  
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I. INTRODUCTION  

With technology development, autonomous vehicles 

have attracted great research attention, and hardware 

equipment upgrades equipped autonomous vehicles with 

attractive functions. As a result, the cost of autonomous 

vehicle development is rising. Nowadays, various studies of 

autonomous vehicles' development have been reported [1], 

but few used low-cost computers for control of autonomous 

vehicles. 

This study uses low-cost computers with ROS [2] for 

the control of the autonomous vehicle. Three different 

mapping methods, G mapping SLAM [3], Karto SLAM [4], 

and Hector SLAM [5], were compared, and the one with 

minimum power consumption and optimized mapping 

performance was selected. The map developed by the 

selected method was used for self-guided navigation, 

positioning, and obstacle avoidance functions of autonomous 

vehicles, combined with cameras. In this way, autonomous 

vehicles are enabled with the track-trajectory function. 

In 2009, Quigley et al. proposed ROS, which is an 

open-source operating system. This study discussed how 

ROS is associated with the robot software framework and 

described some application software using ROS [2].  In 

2010, Wongwirat et al. proposed tracking the moving robot 

using the Inertial Measurement Unit (IMU). The IMU 

provides x, y, and z coordinates. In this study, experiments 

were conducted to verify the IMU signals while tracking the 

moving robot. The results demonstrated the limitations of 

low-cost IMU sensors inaccuracy [6].   

         In 2011, Kohlbrecher et al. proposed a fast e-learning 

system that takes up grid diagrams. This system requires 

reduced computing resources as it combines a robust scan 

matching approach using a LIDAR system with a 3D attitude 

estimation system based on inertial sensing. The use of fast 

approximation of map gradients and multi-resolution meshes 

enables reliable positioning and mapping in various 

challenging environments. Additionally, its applicability in 

embedded handheld mapping systems was also mentioned 

[5].   

    In 2013, Foote et al. presented the tf: conversion 

library, which aims to provide a tracking coordinate system 

and a standard method for data transformation across the 

system so that individual component users can be confident 

that the data is in the desired coordinate system without 

having to know all coordinate systems in the system [7].  In 

2016, Hess et al. proposed a method for LIDAR indoor 

SLAM mapping. This method achieved real-time mapping 

and loop closure at a 5 cm resolution [8].  In 2018, Ueda et 

al. described the development of ROS robots using 

Raspberry Pi. The article consists of three parts: development 

environment, ROS basics, and ROS applications [9].   

 

II. THEORY OF TRACKING CONTROL FOR 

AUTONOMOUS VEHICLE 

 ROS (Robot Operating System) is different from the 

traditional Operating System such as Microsoft Windows, 

Android, Apple macOS, BXD, and Linux. It is based on the 

Linux operating system Ubuntu. The main function of the 

system is as a communication framework between the 

various components of the robot. Taking the robot arm as an 

example, to move the robot arm to a certain position, it is 

necessary to control its motor and its sensors to avoid 

obstacles. Many similar functions like this one in the ROS 

allow the motor control program and sensor control program 

to communicate with each other. An example can be shown 

in Fig. 1.  

         ROS is an excellent hierarchical framework for 

robotics, consisting of three levels: Filesystem Level, 

Computation Graph Level, and Communication Level [9]. 

Filesystem Level: ROS internal structure, file structure, and 

http://www.internationaljournalssrg.org/IJME/paper-details?Id=351
http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Wen-Kung Tseng & Hou-Yu Chen / IJME, 7(11), 57-62, 2020 

 

58 

𝑀 𝑆𝑖 𝜉   

required core files are at this level. Understanding the ROS 

file system is the foundation for getting started with ROS. 

The structure of a ROS program is several folders that are 

distinguished by different functions. The general folder 

structure is:  

Workspace folder (workspace) → Source File Space 

folder (src), Compile Space folder (build) and Development 

Space folder (devel); source file space folder, and further 

place the feature pack.  

Computation Graph Level: Refers to communication 

between nodes, such as Fig. 2. ROS creates a network that 

connects all the programs. Through the interaction of these 

nodes, information is shared, and information is obtained 

from other nodes.  

Communication Level: This refers to the acquisition 

and sharing of ROS resources, such as ROS Wiki, the ROS 

Knowledge Center. It includes various ROS documentation 

and tutorials. Github is the repository for ROS related 

documents and packages, and ROS Answers allows users to 

ask questions about ROS and its related areas. Through an 

independent online community, we can share and access 

knowledge, algorithm, and source code. The support of the 

open-source community enables ROS systems to grow 

rapidly.   

