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Abstract - Almost all machines having rotating parts contain 

rolling element bearings to support the rotating parts during 

power transmission. Bearing failure is a major cause of the 

breakdown of machines. Hence it is necessary to identify the 

defects and their severity in their early stage to avoid 

breakdown of the machine and catastrophic damages. 

Defective bearings generation vibrations and various 

vibration signal analysis techniques have been developed by 
researchers for bearing condition monitoring. This paper 

presents an introduction and updated review of vibration 

signal analysis techniques used for the detection of defects 

in rolling element bearings. In this paper, vibration signal 

analysis techniques used for bearing defect detection are 

reviewed according to their classification viz. time domain, 

frequency domain, and time-frequency domain. This study 

will help the researchers to understand recent developments 

in the detection of defects of bearings from their vibration 

signals. 

Keywords - Vibration signal analysis techniques, bearing 

defects, time-domain, frequency-domain, time-frequency 
domain 

I. INTRODUCTION 

Rolling element bearings (REBs), also known as 
antifriction bearings, are commonly used in rotating 

machinery to support the rotating parts and to reduce friction. 

REBs are usually made up of high carbon chromium steel 

and consist of four different components, such as inner race, 

outer race, rollers/balls, and cage, as shown in fig. 1. 

The outer race of the bearing is fixed in the casing; the 

inner race is fixed on the rotating shaft, a group of rolling 

elements rolls between them, and the cage keeps the rolling 

elements separated. Any defect produced in the bearing must 

be correctly detected in time to prevent a shutdown and 

serious damages to the machinery. Defects in REBs are 

classified into two broad categories such as localized and 

distributed defects [1], as shown in fig. 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Components of REB (SKF bearing catalog) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   Fig. 2 Various Defects in REBs 

 

Localized defects include spalls, cracks, pits, dents, 

bumps, etc., on the rolling surfaces. Fatigue, overloading, 
shock loading, etc., are some of the causes of localized 

defects. Distributed defects include surface roughness, 

waviness, misaligned races, off size rolling elements, etc. 

Some of the causes of these defects are manufacturing error, 

improper installation, abrasive wear, etc. These defects cause 

vibrations in the machinery and may cause catastrophic 

damages if neglected in the early stages. Therefore, condition 

monitoring (CM) of bearings plays an important role in 
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knowing the severity of these defects before they become 

critical. A typical CM process involves three steps: data 

acquisition, feature extraction, and fault classification. 

Parameters like vibration, acoustic, wear debris, temperature, 

current, etc., are commonly used for condition monitoring. 
Different sensors are used for the measurement of this data, 

like vibration transducers, acoustic emission sensors, oil 

quality sensors, thermocouples, eddy current sensors, etc. For 

feature extraction and diagnosis of the bearing defects, 

different techniques like Vibration Signal Analysis (VSA), 

Acoustic Emission Analysis (AEA), Wear Debris Analysis 

(WDA), Temperature Analysis (TA), Current and Voltage 

Analysis (CVA), etc. are commonly used. For automatic 

fault classification and decision making, several Machine 

Learning (ML) techniques like Artificial Neural Network 

(ANN), Support Vector Machine (SVM), Principal 

Component Analysis (PCA), k-Nearest Neighbors (k-NN), 
Deep Learning (DL), etc. are used in recent decades. 

Among all feature extraction and diagnosis 

techniques, VSA is the most widely used and efficient 

technique because of its reliability and high sensitivity in 

defect detection. In VSA, vibration signals are usually 

obtained from the bearings under running conditions by 

using sensors like accelerometers, and then these signals are 

processed and analyzed by using different electronic devices 

or software. Several VSA techniques have been used to 

analyze and detect the defects in bearings; these techniques 

are classified into three categories: i) Time domain analysis 
(TDA), ii) Frequency domain analysis (FDA), and iii) Time-

frequency domain analysis (TFDA). 

Two approaches are used by the researchers for VSA 

of bearing defects; the first is the theoretical modeling 

approach, and the second is the experimental approach. The 

theoretical modeling approach is used by many researchers, 

in which dynamic models of bearings are developed to 

understand their dynamic behavior without and with defects. 

Recently some researchers, Singh et al. [2], Thalji and 

Jantunen [3], Sharma et al. [4], Liu and Shao [5], Cao et al. 

[6], reviewed the theoretical modeling approach. Two 

experimental approaches are used by the researchers to study 
the effects of bearing defects on vibration signals. The first 

is, run the bearing till the development of the defects and 

then measure the vibration response; and second is, create the 

defects intentionally in the bearings by scratching, spark 

erosion, or indentation and then measure the vibration 

response. Then the vibration signals of defective bearings are 

compared with that of good bearings. The later experimental 

approach is preferred by most of the researchers as former 

approach is quite time-consuming. Many researchers 

published research work on experimental approaches for 

detection of defects in REBs using VSA techniques and their 
research works have been reviewed by the researchers. 

Howard [7] reviewed the research work done by the 

researchers 25 years before 1994 on the VSA techniques for 

defect detection, diagnosis, and prognosis of REBs using 

experimental approaches. Tandon and Choudhary [8] and 

Patil et al. [9] reviewed the vibration and acoustic 

measurement methods for the detection of localized and 

distributed defects in REBs. In their reviews, they reviewed 

more papers on experimental approaches than theoretical 

modeling approaches, and only time domain and frequency 
domain techniques are covered. Kumar et al. [10] reviewed 

the application of a VSA technique, i.e., Wavelet Transform 

(WT) for defect detection of REBs. Patidar and Soni [11], 

Lin et al. [12], Gupta and Pradhan [13], Malla and Panigrahi 

[14] presented reviews on the application of VSA techniques 

for localized defect detection of REBs. In their reviews, they 

covered time-domain, frequency-domain, and time-frequency 

domain VSA techniques of defect detection and emphasized 

on experimental approaches. Patidar and Mandloi [15], Saufi 

et al. [16] reviewed the research work done on VSA and AE 

techniques for defect detection of REBs. Rai and Upadhay 

[17] presented a review on the application of VSA and AE 
techniques for the defect detection of REBs with their 

advantages and disadvantages. They reviewed papers on both 

experimental and theoretical modeling approaches. Prashant 

Jain and Santosh Bhosle [18] presented review on use of 

VSA techniques in diagnosis of faults in rotating 

machineries, which includes pumps, gearboxes, rotor 

systems, bearings, etc.  

