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Abstract - This work contributes to evaluating the risk of propagation of cracks on a cylinder head subjected to the pressure 

of the combustion chamber of an engine with variable compression rate, whose numerous scientific researches demonstrated 

its energy advantages compared to the conventional engine. The analytical approach is characterized by using the Love-

Kirchhoff theory, the Navier method to determine the expression of the deformation and the integral J of Rice to determine 

the expression of the intensity factor of constraints (FIC). In addition, the numerical approach is characterized on the one 

hand by simulations on the COMSOL multiphysics software to determine the numerical values of the deformation and all the 

associated curves, by simulations on MATLAB from the analytical expressions of the deformation and the FIC to obtain their 

numerical values and the associated curves, on the other hand employing the least-squares method (MMC), which by 

simulations on MATLAB at starting from the numerical values of the FIC makes it possible to obtain another expression of 

the latter. Thus this work allows the appreciation of the life of the cylinder head, the mastery of the dimensioning of the 

cylinder head to avoid its rupture, a technological mastery in the design of the engines of the machines of the Cameroonian 

automotive sector, the presentation of another approach of engineering in the theory of linear elasticity and fracture 

mechanics concerning a thin plate simply supported and requested in simple bending. 

 

Keywords - Love-Kirchhoff, Rice J integral, FIC, COMSOL multiphysics, MATLAB, MMC. 

 

1. Introduction 
Modelling is the theoretical representation of a physical 

model, and damage is the appearance of damage caused by 

wear or a chemical-physical attack on a material. This 

damage leads to the degradation of the capacities of this 

material which can lead to rupture. The variable 

compression ratio engine is a heat engine whose 

compression ratio varies. The latter is the ratio of the 

cylinder volumes when the piston is at the bottom dead 

centre (minimum volume) and when it is at the top dead 

centre (maximum volume). Naturally, the efficiency of the 

thermal engine also depends on the proper functioning of the 

elements that constitute it. Hence, the malfunction of a part 

such as a cylinder head, the role of which is to withstand the 

shocks due to the explosion and to reduce leaks in this 

engine, will certainly lead to its failure. Many damages have 

already been observed around the world. In January 1943, 

the day-old Tanker T2 SS Schenectady cracked at sea. In 

January 1998, a ship sank in Newfoundland after cracking. 

During the conference cycle in March 2005 on the rational 

use of energy in internal combustion engines, Adrian 

CLENCI and Pierre PODEVIN [2], knowing that the 

automobile engine mainly uses partial loads, that the 

controlled ignition engine at a maximum efficiency of 30, 

which does not exceed 10% to 15% at low partial loads and 

that the latter case constitutes 80% to 90% of the time of use 

of vehicles in urban areas, have looked for constructive 

solutions that in this interval of time or operation allow a 

significant increase in performance. They concluded that the 

variable volumetric ratio gives hope for a consumption gain 

of more than 35% at partial loads for supercharged engines 

with small displacements and high specific powers despite 

the advantages and disadvantages of the engine with a 

variable compression ratio. 

 

MERABET ABDERREZAK [1] has also contributed 

to studying exchange phenomena in an atmospheric diesel 

engine, essentially based on the modelling and calculating 

factors influencing engine performance. He concludes that 

the variable compression ratio improves engine 

performance. The importance of the variable compression 

ratio engine being demonstrated, then studying its damage 

through the cylinder head can prove useful for an improved 

engine design. Jérémie LASRY (2010) devoted himself to 

numerical development to simulate cracked plates and shells 

subjected to bending. He presented a contribution to the 

calculation of the FIC (Stress Intensity Factor), a quantity 

indicating the crack's propagation risk.

 

 

 

http://www.internationaljournalssrg.org/
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Cameroon, an independent country since 1960, located 

in the heart of Central Africa, has seen a rapid increase in its 

demography and an increase in its car fleet in recent years, 

creating traffic congestion, particularly in cities such as 

Douala and Yaoundé. In addition, Prime Minister Joseph 

DION GUTE, Head of the Government of the Republic of 

Cameroon, received in an audience on Wednesday, July 10, 

2019, the Lebanese Group Mikano International Ltd, which 

wants to launch a car assembly plant. Then the study of the 

impact of the variability of the compression ratio on the 

propagation of a crack on the cylinder head of the engine 

presented on the TD43 test bench of the work of MERABET 

ABDEREZZAK [2] can become an important line of 

research for the optimization of a variable compression ratio 

engine in countries like Cameroon whose demography of car 

users is constantly growing day by day. A study will also be 

valid for countries with socio-economic similarities to 

Cameroon. 

 

2. Materials and Methods 
2.1. Analytical Method 

2.1.1. Modeling the Problem 

Physical Model 

The cylinder head is a very important part of the 

engine's operation. Given its shape, its physical model can 

be likened to that of a plate subjected to combustion 

pressure in a chamber of said engine and the figure above 

illustrates this modelization : 

 

Mathematical Model 

i) Deformation Determination Model 

The problem previously mentioned requires us to 

consider the kinematics of the cylinder head of the TD43 

test bench. The Love-Kirchhoff theory states that a and b 

are the sides, and h is the thickness of the cylinder head. 

