
SSRG International Journal of Mechanical Engineering Volume 10 Issue 2, 1-8, February 2023

ISSN: 2348 – 8360 / https://doi.org/10.14445/23488360/IJME-V10I2P101 © 2023 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

 Modelling of Hardy Cross Method for Pipe Networks

Pankaj Dumka1, Nitin Samaiya2, Sumit Gandhi3, Dhananjay R. Mishra4

1,4Department of Mechanical Engineering, Jaypee University of Engineering and Technology, Guna, Madhya Pradesh.
2,3Department of Civil Engineering, Jaypee University of Engineering and Technology, Guna, Madhya Pradesh.

Received: 16 December 2022 Revised: 18 January 2023 Accepted: 04 February 2023 Published: 15 February 2023

Abstract - The transport of fluids through pipes is very common in core engineering practice. The main issue that came up

when the pipe flow networks were its analysis part. The Hardy Cross approach is very accurate and reliable for solving these

issues, but because it is iterative, the likelihood of errors increases as the number of circuit loops grows. Therefore, in this

research, a piece of effort has been made to automate the Hardy Cross technique using Python programming (as it is user-

friendly and has a large library backup) to remove the errors that come with using hand calculations. The built program has

been applied to four different pipe flow network problems, and the outcomes are the same as those presented in the literature.

Keywords - Pipe flow, Pipe Network, Python Programming, Hardy Cross method.

1. Introduction
One of the most difficult tasks faced by the practitioners

and students of fluid dynamics is understanding, analysing,

and solving the pipe network problem [1]. A pipe network is

a very complex arrangement of different pipes (in series and

parallel) with varying resistances of flow and flow rates [2],

as seen in Fig. 1.

Fig. 1 A typical pipeline network [3]

The task is to find the flow rate in each pip so that the

continuity equation and pressure equations satisfy

simultaneously [4]. The meaning of continuity is that the sum

of discharge at each node has to be zero, whereas the pressure

means that in each hydraulic loop, the sum of the product of
flow resistance and square of discharge should be zero.

Mathematically these can be written as [4], [5]:

 ∑𝑄 = 0 (1)

 ∑𝑅|𝑄|𝑄 = 0 (2)

The pipe network analysis cannot be done explicitly as

at each node of the network, Eq. 1 has to satisfy, and Eq. 2

has to be satisfied in each loop. So the network can only be

solved iteratively. The best-known method so far is called the

Hardy-Cross method for pipe flow networks. Nevertheless,

this problem is the complex nature of the iterations involved,

which grows as the network complexity. In some cases, it

becomes very difficult, trying and error-prone to apply the

method to the pipe network using hand calculations.

Therefore it becomes essential to apply the method with the

help of computer programming [27].

Therefore python catches the eyes of researchers as it is

an easy programming language with a light and user-friendly

syntax[7]–[14]. Furthermore, its modules NumPy and SymPy

are quite useful for numerical computations [12], [15]–[20].

A multi-dimensional array, matrix data structure, and small

storage are features of NumPy. Moreover, NumPy is quick

when it comes to loops. Matplotlib. Pylab [21]–[23] is a very

useful library for plotting data. Pylab also uses NumPy, so

while using Pylab, calling NumPy is not required.

In this research article, a Python-based approach has

been used to solve pipe network problems. The Hardy Cross

method has been modelled as functions in python. Moreover,

four complex pipe networks are solved with the help of

developed Python functions and code.

2. Hardy Cross Method
The solution of Eq. 1 and 2 is done by the Hardy cross

method (which is an iterative process) by setting up an initial

guess (𝑄) in the whole pipe network [24]–[26]. Let Q0 is the

correct flow rate, and 𝑄 is the guess. Then the error in the

flow rate can be written as:

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Pankaj Dumka et al. / IJME, 10(2), 1-8, 2023

2

𝑑𝑄 = 𝑄 − 𝑄0 (3)

It is assumed that the error is constant for all hydraulic

paths in a loop (dQ = const). Let head drop in a particular

element of the loop be ℎ ℎ′ based on Q and Q0 as shown

below:

ℎ = 𝑅|𝑄|𝑄 (4)

 ℎ′ = 𝑅|𝑄0|𝑄0 (5)

Then according to Eq 1. in a loop, the above equations

become:

∑ℎ = 𝑒𝑟𝑟𝑜𝑟 (6)

∑ℎ′ = 0 (7)

Eq. 6 gives the error due to the assumed values of the

flow rate. On combining Eq. 6 and 7, one can get:

 ∑(ℎ− ℎ′) = ∑(𝑑ℎ) = 𝑒𝑟𝑟𝑜𝑟 (8)

Where 𝑑ℎ is the error in the pressure equation for a path.