In this paper, an attempt has been made to provide an 

updated review of widely used VSA techniques for the 

detection of defects in REBs using an experimental 

approach. This review is categorized according to the types 
of VSA techniques viz. time domain, frequency domain, and 

time-frequency domain. 

 

II. TYPES OF VSA TECHNIQUES 

A. Time Domain Analysis Techniques 

Time Domain Analysis (TDA) technique is the 

simplest and most commonly used VSA technique for 

bearing defect detection. Time-domain is the graph of 

vibration amplitude versus time. Vibration amplitude is 

measured in terms of displacement (microns or mils), 

velocity (mm/s or inch/sec) or acceleration (mm/s2 or g’s) 

[7]. Analog or digital oscilloscope and FFT spectrum 

analyzer are commonly used instruments for TDA of 
vibration signals. Fig. 3 shows a typical time waveform of a 

bearing with an outer race defect. In time waveform, the 

vibration amplitude level of defective bearing is more than 

that of a good bearing, which indicates the presence of a 

defect in the bearing. However, this could not show the exact 

location of the defect in the bearing [19]. 

In time waveform analysis, the defects are detected 

with the help of some statistical parameters like Peak, Peak-

to-peak, Root means square (RMS), Crest factor, Skewness, 

Kurtosis, Clearance factor, Impulse factor, Shape factor, etc. 

The most commonly used statistical parameters for bearing 

defect detection are Peak, RMS, Crest factor, Skewness, and 

Kurtosis. Out of these parameters, the Crest factor and 

Kurtosis are more effective [20]. 
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            Fig. 3 A Typical Time Waveform [21] 

The peak value is the maximum amplitude in the 

vibration signal. The peak-to-peak value is the difference 

between the extreme positions of positive and negative peaks 

of the signal. RMS value is the measure of the overall 

vibration level of a signal, i.e., it measures the energy of the 

signal. The crest factor is the ratio of Peak Value to the RMS 

of the signal. It is the measure of the spikiness or impulsive 

nature of the signal. Skewness is the measure of the 

asymmetrical spread of a signal about its mean value. 

Kurtosis is the measure of the peakedness of the probability 
density function (PDF) of a time series. Table 1 shows 

equations of commonly used statistical parameters for the 

detection of bearing defects. 

 

Table 1 Time-domain statistical parameters 
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The crest factor (CF) RMSPeak  

Shape Factor (SF) xRMS
 

Impulse Factor (IF) xPeak
 

where xi = Instantaneous amplitude of a signal, N = Number of 
samples taken within the signal 

In recent few decades, many researchers worked on 

the detection of defects in REBs by using TDA techniques. 
In the year 1978, Dyer and Stewart [22] first used Kurtosis 

for the detection of bearing defects. They found that for an 

undamaged (good) bearing, the value of kurtosis is near 3, 

and this value increases as the defect size increases. 

However, this value comes down to 3 when the defect is well 

advanced. Howard [7], in his review, found that for the 

undamaged bearing, the values of kurtosis and crest factors 

are approximately 3 and 3.5, respectively. Tandon et al. [23] 

compared vibration parameters (RMS, peak, crest factor) for 

the CM of REBs. It is found that this parameter increases 

with the defect size and the outer race defect (ORD) is not 

detectable by crest factor. Martin and Honarvar [24] used 
statistical moments (skewness, kurtosis) for bearing failure 

detection. They showed that skewness and kurtosis are 

independent of load and speed, and kurtosis of healthy 

bearing is 3, and it increases with an increase in defect size. 

Heng and Nor [25] used crest factor, skewness, and kurtosis 

to detect defects in REBs for both sound and vibration 

signals. They concluded that the bearing speed affects these 

statistical parameters. Tandon and Choudhury [8], in their 

review, found that kurtosis is most effective among the 

statistical parameters like overall RMS level, crest factor, 

probability density, and kurtosis. Almeida et al. [26] showed 
that skewness is the worst parameter among RMS, Kurtosis, 

and Skewness. Kurtosis detects only the pit fault at low 

speed. The results of the RMS value for acceleration signals 

are better than velocity signals. The detection performance of 

the RMS increases with the shaft speed. Karacay and Akturk 

[21] used peak-to-peak value, RMS, crest factor, and kurtosis 

for ball bearing defect detection. They found that these 

parameters indicate the presence of defects only but do not 

identify the location and/or type of the defects. They also 

observed that the vibration amplitude increases with the 

defect size. However, it is not possible to obtain the 

correlation between the defect size and the vibration 
amplitude. Utpat et al. [27] compared peak-to-peak value, 

peak value and RMS value bearing defects detection. Their 

results show that peak-to-peak value gives better defect 

detectability for ORD, IRD and ball defect. 

Some researchers introduced new statistical 

parameters based on conventional statistical parameters for 

defect detection. Niu et al. [28] introduced two new 

normalized statistical moments, namely NM2a and NM3a, for 

bearing defect detection. They showed the effectiveness of 

these new moments along with skewness and kurtosis. Tao et 

al. [29] derived a new statistical moment S from the 

viewpoint of Renyi entropy for detection of bearing defects. 

They performed the comparison of skewness, kurtosis, and 

this new moment S and concluded that the moment has a 

better overall performance than skewness and kurtosis. Sassi 

et al. [30] introduced two indicators TALAF and THIKAT, 
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to improve diagnosis capabilities for bearing defect 

detection. These indicators are designed by combining 

conventional statistical parameters. Forbearing defect 

detection Paliwal et al. [31] introduced a new indicator, 

called CRIS, in combination with conventional statistical 
parameters for bearing defect detection. They showed that by 

using CRIS severity of defects can be assessed in the time-

domain. 

Liu and Mengel [32], Samanta and Al-balushi [33], 

Sreejith et al. [34], Hariharan and Srinivasan [35] presented 

localized defect diagnosis of REBs using time-domain 
statistical parameters as input features and Artificial Neural 

Network (ANN) as fault classifier. In addition to this work, 

Patel [36] used SVM also as a fault classifier and showed 

that SVM gives better results than ANN. 

 

B. Frequency Domain Analysis Techniques  

Frequency domain analysis (FDA) or spectral analysis 

is a widely used method for detecting defects in REBs. FDA 

techniques include Spectrum Analysis, Envelope Analysis, 

and Cepstrum Analysis, etc.  