The combustion chamber has a radius of 92 mm, and the 

cylinder head will take a square parallelepipedal shape 

with a side of 92 mm. By trying to take a limit value on 

one of the conditions presented in the Love-Kirchhoff 

theory, the chosen thickness is 𝑚𝑎𝑥(𝑎, 𝑏) > 20ℎ ℎ =
4 𝑚𝑚. 

 

The assumptions of this theory are as follows: 

● The Material Linearity Assumption (Hooke's Law) 

● The assumption of geometric linearity (Small  

deformations, small rotations) 

● The assumption that the plate is made of an isotropic 

material 

 

As additional hypotheses, we have 

● The stresses normal to the average lamination 

coming from the load applied transversely are 

negligible in comparison to the stresses in the plane 

of the plate.𝜎𝑧𝜎𝑥 , 𝜎𝑦 , 𝜏𝑥𝑦  

● The distortions of the cross-sections of the plate 

under the effect of shear forces are negligible. 

Thus we have 

● Cylinder head displacement field 

{𝑢 = −𝑧
𝜕𝑤

𝜕𝑥
 𝑣 = −𝑧

𝜕𝑤

𝜕𝑦
 𝑤 = 𝑤(𝑥, 𝑦)                          (1) 

 

                             Deformation field 

{
 
 

 
 𝜀𝑥 =

𝜕𝑢

𝜕𝑥

𝜀𝑦 =
𝜕𝑣

𝜕𝑦

𝜀𝑧 =
𝜕𝑤

𝜕𝑧

                                  (2) 

 

{
 
 

 
 𝜀𝑥 = 𝑧(−

𝜕2𝑤

𝜕𝑥2
)

𝜀𝑦 = 𝑧(−
𝜕2𝑤

𝜕𝑦2
)

𝜀𝑧 =
𝜕𝑤

𝜕𝑧

                      (3) 

{

𝜀𝑥 = 𝑧𝜒𝑥
𝜀𝑦 = 𝑧𝜒𝑥

𝜀𝑧 =
𝜕𝑤

𝜕𝑧

                              (4) 

 
 

                          

 

                     

                      Fig. 1 Sketch of a bending plate 
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With being respectively the curvature along (O,x) and along (O,y).𝜒𝑥 = −
𝜕2𝑤

𝜕𝑥2
𝜒𝑦 = −

𝜕2𝑤

𝜕𝑦2
 

According to Hooke's law, we have: 

𝜀𝑥 =
1

𝐸
(𝜎𝑥 − 𝜈𝜎𝑦)𝜀𝑦 =

1

𝐸
(𝜎𝑦 − 𝜈𝜎𝑥)                                             (5) 

 

𝜎𝑥 =
𝐸𝑧

1−𝜈2
(𝜒𝑥 + 𝜈𝜒𝑦)𝜎𝑦 =

𝐸𝑧

1−𝜈2
(𝜒𝑦 + 𝜈𝜒𝑥)                                 (6) 

 

∫ 𝜎𝑥𝑧𝑑𝑦𝑑𝑧
ℎ

2

−
ℎ

2

= 𝑀𝑥𝑑𝑦 ∫ 𝜎𝑦𝑧𝑑𝑥𝑑𝑧
ℎ

2

−
ℎ

2

= 𝑀𝑦                                         (7) 

 

By replacing the relation Eq (6) with the relation Eq (7), we have: 

 

𝑀𝑥 = 𝐷(𝜒𝑥 + 𝜈𝜒𝑦)𝑀𝑦 = 𝐷(𝜒𝑦 + 𝜈𝜒𝑥)                                          (8) 

 

With : 

𝐷 =
𝐸

1−𝜈2
∫ 𝑧2
ℎ

2

−
ℎ

2

𝑑𝑧 =
𝐸ℎ3

12(1−𝜈2)
                                                              (9) 

 

Dbeing the bending stiffness of the plate. 

Using the expressions in the relation Eq (8), we have:𝜒𝑥 = −
𝜕2𝑤

𝜕𝑥2
, 𝜒𝑦 = −

𝜕2𝑤

𝜕𝑦2
 

 

𝑀𝑥 = −𝐷 (
𝜕2𝑤

𝜕𝑥2
+ 𝜈

𝜕2𝑤

𝜕𝑦2
)    𝑀𝑦 = −𝐷 (

𝜕2𝑤

𝜕𝑦2
+ 𝜈

𝜕2

𝜕𝑥2
)        (10) 

 

Fig. 2 above shows the torsor of the efforts of our yoke: 

 
Fig. 2 Reduction elements [3] 

 

From the reduction elements, the balance of the plate gives: 

 
𝜕𝑇𝑥

𝜕𝑥
𝑑𝑥𝑑𝑦 +

𝜕𝑇𝑦

𝜕𝑦
𝑑𝑦𝑑𝑥 + 𝑝𝑑𝑥𝑑𝑦 = 0                                                        (11) 

 
𝜕𝑇𝑥

𝜕𝑥
+

𝜕𝑇𝑦

𝜕𝑦
+ 𝑝 = 0                                                                                         (12) 

 

With p=p (x,y), the combustion pressure. 