On differentiating Eq. 4, the value of 𝑑ℎcan be obtained in

terms of 𝑑𝑄as:

𝑑ℎ = 2𝑅|𝑄|𝑑𝑄 (9)

now substituting dh in Eq. 8, one can get:

 𝑒𝑟𝑟𝑜𝑟 = ∑2𝑅|𝑄|𝑑𝑄 (10)

As it is assumed that dQ is a constant so it can be taken

out from the summation as:

𝑑𝑄 =
𝑒𝑟𝑟𝑜𝑟

∑2𝑅|𝑄|
 (11)

Therefore, from Eq. 7, 8, and 4, one can get the error in

flow rate as follows:

𝑑𝑄 =
∑𝑅|𝑄|𝑄

∑2𝑅|𝑄|
 (12)

The Hardy cross methodology is explained below:

1. The flow rate in each pipe of the network is assumed so

that the continuity equation, i.e. Eq. 1, is satisfied. To

reduce the number of iterations, one can set lower values

of flow rates for the pipes with high resistance and vice-

versa.

2. With the assumed flow rates, evaluate the error in

discharge (for each loop) using Eq. 12.

3. Check whether the error is less than a certain threshold

value or not. If yes, then the final answer is arrived and

break the loop; else, follow the steps below.

4. Then update the discharge using Eq. 3 for each loop.

5. Repeat steps from 2 to 4.

3. Implementation of Hardy Cross Method in

Python
First, the function is developed, which will accept the

array of Resistances and assumed guesses (as arguments) in

each loop. In the article, the function is called "

Hardy_Cross". This function evaluates dQ based on Eq. 12

and returns the updated discharge equation in each loop. The

function is as follows:

def Hardy_Cross(R,Qg):

 """

 Function to evaluate corrected

discharge in a loop

 Input: Array of R and assumed

discharge (Q)

 Output: Updated discharge

 """

 numerator=sum(R*abs(Qg)*Qg)

 denominator=sum(2*R*abs(Qg))

 dQ=numerator/denominator

 Q=Qg-dQ

 return Q

This function will be called in the main program, where

arrays of resistances and respective assumed flow rates are

defined. Then for a particular loop above function will return

the new updated value of discharge for a particular iteration.

Let say R1 and Q1 are the arrays for loop 1, and R2 and

Q2 are arrayed for loop 2. Also, let us assume these have Pc
as common pipe shown in Fig. 2.

Fig. 2 Common pipe in a pipe network

Once the updated discharge values are obtained for loop

1 then, before solving for loop 2, the value of discharge

corresponding to the pipe Pc for loop 2 has to be updated from

the new values of loop 1. Also, after the updated value of

discharge from loop 2 is obtained, the guess for pipe Pc for

loop1 again has to be updated. This is done by using the index

of pipe Pc from the discharge array. This is done as follows:

Pankaj Dumka et al. / IJME, 10(2), 1-8, 2023

3

#---- LOOP 1 -----#

Hardy Cross function

Q1= Hardy_Cross(R1,Q1g)

Error for loop 1

e1=abs(Q1-Q1g)

Updating Q1g guess

Q1g=Q1.copy()

#---- LOOP 2 -----#

Common Pipe

Q2g[1]=Q1g[1]

Hardy Cross function

Q2= Hardy_Cross(R2,Q2g)

Error for loop 1

e2=abs(Q2-Q2g)

Updating Q2g guess

Q2g=Q2.copy()

Common Pipe

Q1g[1]=Q2g[1]

Also, the loop error has to be evaluated simultaneously for

each loop and checked for the given convergence criterion in

the while loop. The while loop will be as follows:

