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Abstract - The transport of fluids through pipes is very common in core engineering practice. The main issue that came up 

when the pipe flow networks were its analysis part. The Hardy Cross approach is very accurate and reliable for solving these 

issues, but because it is iterative, the likelihood of errors increases as the number of circuit loops grows. Therefore, in this 

research, a piece of effort has been made to automate the Hardy Cross technique using Python programming (as it is user-

friendly and has a large library backup) to remove the errors that come with using hand calculations. The built program has 

been applied to four different pipe flow network problems, and the outcomes are the same as those presented in the literature. 

Keywords - Pipe flow, Pipe Network, Python Programming, Hardy Cross method. 

1. Introduction  
One of the most difficult tasks faced by the practitioners 

and students of fluid dynamics is understanding, analysing, 

and solving the pipe network problem [1].  A pipe network is 

a very complex arrangement of different pipes (in series and 

parallel) with varying resistances of flow and flow rates [2], 

as seen in Fig. 1. 

 

 
Fig. 1 A typical pipeline network [3] 

 

The task is to find the flow rate in each pip so that the 

continuity equation and pressure equations satisfy 

simultaneously [4]. The meaning of continuity is that the sum 

of discharge at each node has to be zero, whereas the pressure 

means that in each hydraulic loop, the sum of the product of 
flow resistance and square of discharge should be zero. 

Mathematically these can be written as [4], [5]: 

 

           ∑𝑄 = 0       (1) 

 

          ∑𝑅|𝑄|𝑄 = 0                        (2) 

 

 

The pipe network analysis cannot be done explicitly as 

at each node of the network, Eq. 1 has to satisfy, and Eq. 2 

has to be satisfied in each loop. So the network can only be 

solved iteratively. The best-known method so far is called the 

Hardy-Cross method for pipe flow networks. Nevertheless, 

this problem is the complex nature of the iterations involved, 

which grows as the network complexity. In some cases, it 

becomes very difficult, trying and error-prone to apply the 

method to the pipe network using hand calculations. 

Therefore it becomes essential to apply the method with the 

help of computer programming [27]. 

Therefore python catches the eyes of researchers as it is 

an easy programming language with a light and user-friendly 

syntax[7]–[14]. Furthermore, its modules NumPy and SymPy 

are quite useful for numerical computations [12], [15]–[20]. 

A multi-dimensional array, matrix data structure, and small 

storage are features of NumPy. Moreover, NumPy is quick 

when it comes to loops. Matplotlib. Pylab [21]–[23] is a very 

useful library for plotting data. Pylab also uses NumPy, so 

while using Pylab, calling NumPy is not required.  

In this research article, a Python-based approach has 

been used to solve pipe network problems.  The Hardy Cross 

method has been modelled as functions in python.  Moreover, 

four complex pipe networks are solved with the help of 

developed Python functions and code. 

 

2. Hardy Cross Method 
The solution of Eq. 1 and 2 is done by the Hardy cross 

method (which is an iterative process) by setting up an initial 

guess (𝑄) in the whole pipe network [24]–[26]. Let Q0 is the 

correct flow rate, and 𝑄 is the guess. Then the error in the 

flow rate can be written as: 

http://www.internationaljournalssrg.org/
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𝑑𝑄 = 𝑄 − 𝑄0   (3) 

 

It is assumed that the error is constant for all hydraulic 

paths in a loop (dQ = const). Let head drop in a particular 

element of the loop be ℎ ℎ′  based on Q and Q0 as shown 

below: 

ℎ = 𝑅|𝑄|𝑄        (4) 

 

     ℎ′ = 𝑅|𝑄0|𝑄0                 (5) 

 

Then according to Eq 1. in a loop, the above equations 

become: 

∑ℎ = 𝑒𝑟𝑟𝑜𝑟           (6) 

 

∑ℎ′ = 0           (7) 

 

Eq. 6 gives the error due to the assumed values of the 

flow rate. On combining Eq. 6 and 7, one can get: 

 

   ∑(ℎ− ℎ′) = ∑(𝑑ℎ) = 𝑒𝑟𝑟𝑜𝑟                  (8) 

 

Where 𝑑ℎ is the error in the pressure equation for a path. 