From the reduction elements, taking the moments around the axes (O, x), (O, y) of all the forces acting on the cylinder 

head, neglecting the second-order terms, we obtain respectively: 

 
𝜕𝑀𝑥𝑦

𝜕𝑥
−

𝜕𝑀𝑦

𝜕𝑦
+ 𝑇𝑦 = 0                                                                                    (13) 

 
𝜕𝑀𝑦𝑥

𝜕𝑦
+

𝜕𝑀𝑥

𝜕𝑥
− 𝑇𝑥 = 0                                                                                  (14) 

By drawing the expressions of, respectively, in the relations Eq (13) Eq (14), the relation Eq (12) becomes a balance 

equation according to the expressions: 𝑇𝑥 𝑇𝑦 𝑀𝑥  𝑀𝑦 𝑀𝑥𝑦 
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𝜕2𝑀𝑥

𝜕𝑥2
− 2

𝜕2𝑀𝑥𝑦

𝜕𝑥𝜕𝑦
+

𝜕2𝑀𝑦

𝜕𝑦2
= 𝑝                                                                                 (15) 

 

According to Kirchhoff's hypothesis, the shear forces have the same negligible effect on the curvatures. Thus the equations 

Eq (10) in bending are also written as follows: 

 

𝑀𝑥 = −𝐷 (
𝜕2𝑤

𝜕𝑥2
+ 𝜈

𝜕2𝑤

𝜕𝑦2
)𝑀𝑦 = −𝐷 (

𝜕2𝑤

𝜕𝑦2
+ 𝜈

𝜕2𝑤

𝜕𝑥2
)𝑀𝑥𝑦 = −𝑀𝑦𝑥 = 𝐷(1 − 𝜈)

𝜕2𝑤

𝜕𝑥𝜕𝑦
    (16) 

 

By drawing in the relation Eq (14), in the relation Eq (13) and by using the expressions of the moments of the relation Eq 

(16) in the relations Eq (14) and Eq (13), we have: 𝑇𝑥𝑇𝑦 

𝑇𝑥 =
𝜕𝑀𝑦𝑥

𝜕𝑦
+

𝜕𝑀𝑥

𝜕𝑥
= −𝐷

𝜕

𝜕𝑥
(
𝜕2𝑤

𝜕𝑦2
+

𝜕2𝑤

𝜕𝑥2
) = −𝐷

𝜕

𝜕𝑥
(∇2𝑤)                  (17) 

 

𝑇𝑦 = −
𝜕𝑀𝑥𝑦

𝜕𝑥
+

𝜕𝑀𝑦

𝜕𝑦
= −𝐷

𝜕

𝑦
(
𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2
) = −𝐷

𝜕

𝜕𝑥
(∇2𝑤)                                 (18) 

 

By replacing the expressions and relations Eq (14) and Eq (13) in the equilibrium relation Eq (12), we have this Lagrange 

equation: 𝑇𝑥𝑇𝑦 

∇4𝑤 =
𝜕4𝑤

𝜕𝑥4
+ 2

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+

𝜕4𝑤

𝜕𝑦4
=

𝑃

𝐷
                                                                              (19) 

 

Clearly, we can say that our mathematical model for the deformation of our cylinder head is this Lagrange equation 

above. 

In general mechanics, the so-called light alloy aluminium alloy can be used concerning its very low density compared 

to common metals in the automobile field. We can take the aluminium alloy AS12U, whose chemical designation is 

AlSi12Cu, the density, the modulus of elasticity, the mechanical resistance, the Poisson's ratio 2.70 𝑔/𝑐𝑚3 

74 000 𝑀𝑃𝑎 300 𝑀𝑃𝑎 0.33. 
 

ii) Model for Determining the SCF (Stress Intensity Factor) 

The displacement in the cracked domain breaks up into two parts: 

● A regular part 𝑢𝑟 [4] 

● A singular part  𝑢8[4] 

 

The singular part comprises a reduced number of modes, defined up to a multiplicative constant. These multiplicative 

constants are called noted stress intensity factors for the Love-Kirchhoff model. They indicate the presence or not of the 

singularity and its amplitude. The Love-Kirchhoff singularities belong to ([4], [5]) and include two singular modes expressed 

in polar coordinates [6]: 𝐻5 2−𝜂⁄ (Ω)∀𝜂 > 0 

 

𝑢3
𝑠,𝐾𝐿(𝑟, 𝜑) = 𝐴𝐾𝐿𝑟

3
2 [𝐾1 (

𝜈 + 7

3(𝜈 − 1)
𝑐𝑜𝑠

3

2
𝜑 + 𝑐𝑜𝑠

𝜑

2
) + 𝐾2 (

3𝜈 + 7

3(𝜈 − 1)
𝑠𝑖𝑛

3

2
𝜑 + 𝑠𝑖𝑛

𝜑

2
)] 