Localization, Mapping, and Path Planning have three 

issues that need to be resolved to enable the robot to navigate 

autonomously. Simultaneous Localization and Mapping 

(SLAM) are the intersections of positioning and mapping. 

SLAM technology uses data obtained by sensors to calculate 

its closest position and movement in an unknown 

environment and continuously construct and update two-

dimensional or three-dimensional spatial information for that 

environment. The robot uses SLAM technology to obtain 

effective spatial information and then plan motion through 

ROS Navigation for autonomous navigation. The following 

is ROS Navigation and a brief description of the three 

SLAMs used in this lab.  

G mapping is the most widely used 2D slam method 

using 2D plane laser Rangefinder and mileometer 

(Odometry) sensor data as input sources for the algorithm to 

produce a two-dimensional map. The G mapping SLAM 

algorithm was developed based on the Rao-Blackwellized 

Particle Filter (RBPF). The RBPF was proposed to solve 

grid-based SLAM problems, and it requires odometry 

information and the sensor's observations(i.e., scans). 

    G mapping was developed by Grisetti et al. [6] to improve 

the performance of the RBPF-based SLAM. The main idea 

of the RBPF is in an unknown environment; the robot starts 

from the starting position. During the movement, the 

odometer is used to record its motion information  𝑢𝑡−1. and 

environmental information 𝑍𝑡  obtained by external sensors, 

estimate the robot trajectory 𝑥𝑡  and construct an 

environmental map 𝑚. At the same time, use the created map 

and sensor information to achieve self-positioning. This joint 

posterior is denoted as 𝑃 𝑥𝑡 , 𝑚 ∣∣ 𝑍𝑡 , 𝑢𝑡−1    and can be 

factorized into Eq. (1) through the Rao-Blackwellization 

technique [9]:  

 
    𝑃 𝑥𝑡, 𝑚 ∣ 𝑍𝑡 , 𝑢𝑡−1 = 𝑃 𝑚 ∣∣ 𝑥𝑡 , 𝑍𝑡  ⋅ 𝑃 𝑥𝑡 ∣∣ 𝑍𝑡 , 𝑢𝑡−1        1  

    

 Using the odometry and observation information, the 

algorithm's estimation with the highest probability in the 

associated map can be obtained. G mapping allows you to 

build indoor maps in real-time, with less computational 

power and more accurate calculations required to build small 

scene maps. As the scene increases, the number of particles 

required will also increase because each particle carries a 

map. Therefore, the amount of memory and calculation 

required when building a large map will increase, so G 

mapping is less suitable for building a large scene map. 

Because there is no Loop Closure Detection, the map may be 

misplaced when the loop is closed. Although increasing the 

number of particles can close the map, it is at the expense of 

more calculation and memory consumption.  

Karto SLAM is a graph-based SLAM approach 

developed by SRI International's Karto Robotics, extended 

for ROS by using a highly-optimized and noniterative 

Cholesky matrix decomposition for sparse linear systems as 

its solver [5]. Graph optimization is the mainstream 

optimization method in visual slam. The so-called graph 

optimization is to express the general optimization problem 

in the form of a graph. The graph consists of vertex and edge. 

In common slam problems, the robot's position is a vertex, 

and the relationship between the positions at different times 

constitutes an edge. The vertices and edges that are 

continuously accumulated form a graph structure and the 

graph is optimized. The goal is to satisfy the edges by 

adjusting the vertices' pose as much as possible. Among 

them, building diagrams from the sensor accumulates 

information is called the front end in slam, and the 

optimization process of adjusting the position to meet 

constraints becomes the back-end.   