 

a) Spectrum Analysis. In spectrum analysis, the time-domain 

signal is converted into the frequency-domain signal by 

using Fourier transform. The frequency spectrum is the graph 

between vibration amplitude and frequency. Vibration 

amplitude is measured in terms of displacement, velocity, or 

acceleration by using an FFT spectrum analyzer. The Fourier 
transform for frequency f and time t is given by the following 

equation [37] 



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 dtetxtxFfX ftj2)()]([)(  (1) 

where x(t) is a vibration signal in the time domain and 

)( fX is the Fourier Transform of x(t) in the frequency 

domain. 

Spectral analysis of frequencies generated by 

defective antifriction bearings can used to identify defects on 

the bearing rolling elements viz. roller/ball, inner and outer 

raceways. The frequency spectrum not only indicates the 

severity of the defect in bearing but also indicates the 

location and nature of the defect. Each element of bearing 

has a characteristic rotational frequency, which can be 

calculated from their kinematic analysis. Table 2 shows the 

formulae of characteristic defect frequencies of bearings [7], 

[38]. The severity, nature, and location of bearing defects can 

be detected by comparing the frequency spectrums of 

defected bearing and a good bearing. 

 

 

 

 

 

Table 2 Formulae of characteristic bearing defect 

frequencies 
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where n = no. of balls/rollers,  fr = Shaft speed in rpm, Db = 

Diameter of ball/roller, Dc = Diameter of cage,  = Contact angle of 
ball 

Fig. 4 shows a typical frequency spectrum of a bearing 

having outer race defect Shah et al. [39]. In this frequency 

spectrum, the amplitude spikes at outer race defect frequency 

and its harmonics indicate that defect is present at the outer 
race of bearing. 

 

 
Fig. 4 Typical Frequency Spectrum of a bearing with an 

outer race defect [39] 

Fast Fourier Transform is an effective tool for periodic 

stationary signals; however, for non-stationary signals, it is 

not suitable. The important drawback of FFT is the loss of 

time information when transforming into the frequency 

domain. 

Taylor [40] used a spectrum analysis method for the 

identification of bearing defects running under low 

frequencies. They found that spectrum shape, frequency, 

amplitude, and sum and difference frequencies are useful in 

the identification of defects and their size. Igarashi and 

Hamada [41] used an FFT analyzer to detect single dent 

defects on rolling elements of bearings from vibration and 

sound signals. Tandon and Kumar [42] used overall vibration 

RMS velocity levels, frequency spectrums, and shock pulse 



Prashant H. Jain & Dr. Santosh P. Bhosle / IJME, 8(1), 14-29, 2021 

 

18 

values for detecting defects in ball bearings at different 

locations. They showed that the ORDs in the maximum load 

zone could be easily detected as the vibration levels are high 

when ORD is in this zone, and it decreases when the ORD 

has moved away from this zone. They also showed that the 
vibration levels and shock pulse value decreases with the 

increase in the angle between two defects. Amarnath et al. 

[19] employed TDA, FDA, and spike energy analysis to 

identify different defects in REBs. They showed that the time 

waveform indicates the severity of the defect in bearing, and 

the frequency spectrum shows the exact location of the 

defect in bearing. Liu et al. [43] used the experimental VSA 

method and finite element analysis (FEA) method to study 

the effects of localized defect shapes of ball bearing on 

vibration amplitude. They found that the vibration amplitude 

produced by localized defects are greatly influenced by the 

shape of the defect and slightly influenced by the radial load, 
axial load, and speed. The use of spectrum analysis for 

bearing defect detection is recently presented by some 

researchers, viz. Orhan et al. [44], Patel et al. [45], Patel et al. 

[46], Patel et al. [47], Shah et al. [39], Khadersab and 

Shivakumar [48]. 

The power spectrum of a time-domain signal is “the 

square of the magnitude of the Fourier transform of a signal.” 

The power spectrum of a signal can be written as [49]  
2

222
)()]([)()( 





 dtetxtxFfXfP ftj   (2) 

)(*)()( fXfXfP   (3) 

where )( fX is the Fourier transform of the 

signal, and )(* fX  is its complex conjugate? 

Tandon [23] compared some vibration parameters 

along with power spectrum for condition monitoring of 

bearings. He found that the delectability of overall power is 

best followed by peak and RMS. 

b) Envelope Analysis. Envelope Analysis (EA) is also 
known as “Amplitude Demodulation,” “Demodulated 

Resonance Analysis,” “High-Frequency Resonance 

Technique (HFRT),” and “Narrow Band Envelope Analysis” 

[50]. This is another method used to detect bearing defects. 

Bearing with defects generate repetitive vibration signals of 

much lower amplitude and higher frequencies than rotational 

and structural vibration signals. Enveloping removes the 

low-frequency stationery vibration signals and enhances the 

repetitive frequency signals occurring in the defect frequency 

range. Enveloping separates the defect frequencies and the 

natural frequency of the rotating parts by demodulation.   
Fig. 5 shows the process of envelope analysis. 

 

Fig. 5 Process of Envelop Analysis 

 

Hilbert Transform. Hilbert Transform (HT) is an envelope 

analysis technique in which the phase angle of all 

components of signal is shifted by ±90O. HT is also useful 

for the analysis of the demodulated signals and their spectral 

refining [51]. Hilbert transform of a signal is the transform, 

in which Hilbert transform H[x(t)] of an original time signal 

x(t) is defined as 
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HT representation H[x(t)] of the original function is 

the convolution integral of x(t) with 1/t. The original signal 

x(t) and its Hilbert transform y(t) together form a new 
complex analytic signal 

)(  )(  )( tjytxtz   (5) 

The envelope signal E(t) is the absolute value of the 

analytic signal z(t) and is expressed as 

(t)(t))(  )(  )z()( 22 yxtjytxttE   (6) 

The spectral analysis of the enveloped signal is 

commonly used for the detection of bearing defects. Fig. 6 

shows typical signals and envelope signals of a bearing 
having localized defects in different elements [51]. 

 

 
Fig. 6 Typical signals and enveloped signals of defects in 

a rolling element bearing [51] 

 

Recently, Feng et al. [52], Betea and Dobra [53], 

Alegranzi et al. [54], Kim et al. [55], Wang and Liu [56] used 

EA techniques based on HT for defect detection in bearings. 