With 𝐴𝐾𝐿 =
√2

2

1−𝜈2

𝐸𝜀(3+𝜈)
                                                                                  (20) 

 

Fig. 3 represents in the plan the position around the point of crack: 

 
Fig. 3 Polar marker with the crack in bold line [6] 

 

Fig. 4 represents in the theory of Love-Kirchhoff the mode I of cracking: 
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Fig. 4 Mode I in the Love-Kirchhoff model [6] 

 

 

Fig. 5 represents the Love-Kirchhoff theory mode II of cracking: 

 

 
Fig. 5 Mode II in the Love-Kirchhoff model [6] 

 

Fig. 6 above represents the type of stress undergone by a plate or a thin plate in particular and the mode appearing: 

 

                          

Fashion Types of solicitation 

1 Symmetric bending𝐾1, 𝐾𝐼  

 2 Anti-symmetrical bending𝐾2, 𝐾𝐼𝐼  

3 Shear𝐾2, 𝐾𝐼𝐼 
Fig. 6 Mechanical stress and FIC concerned 

 

Assuming that the bending is symmetric, therefore the model of FIC is: 

𝐾1 =
𝑢3
𝑠,𝐾𝐿(𝑟,𝜑)

𝐴𝐾𝐿𝑟
3
2(

𝜈+7

3(𝜈−1)
𝑐𝑜𝑠

3

2
𝜑+𝑐𝑜𝑠

𝜑

2
)

With 𝐴𝐾𝐿 =
√2

2

1−𝜈2

𝐸𝜀(3+𝜈)
                           (21) 

So : 

𝐾1 =
𝑤(𝑥,𝑦)

𝐴𝐾𝐿𝑟
3
2(

𝜈+7

3(𝜈−1)
𝑐𝑜𝑠

3

2
𝜑+𝑐𝑜𝑠

𝜑

2
)

With 𝐴𝐾𝐿 =
√2

2

1−𝜈2

𝐸𝜀(3+𝜈)
            (22) 

 

Resolution Methods 

i) Method for Solving the Deformation or Lagrange Equation 

According to the Love-Kirchhoff theory, the mathematical model of the deformation presents an equation with two 

variables, which are the position variables of a point on our cylinder head. Thus the appropriate method for solving such an 

equation is none other than the method of separation of variables. 

 

Thus, recalling the equation of the deformation, we have: 

∇4𝑤 =
𝜕4𝑤

𝜕𝑥4
+ 2

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+

𝜕4𝑤

𝜕𝑦4
=

𝑃

𝐷
                                                              (19) 

 

We also have the following notation: 

 
𝜕4𝑤

𝜕𝑥4
+ 2

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+

𝜕4𝑤

𝜕𝑦4
= (

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
) (

𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2
) = ∇2∇2𝑤      (23) 
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It is necessary to remember that the volumetric load acts in the opposite direction to the transverse axis, so we have 

taken into account the relation Eq (22), and the relation Eq (23) becomes: 

 

∇2∇2𝑤 = −
𝑃

𝐷
                                                                                                            (24) 

 
𝜕4𝑤

𝜕𝑥4
+ 2

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+

𝜕4𝑤

𝜕𝑦4
= −

𝑃

𝐷
                                                                                 (25) 

 

The expression Eq (25) is Lagrange's equation. The latter was solved in 1820 by Navier for the case of a rectangular 

plate simply supported on its four edges. Since as part of the operation of the internal combustion engine, our cylinder head 

is simply pressed on its four edges. 

 

As an approximate solution, Navier assumed that this deformation could be put in the form of a Fourier series: 

 

𝑤(𝑥, 𝑦) = ∑ ∑ 𝑤𝑚𝑛
+∞
𝑛=1

+∞
𝑚=1 sin (

𝑚𝜋𝑥

𝑎
) si n (

𝑛𝜋𝑦

𝑎
)                                              (26) 

 

This field checks the boundary conditions imposed by simple support, i.e.: 

 

𝑤(0, 𝑦) = 0,𝑤(𝑎, 𝑦) = 0,𝑤(𝑥, 0) = 0,𝑤(𝑥, 𝑎) = 0                              (27) 

 

Similarly, the uniformly distributed maximum combustion pressure on the cylinder head, which is a uniformly distributed 

load, this load can be approximated as follows:𝑞(𝑥, 𝑦) 
 

𝑞(𝑥, 𝑦) = ∑ ∑ 𝑞𝑚𝑛
+∞
𝑛=1

+∞
𝑚=1 sin (

𝑚𝜋𝑥

𝑎
) sin (

𝑛𝜋𝑦

𝑎
)                                                          (28) 

 

Having obtained the equations of the expressions Eq (26) and Eq (27), Navier calculated and.𝑞𝑚𝑛  𝑤𝑚𝑛  

By multiplying the two members of the equation of the expression Eq (28), we obtain: sin (
𝑙𝜋𝑥

