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Abstract - Increasing the number of Condition-Based Profitability and safety are given emphasis in monitoring activity. 

Maintenance is the prevention of anticipated problems by monitoring the machine in time for it to run, which involves process 

control, keeping the machine operating, logistics, and improvement. This paper focuses on a unique feature of predictive 

maintenance utilizing the MATLAB tool's State space model, and accuracy is more than 85%.  The frequency data is primarily 

collected from rotating machines using vibrometers, and the obtained spectrums are analyzed using MATLAB for validation, 

which clearly defines the severity level of vibration in a component and estimates the machine's life by creating a state space 

model and analyzing it using the asset tool. 
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1. Introduction  
Vibration analysis is an extensively measured parameter in 

many business programs. Vibration response measurements 

give valuable information on common issues. The frequency 

domain data includes both the analytical form and the window. 

However, frequency domain data have been used in a variety 

of applications, including nonlinear regression and 

compression.  

The signal is decomposed into time and frequency phrases of 

a wavelet, known as the mum wavelet, using frequency 

domain data. Frequency domain data are a powerful statistical 

tool that may be applied to a wide range of applications, 

including signal processing, data compression, and business 

management of gear wheels. 

 

2. Literature Survey 
Mazzoleni et al. [1], experimental data are collected for 

the cylindrical bearing NJ305, and four conditions are 

considered: inner race defect, outer race defect, roller defect, 

and healthy bearing. Kurtosis, crest factor, energy, skewness, 

and other characteristics are calculated for all 900 signals in 

the database. ANN is trained and tested first for condition 

auto-identification, and then various classifiers are analysed 

here to determine the best method. The Support Vector 

Machine technique as a classifier was found to be the most 

efficient, with nearly 86% efficiency.  

 

Attoui et al. [5] this paper centres around fostering a 

convolutional brain organization to gain includes 

straightforwardly from the first vibration signals and 

afterwards analyze deficiencies. The viability of the proposed 

technique is approved through PHM gearbox challenge 

information and a planetary gearbox test rig which was 

contrasted with the other three conventional strategies; the 

outcomes show that the one-layered convolution brain 

organization (1-DCNN) model has higher exactness for fixed-

shaft gearbox and planetary gearbox issue determination than 

that of the customary indicative ones. 

Katipula et al. [8], By comparing the proposed method to 

previous works, two main contributions are concluded: first, 

the proposed method directly uses raw vibration signals to 

carry out fault diagnosis in an end-to-end way, greatly 

reducing the reliance on human expertise and manual 

intervention; second, the appropriate network architecture of 

the MLCNN model is designed to realise compound fault 

diagnosis of the gearbox effectively and efficiently. Finally, 

two case studies are used to validate the presented method. 

The results show that it is more accurate than other existing 

methods in the literature. Furthermore, its stability 

performance is quite good. 

Li et al. [12], In this research, domain adaptation is 

employed to facilitate the effective implementations of 

intelligent fault detection. Specifically, we suggested a 

framework based on a multilayer multiple kernel form of 

Maximum Mean Discrepancy. In order to provide consistent 

findings and enhance accuracy, the kernel approach is 

developed to replace the high dimensional map of Maximum 
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Mean Discrepancy. As a result, characteristics from various 

domains are near one another in the Hilbert Space. 

Furthermore, two separate domains' characteristics contribute 

to domain adaptation in each feature layer. Two bearing 

datasets are utilised to evaluate the suggested method's 

effectiveness. The experimental findings suggest that the 

proposed technique can overcome the limits of existing 

methods and attain conditioned performance.  

Pankaj et al. [19], The following methods for CBM fault 

prognostics are examined in this study: logical data analysis, 

artificial neural networks, and proportional hazard models. A 

technique for applying and comparing these models is created, 

which comprises data pre-processing, model construction, and 

model output analysis. The outcomes are evaluated using three 

metrics: error, half-life error, and cost score. According to the 

findings of this investigation, the LAD and feed-forward ANN 

models outperform the PHM model. The feedback ANN, on 

the other hand, performs poorly, with substantially larger 

variation than the other three approaches' predictions. The 

purpose of this research is to give suggestions on when and 

where to employ these three prognostic models based on these 

findings. 

 

3. Critical Machine Identification 
The accelerometer is placed on the motor's non-driving 

end to collect data using a vibrometer.  These measurements 

were done under full load conditions, and amplitude values in 

the axial and vertical directions were found to be dominant.  

Later, this gathered data is fed into a computer utilising 

Omnitrend software, where information is transmitted and 

useful in understanding the prior data and trends, which helps 

diagnose the problem by verifying whether the readings are 

within allowed limits. The nature of the problem in equipment 

is detected by its distinct vibration characteristics.  