Amirat [57] used the HT technique of EA for bearing defect 

detection and diagnostics in wind turbines. Jimenez-Estevez 

[58] used this technique for defect detection in bearings of 
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induction motors. Patel et al. [59] compared the HT-based 

EA with the duffing oscillator technique for identifying 

localized defects in ball bearings. Authors have concluded 

that EA enhances the signals of defect frequencies and their 

harmonics. However, the Duffing oscillator technique shows 
the existence of the defect frequencies only. Yang et al. [60] 

used EA and current analysis for the detection of defects in 

REBs. Their results show the powerful capability of 

vibration analysis in bearing point defect detection. Jayaswal 

and Verma [21] used FDA techniques such as FFT and 

envelope spectrum analysis for bearing defect detection. 

Their results show that FFT shows the impulses at bearing 

defect characteristics frequencies and its harmonics. But, in 

envelop spectrum, other peaks also exist due to the signal 

modulation effect, and the characteristics frequencies of 

bearing defects are quite clear. 

c) Cepstrum Analysis. Cepstrum is defined as “the inverse 
Fourier transform of a logarithm of the power spectrum.” 
Thus, cepstrum is defined as [51] 

 ))((log)( 1 fPFc   (7) 

where )( fP is the power spectrum of the signal? 

The name ‘cepstrum’ is given by reversing the first 

four letters of the term ‘spectrum.’ Cepstrum Analysis (CA) 

is also called ‘quefrency analysis,’ which is revised from 

‘frequency analysis.’ A number of terms are commonly used 

for the parameters of a Cepstrum, namely ‘Quefrency’ 

instead of ‘Frequency,’ ‘Rahmonics’ instead of ‘Harmonics’ 

and ‘Gamnitude’ instead of ‘Magnitude.’ A typical time and 
quefrency waveforms of a bearing with inner race defect is 

shown in fig. 7.  

 

 
Fig. 7 Typical time and quefrency waveforms of a 

bearing with inner race defect [61] 

Some researchers applied CA for detecting the faults 

in bearings [61]–[65]. Park et al. [61] introduced Minimum 

Variance Cepstrum (MVC) for obtaining the periodic 

impulse signal under noisy conditions for ball bearings in 

automotive wheels. Their results showed that the MVC is 

much more efficient in detecting early faults in bearings. 

Hwang et al. [62] proposed a feature extraction method based 

on cepstrum for feature extraction from vibration signals of 
faulty bearing, and they used ANN techniques for the 

classification of bearing faults. Morsy and Achtenova  [63] 

showed the effectiveness of CA and Autocorrelation analysis 

in bearing fault diagnosis. Peeters et al. [64] compared 

automated cepstrum editing procedure (ACEP) and cepstrum 

pre-whitening for vibration-based bearing fault detection. 

Sawalhi et al. [65] proposed a cepstrum editing technique to 

enhance spall-related vibration features in rolling element 

bearings for the purpose of size quantification and fault 

prognosis. Bediaga et al. [66] compared the FDA techniques 

for the detection of ball bearing defects. They concluded that 

Hilbert transform and amplitude demodulation are the best 
for bearing defect detection. 

 

C. Time-Frequency Domain Analysis Techniques 

Time-Frequency Domain Analysis (TFDA) 

Techniques (also called spectrogram analysis) are suitable 

for the analysis of both stationary and non-stationary 

vibration signals. In TFDA, vibration signal analysis is 

carried out in both time and frequency domains for capturing 
the progressive changes in spectrum components [12]. 

A number of TFDA techniques have been developed 

by researchers that are capable of detecting and diagnose the 

bearing problems in rotating machinery, where noise is high, 

and a large number of frequency components are associated. 

The most commonly used TFDA techniques are Short Time 

Fourier Transform (STFT), Wavelet Transform (WT), 

Wigner-Ville Distribution (WVD), Hilbert Huang Transform 

(HHT), Local Mean Decomposition, etc. [67]. Among these 
techniques, WT is the most popular and powerful technique 

for defect detection and diagnosis [68], [69]. A lot of 

research has been carried out on the above techniques and 
used in fault detection in bearings. 

Some researchers have published review papers on 

TFA techniques. Feng et al. [70] reviewed the TFA 
techniques for fault diagnosis of machinery along with their 

principles, advantages, disadvantages, and applications. Li H. 

et al. [71] analyzed and compared some of the TFA 

techniques along with their theories, properties, physical 

significance, advantages, disadvantages, and applications. Li 

S. et al. [72] and Hui et al. [73] summarized the researching 

status of TFA techniques and fault pattern recognition 

techniques along with a detailed analysis of their advantages 

and disadvantages. Lakis [74] presented the theory of STFT, 
WVD, and WT and their advantages with practical examples. 

a) Short Time Fourier Transform (STFT). The STFT is a 

TFA technique suitable for non-stationary signals. This 

method was first proposed by Dennis Gabor in 1946. In 

STFT, the non-stationary signals are broken down into many 
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small-time segments, and then the spectrum of each segment 

is obtained by the conventional FFT. This technique is also 

called spectrogram or windowing the signal. The window 

size is fixed, so it has a fixed time-frequency resolution. The 

STFT represents the time and frequency representation of a 
signal. It provides both the time and frequency information 

of signal, i.e., when and at what frequencies signal 

amplitudes are changing.  

The representation of the STFT using elementary 
functions as given by Randall [75] is 






 dtetgtxf,STFT ftj2)()()(  (8) 

where x(t) is the original time-domain signal, g(t) is a 

window function, commonly a Gaussian window or Hann 

window centered around zero,  is time (slow time; lower 

resolution than t). 

Fig. 8 shows the concept of application of STFT to the 

signal, showing a sliding window over which the signal is 
considered as stationary [76]. 

 

 

 

 

 

 

Fig. 8 Short Time Fourier Transform Map [76] 

One of the limitations of using STFT is that a large 

window width provides good resolution in the frequency 

domain but the poor resolution in the time domain, and vice 

versa. This limitation is due to the use of a single-window for 

all defect frequencies. This results in the same resolution at 
all locations in the time-frequency plane. 

Cocconcelli et al. [77] applied STFT defection of 

defects in ball bearings of varying speed motor. They 

averaged STFT for each cycle in the time-frequency domain 

to get enhanced fault features, and then they used the sum of 

STFT coefficients as simple indicators of bearing damage. 