𝑎
) sin (

𝑘𝜋𝑦

𝑎
) , 𝑙, 𝑘 ∈ ℎ 

∫ ∫ 𝑞(𝑥, 𝑦) sin (
𝑙𝜋𝑥

𝑎
) sin (

𝑘𝜋𝑦

𝑎
)

𝑎

0

𝑎

0
𝑑𝑥𝑑𝑦 = ∫ ∫ sin (

𝑙𝜋𝑥

𝑎
) sin (

𝑘𝜋𝑦

𝑎
)∑ ∑ −𝑞𝑚𝑛

+∞
𝑛=1

+∞
𝑚=1 sin (

𝑚𝜋𝑥

𝑎
) sin (

𝑛𝜋𝑦

𝑎
)𝑑𝑥𝑑𝑦

𝑎

0

𝑎

0
     (29) 

 

∫ ∫ 𝑞(𝑥, 𝑦) sin (
𝑙𝜋𝑥

𝑎
) sin (

𝑘𝜋𝑦

𝑎
)

𝑎

0

𝑎

0
𝑑𝑥𝑑𝑦 = ∑ ∑ −𝑞𝑚𝑛 ∫ sin (

𝑙𝜋𝑥

𝑎
)

𝑎

0
+∞
𝑛=1

+∞
𝑚=1 sin (

𝑚𝜋𝑥

𝑎
) 𝑑𝑥 ∫ sin (

𝑘𝜋𝑦

𝑎
)

a

0
sin (

𝑛𝜋𝑦

𝑎
)𝑑𝑦   (30) 

 

Let's say: 

𝐼 = ∫ sin (
𝑙𝜋𝑥

𝑎
)

𝑎

0
sin (

𝑚𝜋𝑥

𝑎
) 𝑑𝑥, 𝐼𝐼 = ∫ sin (

𝑘𝜋𝑥

𝑎
)

𝑎

0
sin (

𝑛𝜋𝑥

𝑎
) 𝑑𝑦                   (31) 

 

Gold: 

𝐼 = {
0 𝑠𝑖𝑚 ≠ 𝑙
𝑎

2
𝑠𝑖𝑚 = 𝑙 , 𝐼𝐼 = {

0 𝑠𝑖𝑛 ≠ 𝑘
𝑎

2
𝑠𝑖𝑛 = 𝑘                                                                                    (32) 

So : 

∫ ∫ 𝑞(𝑥, 𝑦) sin (
𝑙𝜋𝑥

𝑎
) sin (

𝑘𝜋𝑦

𝑎
)

𝑎

0

𝑎

0
𝑑𝑥𝑑𝑦 =

𝑎

2

𝑎

2
(𝑞𝑚𝑛)                                     (33) 

 

That is : 

𝑞𝑚𝑛 =
4

𝑎𝑎
∫ ∫ 𝑞(𝑥, 𝑦) sin (

𝑙𝜋𝑥

𝑎
) sin (

𝑘𝜋𝑦

𝑎
)

𝑎

0

𝑎

0
𝑑𝑥𝑑𝑦                                         (34) 

 

Navier to find has simply developed Lagrange's expression, taking into account the approximate solution cited above. 

Thereby :𝑤𝑚𝑛 
𝜕4𝑤(𝑥,𝑦)

𝜕𝑥4
= ∑ ∑ 𝑤𝑚𝑛

+∞
𝑛=1

+∞
𝑚=1 (

𝑚𝜋

𝑎
)4sin (

𝑚𝜋𝑥

𝑎
) sin (

𝑛𝜋𝑦

𝑎
)                                (35) 

 
𝜕4𝑤(𝑥,𝑦)

𝜕𝑦4
= ∑ ∑ 𝑤𝑚𝑛

+∞
𝑛=1

+∞
𝑚=1 (

𝑛𝜋

𝑎
)4sin (

𝑚𝜋𝑥

𝑎
) sin (

𝑛𝜋𝑦

𝑎
)                                (36) 

 
𝜕4𝑤(𝑥,𝑦)

𝜕𝑥4𝜕𝑦4
= ∑ ∑ 𝑤𝑚𝑛

+∞
𝑛=1

+∞
𝑚=1 (

𝑚𝜋

𝑎
)2(

𝑛𝜋

𝑎
)2sin (

𝑚𝜋𝑥

𝑎
) sin (

𝑛𝜋𝑦

𝑎
)                   (37) 

) 

By introducing these developed expressions into the Lagrange equation, we have: 
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∑ ∑ {𝑤𝑚𝑛 [(
𝑚𝜋

𝑎
)
4

+ 2(
𝑚𝜋

𝑎
)
2

(
𝑛𝜋

𝑎
)
2

+ (
𝑛𝜋

𝑎
)
4

] +
𝑞𝑚𝑛

𝐷
} × sin (

𝑚𝜋𝑥

𝑎
) sin (

𝑛𝜋𝑦

𝑎
) = 0  +∞

𝑛=1
+∞
𝑚=1                        (38) 

 

That is : 