Initial error value to enter in

the loop

error=1

Iteration counter

count=1

while error>1.E-8:

#--------- LOOP 1 ----------#

Hardy Cross function call

 Q1= Hardy_Cross(R1,Q1g)

 # Error for loop 1

 e1=abs(Q1-Q1g)

 # Updating Q1g guess

 Q1g=Q1.copy()

#--------- LOOP 2 ----------#

 # Common Pipe

 Q2g[1]=Q1g[1]

Hardy Cross function call

 Q2= Hardy_Cross(R2,Q2g)

 # Error for loop 1

 e2=abs(Q2-Q2g)

 # Updating Q2g guess

 Q2g=Q2.copy()

 # Common Pipe

 Q1g[1]=Q2g[1]

 # Error Evaluation

 error=sum(e1**2+e2**2)

 # Loop counter increment

 count+=1

4. Implementation of Python Functions to

Solve Problems
In this section, some numerical problems will be taken

up to show the accuracy and ease with which complex pipe

flow problems can be done.

Question 1: Solve below mentioned network :

In this problem, only one loop is there, so the first task

is to guess the values of flow rates in each pipe of the loop.

The guess values are written on each pipe along with the

respective resistances (K). Assume a clockwise direction of

the loop the array of resistances and initial discharge will be;

𝑹 = [𝟐, 𝟏, 𝟒] and 𝑸𝒈 = [𝟒𝟓, 𝟐𝟓,−𝟏𝟓] . The negative sign of

discharge in pipe of resistance 4 is taken; as in a clockwise

direction, the assumed motion of fluid will be opposite to the

loop direction. The detailed program will be as follows:

Python Modules and Function

from numpy import *

def Hardy_Cross(R,Qg):

 """

 Function to evaluate corrected

discharge in a loop

 Input: Array of R and assumed

discharge (Q)

 Output: Updated discharge

 """

 numerator=sum(R*abs(Qg)*Qg)

Pankaj Dumka et al. / IJME, 10(2), 1-8, 2023

4

 denominator=sum(2*R*abs(Qg))

 dQ=numerator/denominator

 Q=Qg-dQ

 return Q

Main Program

R=array([2,1,4])

Qg=array([45,25,-15])

error=1

count=1

while error>1.E-10:

#---- LOOP 1 -----#

 Q= Hardy_Cross(R,Qg)

 e=abs(Q-Qg)

 # Updating Q1g guess

 Qg=Q.copy()

 error=sqrt(sum(e**2))

 count+=1

print(Q)

Data display

from pandas import *

pipe=array(["AC","CB","BA"])

data={'Pipe':pipe,'Q':Q}

df=DataFrame(data)

df

The output of the following program will be:

The negative value tells that the discharge is opposite to the

assumed loop's direction.

Question 2: Solve below mentioned network :

There are two loops, i.e. an extra loop compared to the p

revious question. Here also, the first thing which we will be

doing is selecting guess values for each pipe considering Eq.

1. The initial guess is written along each pipeline.

 Pipes R 𝑸𝒈

Loop1

AD

DB

BA

[4,1,2]

[50,10, −40]

Loop2

CD

DB

BC

[2,1,1]

[−20,10,20]

 The point to focus on is that the common guess pipe mu

st be updated after applying Hardy cross to each loop. The p

rogram will be as follows (from here onwards, the main prog

ram and the display portion will be shown as functions, and

modules will remain the same):

Main Program

Loop 1

R1=array([4,1,2])

Q1g=array([50,10,-40])

Loop 2

R2=array([2,1,1])

Q2g=array([-20,10,20])

error=1

count=1

while error>1.E-8:

#---- LOOP 1 -----#

 Q1= Hardy_Cross(R1,Q1g)

 e1=abs(Q1-Q1g)

 # Updating Q1g guess

 Q1g=Q1.copy()

#---- LOOP 2 -----#

 Q2g[1]=Q1g[1]

 Q2= Hardy_Cross(R2,Q2g)

 e2=abs(Q2-Q2g)

 # Updating Q2g guess

 Q2g=Q2.copy()