Hector SLAM combines a 2D SLAM system based on 

robust scan matching and 3D navigation technique using an 

inertial sensing system [6]. Hector SLAM mainly uses the 

Gaussian Newton method to solve the problem of scan-

matching. The algorithm seeks to find the optimum 

alignment of the laser scan's endpoints with the constructed 

map by finding the rigid transformation ξ= 𝑝𝑥, 𝑝𝑦, 𝜓 𝑇 that 

minimizes: 

 

                     𝜉∗ = arg𝑚𝑖𝑛
𝜉

∑[1 − 𝑀 𝑆𝑖 𝜉  ]
2

𝑛

𝑖=1

                2  

 

Where the function  returns the map value at 𝑆𝑖 𝜉  which is 

the world coordinates of the scan point. To 

minimize Eq. (2), given a starting estimate of ξ and the step 

transformation Δξ, the value of Eq. (3) should first be 

minimized [9]. 
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                ∑[1 − 𝑀 S𝑖 𝜉 + Δ𝜉  ]2
𝑛

𝑖=1

→ 0                          3  

     

Therefore, applying first-order Taylor expansion to 

𝑀 S𝑖 𝜉 + Δ𝜉   and setting the partial derivative concerning Δ𝜉 

to zero yields the Gauss-Newton equation for the 

minimization problem [9]: 

 

              Δ𝜉 =     H−1 ∑ [∇𝑀 S𝑖 𝜉  
∂S𝑖 𝜉 

∂𝜉
]
𝑇
  

𝑛

𝑖=1
[1 −

𝑀 S𝑖 𝜉  ]                 4   

 

Where: 

 

      H = [∇𝑀 S𝑖 𝜉  
∂S𝑖 𝜉 

∂𝜉
]

𝑇

[∇𝑀 S𝑖 𝜉  
∂S𝑖 𝜉 

∂𝜉
]       5  

     

Hector SLAM requires a higher radar update 

frequency. The ideal speed for the self-driving vehicle speed 

control during the mapping process is relatively low. 

Because it has no loops (loop close), no mileage is required, 

so aerial drones and ground trolleys can be used in the map 

of uneven areas. Laser beam raster is optimized to estimate 

the representation of laser points in the map and the 

probability of occupying the mesh; the state estimation in 

navigation is added to the Inertial Measurement System 

(IMU). Navigation Stack is a set of related programs that 

allows robots or automated vehicles to move steadily in 

space. It is an important tool for using ROS. In general use, 

we assume that you have already built a 2D map in the 

environment with SLAM, then when you start navigation, 

you can use the built map as a static map to the Global 

planner. When we have started navigation, we need to give 

the robot a goal, which can be given via Rviz or send a 

message tomove_base_simple/goal this topic.  

        When a goal is sent, the Global planner first creates a 

track that does not encounter obstacles in the static map, the 

Global Path. However, with this Global path, the robot can 

only navigate a static environment, because as long as the 

scene is different from a static map, the Global path may hit 

an obstacle. To solve this problem, the approach here is to 

use the Global path as the approximate route and then add a 

local planner for dynamic obstacle avoidance. This local 

planner must always be aware of any new obstacles, so the 

local planner needs sensor data as input. 

        In Navigation Stack, the algorithm used by default is the 

DWA (Dynamic-Window Approach) proposed by S.Thrun 

[9]. This method is a velocity space search method that 

considers robot dynamics. It is mainly divided into three 

stages. The first stage eliminates the speed that the robot 

cannot reach. In the second stage, the speed that could not be 

stopped before hitting an obstacle was eliminated. In the 

third stage, DWA evaluates an admissible velocity set by 

maximizing its objective function shown in Eq. (6). DWA 

will predict the results of each speed pair candidate for the 

final heading angle, the minimum distance to obstacles, and 

linear speed value, and choose the best speed pair by 

maximizing the objective function: 

 

     𝐺 𝑉, 𝑤 = 𝜎[𝛼 heading 𝑉, 𝑤 + 𝛽 dist 𝑉, 𝑤 
+ 𝛾 velocity 𝑉, 𝑤 ]                      6  

     

The heading function  heading 𝑉, 𝑤  represents the 

approximate value of the angle to the target, and its value 

will increase when the heading of the robot approaches the 

target position. The purpose of the distance function 

 dist 𝑉, 𝑤  is to promote safe navigation. It calculates the 

minimum distance from the trajectory obtained from the 

speed pair to the obstacle. The velocity function 

 velocity 𝑉, 𝑤  calculates the linear velocity values in the 

velocity set. Coefficients  𝛼，𝛽 and 𝛾  are weights of these 

functions, and 𝜎  is a smoothing operator. Maximizing this 

objective function will cause the safety trajectory to reach the 

objective as soon as possible. 

    The main idea of this algorithm is that the robot 

generates a lot of random speed options, then simulates the 

robot to follow those speeds for a short period of time, and 

then scores each speed option's position. The basis for 

scoring includes distance to the goal, distance to obstacles, 

etc. The algorithm selects the speed option with the highest 

score as the local plan at this time, and it will become a 

command and be sent to /cmd_vel to let the robot move. 