∑ ∑ {𝑤𝑚𝑛 [π
4(
m2

a2
+

n2

a2
)2] +

𝑞𝑚𝑛

𝐷
} sin (

𝑚𝜋𝑥

𝑎
) sin (

𝑛𝜋𝑦

𝑎
) = 0+∞

𝑛=1
+∞
𝑚=1                           (39) 

 

𝑤𝑚𝑛 = −
𝑞𝑚𝑛

𝐷π4(
m2

a2
+
n2

a2
)2
                                                                                          (40) 

The deflection of our cylinder head, taking into account the direction of the combustion pressure vector, is then written: 

𝑤(𝑥, 𝑦) = ∑ ∑ −
𝑞𝑚𝑛

𝐷π4(
m2

a2
+
n2

a2
)
2

+∞
𝑛=1

+∞
𝑚=1 sin (

𝑚𝜋𝑥

𝑎
) si n (

𝑛𝜋𝑦

𝑎
)                                         (41) 

Knowing the expression of our deflection, the different moments related to the flexion of our cylinder head are:

𝑀𝑥𝑥 = −
1

π2
(∑ ∑

𝑞𝑚𝑛

(
m2

a2
+
n2

a2
)
2

+∞
𝑛=1

+∞
𝑚=1 [(

𝑚

𝑎
)2 + 𝜈(

𝑛

𝑎
)2]sin (

𝑚𝜋𝑥

𝑎
) sin (

𝑛𝜋𝑦

𝑎
))                  (42) 

 

𝑀𝑦𝑦 = −
1

π2
(∑ ∑

𝑞𝑚𝑛

(
m2

a2
+
n2

a2
)2

+∞
𝑛=1

+∞
𝑚=1 [(

𝑛

𝑎
)2 + 𝜈(

𝑚

𝑎
)2]sin (

𝑚𝜋𝑥

𝑎
) sin (

𝑛𝜋𝑦

𝑎
))                  (43) 

 

𝑀𝑥𝑦 = −𝑀𝑦𝑥 =
1

π2
∑ ∑ −

𝑞𝑚𝑛

(
m2

a2
+
n2

a2
)
2 (

𝑚𝑛

𝑎2
− 𝜈

𝑚𝑛

𝑎2
+∞
𝑛=1

+∞
𝑚=1 ) cos (

𝑚𝜋𝑥

𝑎
) cos (

𝑛𝜋𝑦

𝑎
)           (44)

ii) Calculation Flowchart for Determining the Deformation 
From the expression of the deformation, the flow chart for calculating the latter on MATLAB is as follows: 

 
Fig. 7 Flow chart for calculating the deformation in MATLAB 

 

 

 

Results 

End 

  Start 

Enter the calculation parameters (Combustion pressure, Young's Modulus, Thickness of the cylinder 

head, Poisson's ratio, geometric characteristics of the cylinder head, etc.) 

Calculation of bending stiffness 

Enter the position values of the cylinder head 

Enter the initial values of the deflection of the cylinder head 

Calculation of uniform pressure 

Calculation of the deformation 
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iii)  Method for Solving the FIC Equation 

Whether it is the determination model by direct estimation or by calculating the contour J integral, the method for 

determining the FIC is numerically based on developing a subroutine on MATLAB. 

 

From the expression of the FIC, the calculation flowchart of the latter on MATLAB is the following: 

 

Fig. 8 FIC calculation flowchart in MATLAB 

 

 

2.1.2. Numerical Method 

In this part, the COMSOL multiphysics software is 

used to simulate the loading of thin plate stress in bending, 

whose initial and boundary conditions are taken into 

account by integrating the nature of the material, which 

constitutes it in a steady state. This part of the modelling 

results in presenting values such as the deformation of the 

stress. 

 

Numerical simulation on COMSOL multiphysics 

comes from the finite element method, which considers 

scientific hypotheses, particularly mechanical ones, in our 

study environment. Thus, after integrating the calculation 

parameters (geometric and mechanical characteristics of our 

cylinder head, applied load, initial conditions, boundary 

conditions, study regime, and mesh type), we obtain 

mechanical results, particularly the deformation. A dynamic 

that can start again until a valid result is obtained. 

 

In this case, the calculation flowchart is as follows: 

 

 

 

 

Results 

End 

  Start 

Enter the calculation parameters (Combustion pressure, Young's Modulus, Thickness of the cylinder 

head, Poisson's ratio, geometric characteristics of the cylinder head, etc.) 

Calculation of bending stiffness 

Enter the coordinates around the crack tip 

Enter the initial values of the deflection of the cylinder head 

Calculation of uniform pressure 

Calculation of the deformation 

Calculation of stress intensity factor 
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Fig. 9 Calculation flowchart under COMSOL multiphysics

3. Results and Discussions 
Fig. 10 illustrates the representation according to the extreme compression ratios of the deformations: 

 

 
Fig. 10 Curve of the different deflections 

Starting COMSOL multiphysics 

Choice of the study benchmark - Choice of the type of study (Mechanical structure) - Choice of the 

type of regime (Stationary) 

Definition of the parameters or geometric characteristics of the plate 

Physical modelling of the cylinder head 

Choice of mesh type 

Choice of constituent material – Definition of initial and boundary conditions – Definition of the applied 

load 

Loading 

Results 

End 
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from a subroutine developed in MATLAB 

           B𝜀𝑣 = 13,5 𝑒𝑡𝜀𝑣 = 18 

 

After compilation under MATLAB of the developed sub-program, 𝜀𝑣 = 13,5, the yoke bent to the position following 

the Cartesian reference of fig.3. With the breach bent from to the position following the mark previously mentioned. 