 Q1g[1]=Q2g[1]

 error=sqrt(sum(e1**2)+sum(e2**2))

 count+=1

Pankaj Dumka et al. / IJME, 10(2), 1-8, 2023

5

Data display

from pandas import *

Lp1=array(["AD","DB","BA"])

Lp2=array(["CD","DB","BC"])

data={'Lp1':Lp1,'Q1':Q1,'Lp2':Lp2,'Q2'

:Q2}

df=DataFrame(data)

df

The program output will be as follows:

Question 3: Solve below mentioned network :

In this problem, again, there are two loops. The initial g

uess discharge along each pipe is shown in the figure.
 Pipes R 𝑸𝒈

Loop1

AD

DB

BA

[1,3,2]

[80,20, −20]

Loop2

CD

DB

BC

[2,3,1]

[−35,20,40]

The program will be as follows :

Main Program

Loop 1

R1=array([4,1,2])

Q1g=array([50,10,-40])

Loop 2

R2=array([2,1,1])

Q2g=array([-20,10,20])

error=1

count=1

while error>1.E-8:

#---- LOOP 1 -----#

 Q1= Hardy_Cross(R1,Q1g)

 e1=abs(Q1-Q1g)

 # Updating Q1g guess

 Q1g=Q1.copy()

#---- LOOP 2 -----#

 Q2g[1]=Q1g[1]

 Q2= Hardy_Cross(R2,Q2g)

 e2=abs(Q2-Q2g)

 # Updating Q2g guess

 Q2g=Q2.copy()

 Q1g[1]=Q2g[1]

 error=sqrt(sum(e1**2)+sum(e2**2))

 count+=1

Data display

As nomenclatures are the same as in the previous

problem so this portion will be the same as in Question

2

The program output will be as follows:

Question 4: Solve below mentioned network :

Pankaj Dumka et al. / IJME, 10(2), 1-8, 2023

6

 In this problem, there are four loops. The initial guess di

scharge along each pipe is shown in the figure. The loops are

as follows:

 Pipes R 𝑸𝒈

Loop

1

CD

DE

EB

BC

[2,3,

1,1]

[50,30,-100,100]

Loop2

JD

DE

EH

HJ

[5,3,

1,4]

[-20,30,80,280]

Loop3

GF

FE

EH

HG

[2,3,

1,2]

 [-150,-50,80,-200]

Loop4

AF

FE

EB

BA

[3,3,

1,4]

[300,-50,-100,-200]

The program will be as follows :

Main Program

Loop 1

R1=array([2,3,1,1])

Q1g=array([50,30,-100,100])

Loop 2

R2=array([5,3,1,4])

Q2g=array([-20,30,80,280])

Loop 3

R3=array([2,3,1,2])

Q3g=array([-150,-50,80,-200])

Loop 4

R4=array([3,3,1,4])

Q4g=array([300,-50,-100,-200])

error=1

count=1

while error>1.E-8:

#-------- LOOP 1 ---------#

 Q1= Hardy_Cross(R1,Q1g)

 e1=abs(Q1-Q1g)

 # Updating Q1g guess

 Q1g=Q1.copy()

#-------- LOOP 2 ---------#

common b/w Loop 1 and 2

 Q2g[1]=Q1g[1]

 Q2= Hardy_Cross(R2,Q2g)

 e2=abs(Q2-Q2g)

 # Updating Q2g guess

 Q2g=Q2.copy()

common b/w Loop 1 and 2

 Q1g[1]=Q2g[1]

#-------- LOOP 3 ---------#

common b/w Loop 2 and 3

 Q3g[2]=Q2g[2]

 Q3= Hardy_Cross(R3,Q3g)

 e3=abs(Q3-Q3g)

 # Updating Q2g guess

 Q3g=Q3.copy()

common b/w Loop 2 and 3

 Q2g[2]=Q3g[2]

#-------- LOOP 4 ---------#

common b/w Loop 3 and 4

 Q4g[1]=Q3g[1]

 Q4= Hardy_Cross(R4,Q4g)

 e4=abs(Q4-Q4g)

 # Updating Q2g guess

 Q4g=Q4.copy()

common b/w Loop 1 and 2

 Q3g[1]=Q4g[1]

common b/w Loop 4 and 1

 Q1g[2]=Q4g[2]

error=sqrt(sum(e1**2)+sum(e2**2)+s

um(e3**2)+sum(e4**2))

 count+=1

Data display

Lp1=array(["CD","DE","EB","BC"])