Gao et al. [78] used STFT to describe the localized faults in 

REB and then applied supervised Non-negative Matrix 

Factorization (NMF) mapping to extract the fault features of 
bearing. They showed that the drawbacks of FFT analysis for 

non-stationary signals could be solved using STFT. Liu [79] 

proposed the use of STFT and stacked sparse auto-encoder 

for the detection of faults in bearings. They obtained the 

sound signals using spectrograms, they used STFT and 

stacked sparse auto-encoder for extracting the fault features 

automatically. Boudinar et al. [76] proposed time-frequency 

analysis using the STFT associated with Maxima’s Location 

Algorithm (MLA) for bearing defects detection in induction 
motor operating at variable speed.  

b) Wavelet Transform (WT). The WT is another signal 

processing tool for the detection of non-stationary vibration 

signals. WT is applied recently by many researchers for fault 

diagnosis in rotating machinery because of its strong ability 

to the analysis of data in the time and frequency domain. In 

1984, WT was first introduced by mathematician Morlet. WT 

describes a signal by using the correlation with translation 

and dilatation of a function, which is called a mother 

wavelet. The advantage of WT over the STFT is that it can 
achieve high-frequency resolutions with sharper time 

resolutions. The commonly used wavelet algorithms are 

Continuous Wavelet Transform (CWT), Discrete Wavelet 

Transform (DWT), and Wavelet Packet Transform (WPT) 
[80], [81]. 

CWT decomposes a signal in both time and frequency 
in terms of a wavelet, called a mother wavelet. 

Mathematically, CWT of a time-domain signal x(t) [75] is 
expressed as 













 
 dt

a

bt
ψtx
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b,aCWT *)(

1
)(  (9) 

where )(* tψ  is the complex conjugate of mother wavelet 

)(tψ , parameter a represents the scale index, which is a 

reciprocal of frequency, and parameter b indicates the time-
shifting (or translation). 

DWT is derived from the discretization of CWT(a, b) 

by adopting the dyadic scale and translation to reduce the 
calculation time can be expressed as 
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where j and k are integers, 2j and 2jk are the scale and 
translation parameters.  

WPT is a wavelet transform in which the signal is 

passed through more filters. WPT further decomposes the 

detailed information of the signal in the high-frequency 

region, which makes WPT an attractive tool for detecting and 

differentiating transient components with high-frequency 

characteristics [82]. Fig. 9 shows a structure chart for a 
typical three layers decomposition tree of a WPT. 

 

Fig. 9 Structure chart of decomposition tree of WPT 
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Kumar et al. [10] reviewed the research papers on WT 

for bearing CM and diagnosis. They concluded that CWT, 

DWT, and WPT are effective techniques for CM of bearings. 

Recently, many researchers present the applications of WT to 
decompose signals for improving the performance of fault 

detection and diagnosis in bearings [10], [55], [83]–[88].  

Kulkarni et al. [93] used a wavelet decomposition 

technique to analyze the vibration signals acquired from a 

ball bearing with an extended type of distributed defects. 

Kankar et al. [84] used a complex morlet wavelet for fault 
diagnosis of ball bearings having localized defects on various 

bearing components. Yuan and Zhang [85] combined the 

wavelet analysis and kurtosis method for detection and 

diagnosis of the faults based on the unstable vibration signals 

from the rolling bearings. Prabhakar et al. [86] used DWT for 

fault diagnosis of ball bearings having single and multiple 

defects on various bearing components. Mori et al. [87] 

applied DWT to vibration signals to predict the occurrence of 

spalling in ball bearings. Kim et al. [55] added DWT in EA 

to reduce the noise level in acoustic emission signals of 

faulty inner race bearing. They proved that it was difficult to 
find the defect frequency in the inner race only by EA, but it 

was easy after adding DWT. Kumar and Singh [88] used the 

Symlet wavelet function to perform DWT on the vibration 

signals of taper roller bearing to measure the outer race 

defect width. Khanam et al. [89] used DWT to detect 

different fault sizes in the outer race of a ball bearing. The 

entry and exit events in the defects were pointed out clearly 

in the decomposed signal, and a good estimation of the 

defect size was obtained. Chebil et al. [90] used time-

domain, frequency-domain, and time-frequency-domain 

analysis techniques for bearing defect detection. They found 

that the DWT, which is based on time-frequency domain 
analysis, produces the best results. Nikolaou et al. [91] WPT 

for analyzing the vibration signals resulting from bearing 

with localized defects. Compared with other methods, WPT 

has the advantage of the flexibility and efficient 

computational implementation. Kulkarni and Sahasrabudhe 

[92] presented a method based on DWT and WPT for the 

detection of faults in rolling bearings. In this method, mother 

wavelets from the Daubechies family were adopted for 

decomposing the vibration signals. Pandya et al. [93] 

presented localized defect diagnosis of REBs using time-

frequency domain and Artificial Neural Network (ANN) as 
fault classifier. They used two features, kurtosis and energy 

extracted from wavelet packet coefficient, as input 

parameters. Nizwan et al. [94] presented a study of VSA for 

bearing fault detection using DWT. Their findings show that 

Wavelet decomposition analysis can be used as an effective 

bearing CM tool. 

c) Wigner-Ville Distribution (WVD). The WVD technique, 

which is another popular time-frequency technique for the 

detection of non-stationary vibration signals, represents the 

time, frequency, and magnitude (amplitude) of a signal in 

one diagram. WVD shows good resolution time-frequency 

representation of a signal [95]. The WVD is derived by 

generalizing the relationship between the power spectrum 

and the autocorrelation function for non-stationary time-

variant processes [96]. For a continuous signal x(t), the WVD 
is defined as 






 
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
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





 
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22
)(  (11) 

where *x denotes the conjugate of x. 

As compared to the STFT, the WVD shows better 

time-frequency aggregation in signal processing but produces 

cross-term interference for multi-component signals Singru 
[95]. A 3-Dimensional WVD plot for a bearing with ball 

defect [95] is shown in fig. 10. 