 

𝑤𝑚𝑖𝑛 = −6,902. 10
−5𝑚 (0,046 𝑚, 0,046 𝑚) 𝜀𝑣 = 18 𝑤𝑚𝑎𝑥 = −10,85. 10−5𝑚(0,046 𝑚, 0,046 𝑚) 

 

Timoshenko S and Woinowsky-Krieger S (1959) gave analytical solutions to the deformations of the plates requested 

in bending according to the various supports they are subjected to. For a supported square plate with a uniformly applied 

load, they presented the analytical solution as 𝑤𝑟𝑒𝑓 = 4,062. 10
−3 𝑞𝑎

4

𝐷
,q being the uniformly distributed load, the side of the 

plate, and D the bending stiffness. 

 

A with P.𝜀𝑣 = 13,5 𝑤𝑟𝑒𝑓 = −6,8988. 10
−5𝑚 = 105000 𝑁/𝑚2 

Has with 

.

𝜀𝑣 = 18 𝑤𝑟𝑒𝑓 = −10,841. 10−5𝑚 𝑃 = 165000 𝑁/𝑚2 

 

The previous results show a difference between the deformation resulting from the subroutine and the reference 

deformation from to0.0464 %  𝜀𝑣 = 13,5, of0.0829 % at𝜀𝑣 = 18. We observe a very rapid convergence with the results. 

These variations being less than, one can say that the results resulting from the compilation of the subroutine are 

satisfactory. 0,5 % 

 

The use of the COMSOL multiphysics simulation software after modelling our cylinder head in the form of a thin plate 

stressed in simple bending made of AlsiCu material gives the following fig. 11 and 12, which represent the deformations 

according to the positions: 

                        

 
Fig. 11 Deflection curves from simulation under COMSOL 

multiphysics𝜺𝒗 = 𝟏𝟖 

 

 
Fig. 12 Deflection curves from simulation under COMSOL 

multiphysics𝜺𝒗 = 𝟏𝟑, 𝟓 
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The COMSOL multiphysics software, the maximum deformation values give the following results: 

 

A with P.𝜀𝑣 = 13,5 𝑤𝑚𝑖𝑛 = −6,8261. 10
−5𝑚 = 105000 𝑁/𝑚2 

Has with.𝜀𝑣 = 18 𝑤𝑚𝑎𝑥 = −10,716. 10−5𝑚𝑃 = 165000 𝑁/𝑚2 

 

In the same way, from the previous results, we observe a difference between the deformation resulting from the 

simulation and the reference deformation resulting from Timoshenko S and Woinowsky-Krieger S from to1,05380 %  𝜀𝑣 =
13,5, of1,1530 %  at𝜀𝑣 = 18. We observe a very rapid convergence with the results. Since these deviations are not less than, 

it can be said that the results from the compilation of the simulation are satisfactory, with deviations less than  0,5 %1,5 % 

 

We see the cylinder head bent more and deforms more when the engine has a compression ratio. Although the variable 

compression ratio engine improves performance, its cylinder head deformation is significant and increases its risk of 

damage.𝜀𝑣 = 18 

 

Considering the interval of the compression ratio and choosing a few points in this interval, the maximum combustion 

pressures are summarized in the following table: 

 
Table 1.  Some values of deformations on the interval of the compression rate resulting from a subroutine developed under MATLAB 

Some values of the 

maximum combustion 

pressure (N/m2) 
105000 120000 135000 150000 165000 

Maximum deformations (m) 
-6, 9016. 10−5 -7.8875. 10−5 -8.8734. 10−5 

-

9.8594. 10−5 

-

1.0845. 10−4 

Fig. 13 Curve of maximum pressure according to the maximum deformation resulting from MATLAB 

 

Thus the maximum combustion pressure as a function of the maximum deformation is represented as follows: 

The function resulting from the curve is a linear line of expression: 
 

𝑃 = −1,5228. 109𝑤 − 130                                                                    (45) 
 

With reversible adiabatic compression (isentropic), we also have: 

𝜀𝑣 = [
1

𝑝0
(−1,5228. 109𝑤 − 130)]

1

𝛾
𝑎𝑣𝑒𝑐 𝑝0 𝑙𝑎 𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑑

′𝑎𝑖𝑟    (46) 
 

Therefore the maximum combustion pressure is a linear and increasing function according to the maximum deformation. 