Lp2=array(["JD","DE","EH","HJ"])

Lp3=array(["GF","FE","EH","HG"])

Lp4=array(["AF","FE","EB","BA"])

data={'Lp1':Lp1,'Q1':Q1,'Lp2':Lp2,'Q2'

:Q2,'Lp3':Lp3,'Q3':Q3,'Lp4':Lp4,'Q4':Q

4}

df=DataFrame(data)

df

Pankaj Dumka et al. / IJME, 10(2), 1-8, 2023

7

As in the problem, the last loop is also sharing the pipe

with the first one, so the common pipe discharge has been up

dated before another while loop iteration will start. The prog

ram output will be as follows:

As the main code has grown quite a bit, what can be done is

one can make two more functions, one for loop and one for d

ata transfer between common pipes. This will reduce the size

of the main program as follows:

New Functions

def Loops(R1,Q1g):

 Q1=Hardy_Cross(R1,Q1g)

 e1=abs(Q1-Q1g)

 # Updating Q1g guess

 Q1g=Q1.copy()

 return Q1g,e1

def common(Q1g,Q2g,comm_index):

 # Common pipe

 Q2g[comm_index]=Q1g[comm_index]

 return Q2g

Main Program

Loop 1

R1=array([2,3,1,1])

Q1g=array([50,30,-100,100])

Loop 2

R2=array([5,3,1,4])

Q2g=array([-20,30,80,280])

Loop 3

R3=array([2,3,1,2])

Q3g=array([-150,-50,80,-200])

Loop 4

R4=array([3,3,1,4])

Q4g=array([300,-50,-100,-200])

#common=array([1,])

error=1

count=1

while error>1.E-8:

 #---- LOOP 1 -----#

 Q1g,e1=Loops(R1,Q1g)

 # common 1 ---> 2

 Q2g=common(Q1g,Q2g,1)

 #---- LOOP 2 -----#

 Q2g,e2=Loops(R2,Q2g)

 # common 2 ---> 1

 Q1g=common(Q2g,Q1g,1)

 # common 2 ---> 3

 Q3g=common(Q2g,Q3g,2)

 #---- LOOP 3 -----#

 Q3g,e3=Loops(R3,Q3g)

 # common 3 ---> 2

 Q2g=common(Q3g,Q2g,2)

 # common 3 ---> 4

 Q4g=common(Q3g,Q4g,1)

 #---- LOOP 3 -----#

 Q4g,e4=Loops(R4,Q4g)

 # common 4 ---> 3

 Q3g=common(Q4g,Q3g,1)

 # common 4 ---> 1

 Q1g=common(Q4g,Q1g,2)

error=sqrt(sum(e1**2)+sum(e2**2)+s

um(e3**2)+sum(e4**2))

 count+=1

 By doing the above moderation, the size of the main pro

gram has been reduced as a lot of the repetitive stuff has alre

ady been gone into the functions (Loop and common). Howe

ver, for smaller networks with one or two loops, one can foll

ow Questions 1 to 3.

5. Conclusion
 In this manuscript, a pipe flow network has been

modelled with the help of the Hardy Cross method in python.

First, a detailed explanation of the Hardy Cross algorithm has

been done then an algorithm has been modelled in python.

Four problems have been taken to check the function and

program, and in all the cases, the Python code has given

results in accordance with the literature. Practicing engineers

and researchers will be able to address pipe flow issues

accurately with the help of the methods described in this

article. Computer programmes that have been created are

extremely reliable and can be modified to address any kind

of pipe flow network.

Nomenclature
ℎ Pressure head

𝑄 Discharge, i.e. volume flow rate

𝑅 Flow resistance

Funding Statement
 The authors have not received any funding for this

research

Pankaj Dumka et al. / IJME, 10(2), 1-8, 2023

8

References
[1] Bruno Eckhardt et al., “Turbulence Transition in Pipe Flow,” Annual Review of Fluid Mechanics, vol. 39, pp. 447–468, 2007. [CrossRef]

[Google Scholar] [Publisher Link]

[2] Hong-yue Sun et al., “Experimental Studies of Groundwater Pipe Flow Network Characteristics in Gravelly Soil Slopes,” Landslides, vol.