 

 

Fig. 10 A Wigner Ville Distribution plot for a bearing 

with ball defect [95] 

Li H. et al. [97] applied WVD based on Empirical 

Mode Decomposition (EMD) to the fault diagnosis of the 

inner race of ball bearing. It is shown that WVD based on 

EMD successfully eliminates the cross-terms and diagnose 

the faults of bearing. Zhou et al. [98] introduced improved 

WVD based on the cyclic spectral density to analyze the 

vibration signals from fault rolling element bearings, 

including outer and inner race defects. Singru et al. [95] used 

FFT, modified Poincare mapping, and WVD to detect the 

bearing failure. But, they found a problem of cross-term 
interference for multi-component signals. 

d) Hilbert-Huang Transform (HHT). The HHT is a data-

driven adaptive time-frequency technique for analyzing non-

stationary and non-linear time signals. HHT combines the 

use of Empirical Mode Decomposition (EMD) with the 

Hilbert Spectral Analysis (HSA). In the HHT technique, first, 

the EMD method is used to decompose the signal into so-

called Intrinsic Mode Functions (IMFs) with a trend, and 

then HT is used to the IMFs to obtain instantaneous 

frequency data. Time-frequency representation is then 

obtained by displaying the time evolution of the 

instantaneous amplitude and frequency for each IMF. In 
addition, the marginal spectrum of the signal is also obtained 

[99]. Fig. 11 shows the methodology of the HHT technique. 
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            Fig. 11  Methodology of HHT technique 

HHT includes two processes, i.e., 1) EMD and 2) 

HSA. These two processes are described below. 

1) Empirical Mode Decomposition (EMD). The EMD is a 

self-adaptive signal processing method proposed by Huang 

[100] that is used for processing of both non-linear and non-

stationary signals and is widely used to detect and diagnose 

faults in bearings, gears, rotors, etc. EMD method is based 

on the local characteristic time scale of the signal and is 

capable of breaking down (decomposition) the signal into a 

finite number of the set of complete and almost orthogonal 

components, which are called Intrinsic Mode Functions 

(IMFs). This process of decomposition of a number of IMFs 

from the vibration signal is known as sifting. This 

decomposition process can be stopped when no IMFs can be 
extracted from the signal. 

A signal x(t) can be reconstructed using IMFs through 

the EMD process as given by  






n

i

ni trtctx

1

)()()(  (12) 

where )(tci  is the ith empirical mode, and )(trn  is the 

residue of data x(t) after n number of IMFs are extracted? 

 

 

Fig. 12 Time waveform of a bearing with inner race 

defect [101] 

 

Fig. 13 IMFs of bearing with inner race defect 

decomposed by EMD [101] 

Fig. 12 and 13 shows the original time waveform a 

bearing with inner race defect and its IMFs decomposed by 

EMD. IMFs show the intrinsic and real information of the 

signal, and each IMF is a single component signal. Several 

methods have been developed by the researchers to select 
and analyze the IMFs.  

After obtaining the IMFs by means of the EMD 

method, the Hilbert transform (HT) is performed to each IMF 
component as described below. 

 

2) Hilbert Spectral Analysis (HSA). Hilbert transform 

H[x(t)] of a real-time signal x(t) is defined as [50] 

τ
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τ
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x
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The original signal x(t) and its Hilbert transform )]([ txH  

together form a new complex analytic signal 

)(  )(  )( tjytxtz   (14) 

this equation can be rewritten in a polar 

coordinate system as 

)()e()( tjtatz   (15) 

where )()( )( 22 tytxta  and 
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)(
 tan)( 1

tx
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t  , which 

represents instantaneous amplitude and instantaneous phase 

of the signal, respectively. From this instantaneous phase of 

the signal (t), the instantaneous frequency (t) can be 

derived as 

dt

td
t
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 )(


   (16) 

Thus the original signal x(t) can be expressed in the 

following form, which does not contain the residue )(trn . 
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This equation represents the amplitude of the signal, time, 

and instantaneous frequency in a 3-D plot, in which the 

amplitude is the height in the time-frequency plane. This 

time-frequency distribution is designated as the Hilbert-

Huang spectrum H(,t) : 


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With this Hilbert-Huang spectrum, the marginal spectrum 

h() can be defined as 


T

dttHh

0

),()(   (19) 

where T represents the signal duration. 
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The Hilbert-Huang spectrum measures amplitude 

contribution from each frequency and time, and the marginal 

spectrum measures the total amplitude contribution (energy) 

from each frequency. 

Therefore, the local marginal spectrum of each IMF 

component hi() can be defined as 


T

ii dttHh

0

),()(   (20) 

This local marginal spectrum shows the total 

amplitude associated with the frequency that we wanted to 

know. Fig. 14 shows a typical HHT of misalignment fault of 
a shaft showing the instantaneous frequency of the 

misalignment running state floats around 16 Hz and 32 Hz.  

 

 
         (a) Hilbert Spectrum                 (b) Marginal Spectrum 

Fig. 14 HHT of Misalignment Fault of a Shaft [99] 

A lot of research work has been published on the use 

of HHT based on EMD for fault detection in bearings as well 

as other machineries. Yu et al. [102] proposed HHT 

combining EMD and HT for the fault diagnosis of roller 

bearings along with wavelet packet for signal decomposition 
and HT for enveloping of the signal. Rai and Mohanty [103] 

used the HHT technique for bearing fault diagnosis using 

FFT of IMFs. The Characteristic Defect Frequencies (CDFs) 

of bearing faults are determined using time-domain EMD 

and HT, and then IMFs generated in time-domain are 

converted to frequency-domain using FFT algorithm. They 

showed the effectiveness of using the frequency domain 

approach in HHT. Li H. et al. [104] presented the application 

of EMD, HHT, and its marginal spectrum in the analysis of 

vibration signals and fault diagnosis of roller bearings. They 

used EMD to separate the vibration signals into several 

IMFs, and then according to the marginal spectrum, the 
localized fault in REB are detected. Kabla et al. [105] 

proposed the HHT method combining EMD followed by HT 

for the fault diagnosis of ball bearings along with SVM as 

fault classifier. Babu et al. [106] used EMD with HT for fault 

diagnosis of journal bearing, and it is seen that better results 

are obtained by the EMD method as compared to FFT and 

Wavelet Transform methods. Kumar et al. [101] proposed 

EMD and VMD with subsequent envelope spectrum analysis 

for diagnosing the inner race and outer race fault in the 

rolling element bearing. Yan and Gao [107], Chen et al. 

[108], Elbouchikhi [109] used HHT combining EMD and HT 

to detect faults in bearing. Peng et al. [110], [111] used the 

WPT as preprocessors of the HHT and obtained more precise 

results in fault diagnosis of rolling bearing and fault 

diagnosis of rubbing in the rotary system, respectively. 
Osman and Wang [112] proposed an enhanced HHT (eHHT) 

technique for REB fault detection. They used minimum 

entropy deconvolution filter to denoise the signals and then 

used a novel IMF selection method based on analysis of 

correlation and discrepancy of mutual information (MI) to 

select the most distinctive IMFs. Osman and Wang [113] 

proposed a Normalized HHT (NHHT) technique for bearing 

fault detection. They used a maximum kurtosis 

deconvolution filter for denoising the signals and then used 

the NHHT technique based on D’Agostino-Pearson (DP) 

normality test to select the most distinctive IMPs. 