After waiting for the next position, the algorithm randomly 

generates multiple speed options until the global plan is 

completed, as shown in Fig. 3. 

  

III. EXPERIMENT AND RESULTS 

This section describes the system tests and experimental 

results associated with autonomous vehicles. First, an 

overview of the experiment environment has been presented. 

A comparison of the three SLAM mapping effects and 

system energy consumption have been evaluated. Then the 

self-driving navigation and obstacle avoidance has been 

verified. Finally, self-driving line-tracking performance has 

been presented. The experiment has also been performed in 

the laboratory.  Due to many chairs and personal belongings 

in the seating area, the part close to the seating area should 

be enclosed with cardboard boxes to reduce the interference 

during the experiment.  

This experiment uses three different SLAM 

algorithms, G mapping, Karto, and Hector, for verification. 

We use s-tui during the mapping process to monitor the CPU 

Utilization and compare the mapping results to select a 

SLAM algorithm that is suitable for Raspberry Pi with low 

energy consumption and high accuracy. The mapping and 

CPU utilization results are shown in Fig. 4(a)~(f), in the 

order of G mapping, Karto, Hector. After comparing the 

resulting map, it can be seen that the Karto mapping effect is 

similar to the actual map. No skew generated. CPU 

utilization is maintained at 30~ 40% level, and the system 

consumes less energy. G mapping effect is suboptimal, the 
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end of the map is slightly skewed, footing and other map 

information scanning are less complete, CPU utilization 

fluctuates between 40 and 60%, and the system has high 

energy consumption. Hector mapping effect is poor; the end 

of the map is seriously skewed. The table footing and other 

map information are not completed. CPU utilization is stable 

at 60%, and the system energy consumption is high. 

Therefore this experiment uses the Karto diagram 

results from the previous paragraph for navigation and 

obstacle avoidance. The experiment environment is divided 

into three phases. The first part is the navigation. Given 

coordinate points 0 and 1 on Rviz, the navigation node plans 

the path. After reaching coordinate 0, it moves to coordinate 

1, as shown in Fig. 5(a)~(e). When there is a fixed barrier 

between the self-drive and the specified coordinate point, as 

shown in Fig. 6, navigation systems automatically map the 

path to avoid obstacles. It also selected various paths to reach 

the target, as shown in Fig. 7(a)~(e).  

 

IV. CONCLUSIONS 

This study's main objective is to construct a tracking 

control system for autonomous vehicles, with functions of 

SLAM mapping, path planning, obstacle avoidance, and 

trajectory tracking. Meanwhile, low cost, low power 

consumption, and utilization of the Robot Operating System, 

which facilitates the development of various programs, could 

be achieved. The Raspberry Pi was employed as the drive 

computer, and low-cost optical radar was employed for 

obstruction detection. Combined with inertial sensor signals, 

accurate positioning of the vehicle was achieved. 

      G mapping SLAM, Karto SLAM, and Hector SLAM 

were compared with each other in terms of accuracy and 

power consumption. The results demonstrated that Karto 

SLAM has high accuracy and low power consumption. 

Hence, it is an ideal candidate for the development of 

Raspberry Pi autonomous vehicles. It also operated 

accurately on navigation, obstacle avoidance, and trajectory 

tracking. However, the combination of face recognition and 

control of autonomous vehicles is beyond the proposed 

system's computing power. Meanwhile, scanning using a 

single optical radar is limited by issues such as those 

obstacles in different planes that cannot be detected. Future 

studies may fuse scanning results by two radars on different 

planes to obtain improved obstructions scanning capability. 
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Fig. 1 ROS control process 

 

 
Fig. 2 ROS Computational Level 

 

 
Fig. 3 Navigation stack. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 4 Results of the mapping and CPU utilization (a) G 

mapping SLAM results (b) G mapping SLAM CPU 

utilization (c) Karto SLAM results (d) Karto SLAM CPU 

utilization (e) Hector SLAM results (f) Hector SLAM 

CPU utilization. 
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(c) 

 
(d) 

 
(e) 

Fig. 5 Navigation schematic diagram. 

 

 
Fig. 6 Obstructions with cartons in the lab area. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Fig. 7 Mapping the path to avoid obstacles. 
 

 