By studying the vibration amplitude pattern, a localised 

problem may be identified without affecting the other bearings 

in the equipment. The details of the Mill fan motor are shown 

below in Table 1 and identified as high vibration response.   
 

Table 1. Specifications of Mill Fan motor 

Type of Equipment Rotor Fan details 

Location Non-Drive End 

Pressure 780 MM WC 

Impeller diameter   2750MM 

Motor  Type 3-Phase  

Rating  590Kw 

Operating Voltage  7KV 

Full Load Current   71 Amp 

Motor Speed  990 RPM 

 

 

Table 2. Data acquisition for Motor Non-drive end 

Motor – Non-Drive End (NDE) 

SL NO 

Frequency Velocity 

X in Hz V-H V-V V-A 

1 20 0.01 0.04 0.01 

2 40 0.01 0.05 0.05 

3 60 0.07 0.12 0.21 

4 80 0.04 0.08 0.33 

5 100 0.31 0.35 0.31 

6 120 0.01 0.1 0.1 

7 140 0.01 0.05 0.05 

8 160 0.01 0.03 0.08 

9 180 0.01 0.08 0.05 

10 200 0.01 0.01 0.06 

11 220 0.01 0.01 0.02 

12 240 0.01 0.01 0.01 

13 260 0.01 0.02 0.03 

14 280 0.01 0.01 0.02 

15 300 0.02 0.03 0.01 

16 320 0.01 0.05 0.05 

17 340 0.01 0.02 0.02 

18 360 0.01 0.01 0.07 

19 380 0.02 0.01 0.05 

20 400 0.01 0.01 0.03 

 

The data measurements are collected from a variety of 

sources and analysed to identify equipment failure trends and 

determine what maintenance is required. Data capture, data 

manipulation, status detection, health evaluation, and 

prognosis assessment are all carried out during this stage and 

are represented in Table 2. 

 

As per the above data collected with triaxial directions for 

different frequencies, a graph is drawn to show the highest 

peak to find the fault in the machine. The common type of 

fault detection is generally categorised into two types: data-

driven and model-based approaches.  
 

 
Graph 1. The graph shows frequency versus velocity with triaxial 

directions 
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Fig. 1 Neural Network flow diagram 

 

The reason for failure was determined by thoroughly 

inspecting the sources of bearing problems, such as 

misalignment, mechanical looseness, and so on, and removing 

them one by one, which causes bearing failure 

 

4. Neural network 
A Neural Network (NN) is a data processing model 

inspired by how the human brain analyses data. A wealth of 

material outlines the fundamental architecture and parallels to 

organic neurons. The material here is restricted to a general 

overview of the various components involved in the NN 

implementation. The network design or topology, which 

includes the number of nodes in hidden layers, network 

connections, initial weight assignments, and activation 

functions, is particularly crucial in NN performance and 

largely relies on the situation at hand. Figure 1 depicts a basic 

NN and its elements having 3 inputs and 1 output with 10 

hidden layers. 

An artificial neural network models biological synapses 

and neurons and can be used to make predictions for complex 

data sets. Neural networks and their associated algorithms are 

among the most interesting of all machine-learning 

techniques.  
 

This paper explains the feed-forward mechanism, which 

is the most fundamental aspect of neural networks. It is 

essential to show that the best validation performed at a certain 

epoch number with a validation value of 88%, which is greater 

than 85% obtained from training and test data. 

 

 
Fig. 2 Validation results showing R-value 

5. Validation 
Validate the developed regression-based simultaneous 

bearing fault diagnosis and severity identification methods on 

a bearing test rig with vibration signals utilizing seeded fault 

tests.  

 
Fig. 3 Performance validation results having MSE and epochs 

 

 
Fig. 4 Forest Qualifier matrix 

 

Figure 3 validates that the best performance validated is 

1.3247 at epoch 11. The accuracy of the diagnostic 

outperforms the previously published values. This study 

concentrated on imbalance and misalignment since these two 

flaws are the most typical errors that may be detected in 

bearing difficulties. Both the unbalance and misalignment rigs 

have 150000 data points in their data. 

 

The above figure 4 matrix shows the best breakdown error 

in predictions for unseen data. Each value of the row is 

standardised by listing different colours with different values. 

We can easily identify the diagonal values with those of the 

positions showing the best performance in the matrix. Image 

classification can be finished with the least error rate. 
 

6. Conclusion  
A generic methodology for detecting machinery faults 

using a pattern recognition technique is proposed. It entails 
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gathering data, extracting features, reducing high-dimensional 

data, and classifying it using MPL and closest neighbor. 

Although we utilized bearing fault diagnostics as illustrative 

examples, the suggested technique may be used in different 

applications by simply altering the sensory signal properties. 

This paper concludes towards validation from regression and 

forest qualifier matrix having more than 85% from literature 

survey using MATLAB tool for diverging fault detection and 

prognosis in vibration size techniques for machine factors. 
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