9, no. 4, pp. 475-483, 2012. [CrossRef] [Google Scholar] [Publisher Link]

[3] Bruce Larock, Roland W. Jeppson, and Gary Watters, Pipe Network Analysis, pp. 2–5, 1999. [CrossRef]

[4] Hilary Ockendon, "Viscous Fluid Flow," The European Journal of Mechanics - B/Fluids, vol. 20, no. 1, pp. 157-158, 2001. [CrossRef]

[Google Scholar] [Publisher Link]

[5] G. Biswas, and S. K. Som, Introduction to Fluid Mechanics and Fluid Machines, Tata Mcgraw-Hill Education, 2003. [Google Scholar]

[6] Satyabrata Podder, Paulam Deep Paul, and Arunabha Chanda, "The Effect of the Magnetic Field of High Intensities on Velocity Profiles

of Slip Driven Non-Newtonian Fluid Flow Through the Circular, Straight Microchannel," International Journal of Engineering Trends

and Technology, vol. 70, no. 4, pp. 383-388, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[7] Pankaj Dumka et al., “Finite Volume Modelling of an Axisymmetric Cylindrical Fin Using Python,” Research and Applications of

Thermal Engineering, vol. 4, no. 3, pp. 1–11, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[8] Yoong Cheah Huei, “Benefits and Introduction to Python Programming for Freshmore Students Using Inexpensive Robots,” Proceedings

of IEEE International Conference on Teaching, Assessment and Learning for Engineering: Learning for the Future Now, TALE, pp. 12–

17, 2014. [CrossRef] [Google Scholar] [Publisher Link]

[9] Giovanni Moruzzi, “Python Basics and the Interactive Mode,” Essential Python for the Physicist, Cham: Springer International

Publishing, pp. 1–39, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[10] Pankaj Dumka et al., “Kinematics of Fluid : A Python Approach,” International Journal of Research and Analytical Reviews, vol. 9, no.

2, pp. 131–135, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[11] Pankaj Dumka et al., “Implementation of Buckingham ’ S Pi Theorem Using Python,” Advances in Engineering Software, vol. 173, p.

103232, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[12] Parth Singh Pawar, Dhananjay R. Mishra, and Pankaj Dumka, “Obtaining Exact Solutions of Visco- Incompress ible Parallel Flows

Using Python,” International Journal of Engineering Applied Sciences and Technology, vol. 6, no. 11, pp. 213–217, 2022. [Google

Scholar] [Publisher Link]

[13] Dhananjay R. Mishra, and Pankaj Dumka, “Understanding the TDMA / Thomas Algorithm and Its Implementation in Python,”

International Journal of All Research Education & Scientific Methods, vol. 10, no. 10, pp. 998–1002, 2022. [Google Scholar] [Publisher

Link]

[14] Krishna Gajula et al., “First Law of Thermodynamics for Closed System : A Python Approach,” Research and Applications of Thermal

Engineering, vol. 5, no. 3, pp. 1–10, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[15] Moisés Cywiak, and David Cywiak, “Sympy,” Multi-Platform Graphics Programming with Kivy: Basic Analytical Programming for 2D,

3D, and Stereoscopic Design, Berkeley, CA: Apress, pp. 173–190, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[16] Aaron Meure et al., “Sympy: Symbolic Computing in Python,” Peerj Computer Science, vol. 2017, no. 1, pp. 1–27, 2017. [CrossRef]

[Google Scholar] [Publisher Link]

[17] Robert Johansson, Numerical Python: Scientific Computing and Data Science Applications with Numpy, Scipy and Matplotlib, Second

Edition, Apress, Berkeley, CA, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[18] Pankaj Dumka et al., “Application of He’s Homotopy and Perturbation Method to Solve Heat Transfer Equations: A Python Approach,”

Advances in Engineering Software, vol. 170, p. 103160, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[19] Pankaj Dumka et al., “Load and Load Duration Curves Using Python,” International Journal of All Research Education and Scientific

Methods (IJARESM), vol. 10, no. 8, pp. 2127–2134, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[20] Yashasvini Raghuvanshi et al., “Modelling Logic Gates in Python,” International Journal for Multidisciplinary Research, vol. 4, no. 5,

pp. 1–8, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[21] Ekaba Bisong, “Matplotlib and Seaborn,” Building Machine Learning and Deep Learning Models on Google Cloud Platform, Berkeley,

CA: Apress, pp. 151–165, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[22] Pankaj Dumka et al., “Modelling Air Standard Thermodynamic Cycles Using Python,” Advances in Engineering Software, vol. 172, p.