Many researchers published papers on the use of EMD 

for bearing defect detection with other techniques. Huang et 

al. [114] combined EMD and Power Spectral Density (PSD) 

for diagnosing the faults in bearings. First, they used EMD 

for the decomposition of signals into IMFs and then 

calculated the PSD of each IMFs. Lei et al. [115] reviewed 
the applications of EMD in the diagnosis of faults in rotating 

machinery. In their review, they provided a detailed 

introduction of the application of EMD in fault detection of 

bearings, gears, and rotors, etc. Isham et al. [116] reviewed 

and summarized the mode selection method used to EMD 

method to select IMF for rotating machinery diagnosis of 

bearing, gear, rotor, and shaft. Yang et al. [117] used EMD 

for signal decomposition, calculated the characteristic 

amplitude ratios of each IMFs, and used them as the input 

indicators of SVM for fault recognition of roller bearing. 

Cheng et al.[118] applied EMD to obtain IMFs of signal, the 

energy operator demodulation is applied to obtain 
instantaneous frequencies and amplitudes of each IMFs, and 

then spectrum analysis is applied to obtain envelope spectra 

from which faults in bearings and gear are is diagnosed. Yan 

and Gao [119] used EMD and envelope spectrum to detect 

faults in bearings. Energy measure and correlation measure 

are used to select the IMF, and the envelope spectrum of the 

selected IMF is investigated to find the existence and 

location of the defect in the bearing. Fan and Zuo [69] 

employed EMD to decompose raw signals into IMFs. The 

amplitude acceleration energy of IMFs is proposed as an 

indicator to represent fault characteristics of bearings and 
gears. Wei and Quan [120] employed EMD for signal 

decomposition, calculated the energy entropy mean of each 

IMF and normalization motor speed and used them for 

constructing the feature vector to train SVM classifiers for 

ball bearing fault diagnosis in high load-low speed rotary 

machine. Singh and Harsha [121] used EMD for defect 

detection in REBs. They used EMD to decompose the 

vibration signal and then used statistical parameters viz 

RMS, crest factor, skewness and kustosis for diagnosis of 

faults. They showed the effectiveness of EMD technique 

over the VSA of raw signals. 
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Although the EMD method has been successfully used 

in the VSA of nonlinear and non-stationary signals in various 

applications, this method has a number of weaknesses like 

the problem of mode fixing, end effects, a sifting stop 

criterion, selection of best IMF, etc. To overcome such 
problems, there are lots of improved EMD methods 

developed by the researchers for the detection of faults.  

Du and Yang [122] presented an improved EMD 

method with an average mean method for defect diagnosis of 

ball bearings. They found that this method able to separate 

the compliance vibration and the vibration due to surface 
irregularities in a ball bearing. Dong et al. [123]  proposed an 

improved method to reduce the time of the sifting process of 

EMD and used with Shock Pulse Method (SPM) to detect the 

inner race fault of bearings. In this method, only one time of 

cubic spline fitting is used in each sifting process. Han et al. 

[124] proposed a signal processing method based on EMD 

and a different spectrum of singular values for fault diagnosis 

of bearing. Delprete et al. [125] analyzed and tested 

orthogonal EMD in the detection of bearing faults in a lean 
in-service monitoring operation and remote diagnosis.  

Ensemble Empirical Mode Decomposition (EEMD). EEMD 

is another improved EMD method widely used for fault 

diagnosis of machinery. This is a noise-assisted data analysis 

method, developed by Wu and Huang in 2009 to overcome 

the problem of mode mixing in EMD by adding white noise 

to the investigated signal. Mode mixing is defined as either a 

single IMF consisting of signals of widely disparate scales or 
a signal of a similar scale residing in different IMFs [126].  

Many researchers have used HHT based on EEMD for 

the identification of defects in bearings. Some of the recent 

papers on EEMD methods are reviewed here. Li H. et al. 

[127] used EEMD and HHT for the diagnosis of outer and 

inner race faults in a ball bearing. Wu et al. [128] proposed 
improved post-processing of EEMD with the HHT approach 

for bearing fault detection. Their results show that this 

method is capable of extracting the bearing fault features and 

identifying the types of faults effectively. Also, the vibration 

level of the bearing fault can be diagnosed by comparing the 

peak values of the marginal Hilbert spectra. Lu J. et al. [129] 

used EEMD and instantaneous energy density spectrum for 

fault diagnosis in the rolling bearing. They demonstrated the 

effectiveness of this method for vibration signal analysis of a 

rolling bearing with an inner-race fault. Chang et al. [130] 

used EEMD, envelop spectrum analysis, and diagnosis of the 
ball, outer race, and inner race faults in a ball bearing. Qin et 

al. [131] proposed a method combining Ensemble Empirical 

Mode Decomposition (EEMD) and Random Forest for 

diagnosis of faults in roller bearing. Gao et al. [132] 

proposed an automatic and intelligent fault diagnosis 

algorithm combined with EEMD, principal component 

analysis (PCA), and probabilistic neural network (PNN) for 

fault diagnosis of rolling bearing. Feng Z. et al. [133] used 

EEMD and Teager Kaiser energy methods to detect the 

localized faults on ball bearing. Verma et al. [134] used the 

EMD, EEMD, and Teager Kaiser energy method to detect 

the localized faults both on the outer and inner race of ball 

bearing. Xiang and Zhong [135] combined EEMD, the 

Random Decrement Technique (RDT), and Hilbert envelope 

spectrum for the fast detection of defects in ball bearings. 
RDT is used to extract the first IMF if its impulse response 

signal is unclear. Cheng et al. [136] proposed 

Complementary Complete Ensemble Empirical Mode 

Decomposition with Adaptive Noise (CCEEMDAN) to 

analyze non-stationary vibration signals for fault detection of 

rolling element bearings. This improved method of EEMD 

improves the performance of decomposition by reducing 

reconstruction error and minimizing the effect of mode 

mixing. Zhen et al. [137] proposed Weighted Average 

EEMD (WAEEMD) and Modulation Signal Bispectrum 

(MSB) for detection of faults in REB. They used EEMD for 

the decomposition of vibration signal into IMFs with a 
different frequency band and then used the weighted average 

method, called WAEEMD, based on Teager energy kurtosis 

(TEK) to reconstruct the IMFs into a new signal. Finally, 

they applied MSB to decompose the modulated components 

in the reconstructed signal and to extract fault features of 

bearings.  

e) Local Mode Decomposition (LMD). The LMD is a newly 

developed self-adaptive time-frequency analysis technique 

for signal processing of both non-linear and non-stationary 

signals. This method is proposed by Smith J.S. in 2005 and is 

recently used by many researchers for fault diagnosis of 
machinery [138]. 