This expression, after study, is the same at minimum combustion pressure. 
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The centre of our cylinder head is where the deflection is maximum. Considering the centre of our cylinder head as the 

crack tip, for a circle with a radius of at most one-hundredth of the said crack tip, after simulation on MATLAB, the various 

maximum values of the FIC are: 
 

Has with.𝜀𝑣 = 13,5 𝐾1 = 0,0503 𝑁𝑚
−3/2 𝑃 = 105000 𝑁/𝑚2 

Has with.𝜀𝑣 = 18 𝐾1 = 0,1766  𝑁𝑚−3/2 𝑃 = 165000 𝑁/𝑚2 
 

The associated curve around this crack tip is: 

 

The adjustment option deemed optimal in the sense of the Least Squares Method (MMC) is an optimal polynomial 

model of order 2. We have:𝑥 ∈ [0,0920. 10−3 𝑚, 0,4600. 10−3 𝑚] 
 

AT𝜀𝑣 = 13,5𝐾1 = −1,738. 10
5𝑥2 + 262,9𝑥 + 0,02794      (48) 

 

AT𝜀𝑣 = 18 𝐾1 = −2,726. 10
5𝑥2 + 412,7𝑥 + 0,04396        (49) 

 

The adjustment option deemed optimal in the sense of the Least Squares Method (MMC) is an optimal polynomial 

model of order 2. We have:𝑦 ∈ [0,0920. 10−3 𝑚, 0,4600. 10−3 𝑚] 
 

T𝜀𝑣 = 13,5  𝐾1 = −1,738. 105𝑦2 + 262,9𝑦 + 0,02794       (50) 

 

AT𝜀𝑣 = 18 𝐾1 = −2,726. 10
5𝑦2 + 412,7𝑦 + 0,04396         (51) 

 

By choosing, for example, any point on our cylinder head, namely (0.0054 m, 0.0084 m) as the tip of the crack, for a 

circle with a radius located at most one hundredth from the said crack tip, after simulation on MATLAB, the various 

maximum values of the FIC are: 

 

 
Fig.  14 Curve of the FICs according to the position of the point around the crack tip located in the centre of the cylinder head from MATLAB. 

 

 

Has with.𝜀𝑣 = 13,5 𝐾1 = 1,8146. 10
−7𝑁𝑚−3/2  𝑃 = 105000 𝑁/𝑚2 

Has with.𝜀𝑣 = 18  𝐾1 = 2,8515. 10
−7𝑁𝑚−3/2 𝑃 = 165000 𝑁/𝑚2 

 

The associated curve around this crack tip is: 
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Fig. 15 Curve of the FICs as a function of the position of the point around the arbitrary crack tip chosen from MATLAB 

 

The adjustment option deemed optimal in the sense of the Least Squares Method (MMC) is an optimal polynomial model 

of order 2. We have:𝑥 ∈ [0,1080. 10−4 𝑚, 0,54. 10−4 𝑚] 
 

AT𝜀𝑣 = 13,5  𝐾1 = 1562𝑥
2 − 0,2796𝑥 − 3,516. 10−6        (52) 

 

AT𝜀𝑣 = 18 𝐾1 = 2456𝑥
2 − 0,4398𝑥 − 5,514. 10−6           (53) 

 

The adjustment option deemed optimal in the sense of the Least Squares Method (MMC) is an optimal polynomial model 

of order 2. We have:𝑥 ∈ [0,1680. 10−4, 0,84. 10−4] 
 

AT𝜀𝑣 = 13,5  𝐾1 = 645,3𝑦
2 − 0,1798𝑦 − 3,516. 10−6        (54) 

 

AT𝜀𝑣 = 18𝐾1 = 1015𝑦
2 − 0,2827𝑦 − 5,514. 10−6              (55) 

 

The above values of the FIC show that the risk of a crack is higher at a high compression ratio. Therefore the damage has a 

greater magnitude at a high rate. 

 

4. Conclusion 
In short, the deflection of our cylinder head, which is 

the parametric element of the deformation, becomes a 

central point of the study of rupture within the framework 

of this research. The variable compression ratio engine 

brings in our era of modernity a subsequent advantage in 

energy intake; through numerous studies conducted, its 

reliability in the spring of mechanical engineering is proven 

through elaborate scientific studies, so although the increase 

in the efficiency of the engine with variable compression 

ratio favours the improvement of efficiency, it presents 

enormous risks of damage, hence the consideration of the 

sizing parameters allowing the reduction of this 

phenomenon degrading our engine. By using fracture 

mechanics and fatigue approaches, by previously presenting 

details of linear elasticity associated with the mechanical, 

Physico-chemical characteristics of the alloy constituting 

the material made by our cylinder head, the validation of the 

deflection triggered a wave of questions, reflections, and 

analyses whose sole purpose is to draw scientific attention 

to a social scope to inform the scientific community about a 

possible danger through an analytical, numerical analysis 

giving computer programming perspectives through a 

language at the height of possible research in the field of 

computing and innovation. So from this work, it was thus 

possible to obtain polynomial forms of the stress intensity 

factors, functions of the maximum combustion pressure 

depending on the maximum deformation, and elements that, 

taken into account in dimensioning, would reduce the risk 

of damage. Naturally, an experiment should make this study 

more expensive. 
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