103186, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[23] Pankaj Dumka et al., “Modelling Pipe Flow Using Python,” International Education & Research Journal, vol. 8, no. 10, pp. 8–11, 2022.

[Publisher Link]

[24] G. F. Round, “Analysis of Flow in Pipe Networks ,” Canadian Journal of Civil Engineering, vol. 10, no. 1, 1983. [CrossRef] [Publisher

Link]

[25] A. M. G. Lopes, “Implementation of the Hardy-Cross Method for the Solution of Piping Networks,” Computer Applications in Engineering

Education, vol. 12, no. 2, pp. 117–125, 2004. [CrossRef] [Google Scholar] [Publisher Link]

[26] Dejan Brki´c, and Pavel Praks, “Short Overview of Early Developments of the Hardy Cross Type Methods for Computation of Flow

Distribution in Pipe Networks,” Applied Science, vol. 9, no. 10, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[27] E. John Finnemore, and Joseph B. Franzini, Fluid Mechanics With Engineering Applications, Mcgraw-Hill Education, 1977. [Google

Scholar] [Publisher Link]

https://doi.org/10.1146/Annurev.Fluid.39.050905.110308
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Turbulence+Transition+in+Pipe+Flow&btnG=
https://www.annualreviews.org/doi/10.1146/annurev.fluid.39.050905.110308
https://doi.org/10.1007/S10346-011-0312-6
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Experimental+Studies+of+Groundwater+Pipe+Flow+Network+Characteristics+in+Gravelly+Soil+Slopes&btnG=
https://link.springer.com/article/10.1007/s10346-011-0312-6
https://doi.org/10.1201/9781420050318.Ch4
https://doi.org/10.1016/S0997-7546(00)01113-4
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Viscous+Fluid+Flow&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0997754600011134?via%3Dihub
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Introduction+to+Fluid+Mechanics+and+Fluid+Machines&btnG=
https://doi.org/10.14445/22315381/IJETT-V70I4P233
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+Effect+of+the+Magnetic+Field+of+High+Intensities+on+Velocity+Profiles+of+Slip+Driven+Non-Newtonian+Fluid+Flow+Through+the+Circular%2C+Straight+Microchannel&btnG=
https://ijettjournal.org/archive/ijett-v70i4p233
https://doi.org/10.5281/zenodo.6345803
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Finite+Volume+Modelling+of+an+Axisymmetric+Cylindrical+Fin+Using+Python&btnG=
https://www.researchgate.net/profile/Pankaj-Dumka/publication/359256098_Finite_Volume_Modelling_of_an_Axisymmetric_Cylindrical_Fin_using_Python/links/6239618a781d2e6df7ab7a87/Finite-Volume-Modelling-of-an-Axisymmetric-Cylindrical-Fin-using-Python.pdf
https://doi.org/10.1109/TALE.2014.7062611
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Benefits+and+Introduction+to+Python+Programming+for+Freshmore+Students+Using+Inexpensive+Robots&btnG=
https://ieeexplore.ieee.org/abstract/document/7062611
https://doi.org/10.1007/978-3-030-45027-4_1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Python+Basics+and+the+Interactive+Mode&btnG=
https://link.springer.com/chapter/10.1007/978-3-030-45027-4_1
http://dx.doi.org/10.1729/Journal.30183
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Kinematics+of+Fluid%E2%80%AF%3A+A+Python+Approach.&btnG=
https://www.researchgate.net/publication/360411587_Kinematics_of_Fluid_A_Python_Approach
https://doi.org/10.1016/j.advengsoft.2022.103232
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Implementation+of+Buckingham+%E2%80%99+S+Pi+Theorem+Using+Python&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0965997822001363
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Obtaining+Exact+Solutions+of++Visco-+Incompressible+Parallel+Flows+Using+Python&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Obtaining+Exact+Solutions+of++Visco-+Incompressible+Parallel+Flows+Using+Python&btnG=