LMD decomposes the Amplitude Modulated (AM) 

and Frequency Modulated (FM) vibration signal into a small 

set of mono-components named Product Functions (PFs). 

Each PF is the product of an envelope signal and a frequency 

modulated signal with uniform amplitude. The separation is 
carried out by smoothing the original signal, subtracting this 

smoothed signal from the original one, and then amplitude 

demodulates the result using envelope estimation [138], 

[139], [140].  

The final decomposition result of an original signal 

x(t) can be given by  


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where n is the number of PFs and )(tun is the residue signal.  

The difference between LMD and EMD is shown in 
fig. 15. LMD bypasses the need for Hilbert transform totally. 
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Fig. 15 Computation of IAs and IFs by LMD and EMD[141] 

Since 2005, many researchers have adopted the LMD 

method for fault detection of bearings and other machinery. 

You no et al. [142] presented a comprehensive review on the 
use of LMD for the diagnosis of faults in the rotating 

machinery like bearings, gears, rotors, etc. They also 

described the theory, advantages, disadvantages of LMD 

methods, and some improved LMD methods. Chen et al. 

[139], [143] applied LMD to analyze vibration signals of 

bearings and gearboxes and successfully identified their fault 

frequencies. Li H. [140], [144] conducted envelope spectrum 

analysis of selected PFs obtained from LMD of the gearbox 

and bearing vibration signals. They experimentally 

demonstrated the effectiveness of LMD in gear wear fault 

diagnosis and in bearing fault diagnosis, respectively. Cheng 

J. et al. [145] applied the LMD method for fault diagnosis of 
gear and roller bearing, and they also showed the superiority 

of the LMD method over the EMD method. Ma et al. [146] 

applied LMD with time-frequency analysis for diagnosis of 

the outer race and inner race defects of rolling bearing. They 

also compared the results of the LMD method with that of 

the EEMD method. Wang et al. [147] used the LMD method 

to extract the fault features of rolling bearings with outer race 

faults and demonstrated its effectiveness experimentally. Li 

et al.[148] proposed a new method called Optimized LMD 

(OLMD) to select the suitable PF in the sifting process. 

Experimental results validated the effectiveness of OLMD in 
the gearbox and bearing fault diagnosis. Ma et al. [149] 

proposed the LMD and envelope demodulation technique for 

the fault feature extraction of the rolling bearing. First, LMD 

is used to decompose the signal and to obtain a series of 

production functions (PFs), then envelope demodulation of 

the signal is done by Hilbert transform (HT) and Teager 

energy operator (TEO), and finally, Fourier transform (FT) is 

used to predict the rolling bearing failure condition. Li and 

Jiang [150] proposed LMD, multi-scale entropy (MSE), and 

SVM for fault diagnosis of roller bearing. Liu et al. [151] 

presented a time-frequency representation method based on 

robust LMD to solve the end effect and mode mixing 
problems of conventional LMD. Improved LMD is used for 
fault diagnosis of bearings along with the fast kurtogram.  

Various improved LMD methods like ensemble LMD 

(ELMD), complete ELMD with adaptive noise 

(CELMDAN), etc., have been recently developed by the 

researchers. ELMD overcome the problem of mode mixing 

in LMD by adding white noise to the investigated signal. 
Wang et al. [152] proposed a time-frequency analysis 

method based on ELMD and fast kurtogram (FK) for 

gearbox and bearing fault diagnosis. Wang et al. [153] 

developed a new method called complete ELMD with 

adaptive noise (CELMDAN) to eliminate residual noise and 

generate the same number of PFs at different trials. Their 

diagnosis results indicated that CELMDAN could extract 

more fault characteristic information of rolling bearings with 

less interference than ELMD. Cheng et al. [154] proposed a 

hybrid time-frequency analysis method combining ELMD 

and the Teager-Kaiser energy operator (TKEO) for the fault 

diagnosis of high-speed train bearings. Rao and Saralika 
[155] carried out thermal and vibration signal analysis of 
deep groove ball bearing. 

 

IV. CONCLUSIONS 

In this paper, an attempt has been made to review the 

recent research and developments in the field of defect 

detection in roller element bearings using vibration signal 

analysis techniques. The following points are concluded after 

the review of literature on VSA techniques : 

1)  There is a number of condition monitoring techniques 

available for the diagnosis of defects in bearings, but 
vibration signal analysis is the most useful technique. 

2)  Defective bearings generate peaks at particular 

frequencies. By knowing these frequencies, the type of 

defect in bearings can be identified. ‘Amplitude’ in time 

waveform and in frequency spectrum indicates the 

severity of the defect in bearings, and ‘frequency’ of 
vibration in frequency spectrum indicates the exact 

location of the defect in bearing. 

3)  Among various statistical parameters of the time 

domain, Kurtosis is a better fault indicator than the crest 

factor. Kurtosis initially increases with defect size but 

then decreases. RMS increases with an increase in 
speed, load, and defect size. The defect detection 

performance of RMS increases with an increase in 

speed. The crest factor is a poor defect detector. 

Skewness is the worst parameter than RMS and 

Kurtosis. Kurtosis and Skewness are independent of 

Load and Speed. Kurtosis and Skewness detect only 

small pits at low speed.  

4)  Time-frequency analysis techniques such as STFT, WT, 

WVD, HHT, and LMD are effective in monitoring the 

transient or time-varying (non-stationery) characteristics 

of machinery vibration signals. Among these, WT and 

HHT based on EMD are the most used techniques for 

defect diagnosis in bearings. LMD is the latest one. 
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5)  In most of the papers, researchers analyzed localized 

single defect in rolling elements of bearings using newly 

developed time-frequency domain signal processing 

techniques like HHT and LMD, and not much research 

work has been done on the analysis of distributed and 
multi-defects in bearings using these techniques. 

 This paper will be helpful for the researchers to 

understand the recent developments and improvements in 

various VSA techniques used for defect detection of 

bearings. 
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