https://www.ijeast.com/papers/213-217,%20Tesma611,IJEAST.pdf
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Understanding+the+TDMA+%2F+Thomas+Algorithm+and+Its+Implementation+in+Python&btnG=
https://www.researchgate.net/profile/Pankaj-Dumka/publication/364389215_Understanding_the_TDMAThomas_algorithm_and_its_Implementation_in_Python/links/63513ce58d4484154a1bc201/Understanding-the-TDMA-Thomas-algorithm-and-its-Implementation-in-Python.pdf
https://www.researchgate.net/profile/Pankaj-Dumka/publication/364389215_Understanding_the_TDMAThomas_algorithm_and_its_Implementation_in_Python/links/63513ce58d4484154a1bc201/Understanding-the-TDMA-Thomas-algorithm-and-its-Implementation-in-Python.pdf
https://doi.org/10.5281/zenodo.7198286
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=First+Law+of+Thermodynamics+for+Closed+System%E2%80%AF%3A+A+Python+Approach&btnG=
https://zenodo.org/record/7198286#.ZGII-nZBw2x
https://doi.org/10.1007/978-1-4842-7113-1_11
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Sympy&btnG=
https://link.springer.com/chapter/10.1007/978-1-4842-7113-1_11
http://dx.doi.org/10.7717/peerj-cs.103
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Sympy%3A+Symbolic+Computing+in+Python&btnG=
https://peerj.com/articles/cs-103.pdf
https://doi.org/10.1007/978-1-4842-4246-9
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Numerical+Python%3A+Scientific+Computing+and+Data+Science+Applications+with+Numpy%2C+Scipy+and+Matplotlib&btnG=
https://link.springer.com/book/10.1007/978-1-4842-4246-9
https://doi.org/10.1016/j.advengsoft.2022.103160
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Application+of+He%E2%80%99s+Homotopy+and+Perturbation+Method+to+Solve+Heat+Transfer+Equations%3A+A+Python+Approach&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0965997822000710
https://doi.org/10.56025/IJARESM.2022.1082127
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Load+and+Load+Duration+Curves+Using+Python&btnG=
https://www.researchgate.net/profile/Pankaj-Dumka/publication/363137558_Load_and_Load_Duration_Curves_Using_Python/links/630f443eacd814437fefc76e/Load-and-Load-Duration-Curves-Using-Python.pdf
https://doi.org/10.36948/ijfmr.2022.v04i05.043
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Modelling+Logic+Gates+in+Python&btnG=
https://www.ijfmr.com/research-paper.php?id=828
https://doi.org/10.1007/978-1-4842-4470-8_12
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Matplotlib+and+Seaborn&btnG=
https://link.springer.com/chapter/10.1007/978-1-4842-4470-8_12
https://doi.org/10.1016/j.advengsoft.2022.103186
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Modelling+Air+Standard+Thermodynamic+Cycles+Using+Python&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0965997822000941
https://www.researchgate.net/publication/364385651_MODELLING_PIPE_FLOW_USING_PYTHON
https://doi.org/10.1139/l83-027
https://cdnsciencepub.com/doi/10.1139/l83-027
https://cdnsciencepub.com/doi/10.1139/l83-027
https://doi.org/10.1002/cae.20006
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Implementation+of+the+Hardy-Cross+Method+for+the+Solution+of+Piping+Networks&btnG=
https://onlinelibrary.wiley.com/doi/10.1002/cae.20006
https://doi.org/10.3390/app9102019
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Short+Overview+of+Early+Developments+of+the+Hardy+Cross+Type+Methods+for+Computation+of+Flow+Distribution+in+Pipe+Networks&btnG=
https://www.mdpi.com/2076-3417/9/10/2019
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Fluid+Mechanics+With+Engineering+Applications&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Fluid+Mechanics+With+Engineering+Applications&btnG=
https://www.accessengineeringlibrary.com/content/book/9780072432022