On differentiating Eq. 4, the value of 𝑑ℎcan be obtained in 

terms of 𝑑𝑄as: 

 

𝑑ℎ = 2𝑅|𝑄|𝑑𝑄               (9) 

 

now substituting dh in Eq. 8, one can get: 

 

 𝑒𝑟𝑟𝑜𝑟 = ∑2𝑅|𝑄|𝑑𝑄                    (10) 

 

As it is assumed that dQ is a constant so it can be taken 

out from the summation as: 

𝑑𝑄 =
𝑒𝑟𝑟𝑜𝑟

∑2𝑅|𝑄|
               (11) 

 

Therefore, from Eq. 7, 8, and 4, one can get the error in 

flow rate as follows:  

𝑑𝑄 =
∑𝑅|𝑄|𝑄

∑2𝑅|𝑄|
                   (12) 

 

The Hardy cross methodology is explained below: 

1. The flow rate in each pipe of the network is assumed so 

that the continuity equation, i.e. Eq. 1, is satisfied. To 

reduce the number of iterations, one can set lower values 

of flow rates for the pipes with high resistance and vice-

versa. 

2. With the assumed flow rates, evaluate the error in 

discharge (for each loop) using Eq. 12.  

3. Check whether the error is less than a certain threshold 

value or not. If yes, then the final answer is arrived and 

break the loop; else, follow the steps below. 

4. Then update the discharge using Eq. 3 for each loop. 

5. Repeat steps from 2 to 4. 

 

3. Implementation of Hardy Cross Method in 

Python 
First, the function is developed, which will accept the 

array of Resistances and assumed guesses (as arguments) in 

each loop. In the article, the function is called " 

Hardy_Cross". This function evaluates dQ based on Eq. 12 

and returns the updated discharge equation in each loop. The 

function is as follows: 

def Hardy_Cross(R,Qg): 

    """ 

    Function to evaluate corrected 

discharge in a loop 

    Input: Array of R and assumed 

discharge (Q) 

    Output: Updated discharge 

    """ 

    numerator=sum(R*abs(Qg)*Qg) 

    denominator=sum(2*R*abs(Qg)) 

    dQ=numerator/denominator 

    Q=Qg-dQ 

    return Q 

 

This function will be called in the main program, where 

arrays of resistances and respective assumed flow rates are 

defined. Then for a particular loop above function will return 

the new updated value of discharge for a particular iteration.  

Let say R1 and Q1 are the arrays for loop 1, and R2 and 

Q2 are arrayed for loop 2. Also, let us assume these have Pc 
as common pipe shown in Fig. 2.  

 

 
Fig. 2 Common pipe in a pipe network 

 

Once the updated discharge values are obtained for loop 

1 then, before solving for loop 2, the value of discharge 

corresponding to the pipe Pc for loop 2 has to be updated from 

the new values of loop 1. Also, after the updated value of 

discharge from loop 2 is obtained, the guess for pipe Pc for 

loop1 again has to be updated. This is done by using the index 

of pipe Pc from the discharge array. This is done as follows: 
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#---- LOOP 1 -----# 

# Hardy Cross function  

Q1= Hardy_Cross(R1,Q1g) 

     

# Error for loop 1 

e1=abs(Q1-Q1g)  

     

# Updating Q1g guess 

Q1g=Q1.copy()     

 

#---- LOOP 2 -----#   

# Common Pipe 

Q2g[1]=Q1g[1] 

  

# Hardy Cross function     

Q2= Hardy_Cross(R2,Q2g)  

     

# Error for loop 1 

e2=abs(Q2-Q2g) 

     

# Updating Q2g guess 

Q2g=Q2.copy() 

     

# Common Pipe 

Q1g[1]=Q2g[1] 

 

Also, the loop error has to be evaluated simultaneously for 

each loop and checked for the given convergence criterion in 

the while loop. The while loop will be as follows: 

 

# Initial error value to enter in 

the loop 

error=1 

# Iteration counter 

count=1 

 

while error>1.E-8: 

 

#--------- LOOP 1 ----------# 

# Hardy Cross function call 

    Q1= Hardy_Cross(R1,Q1g) 

 

    # Error for loop 1 

    e1=abs(Q1-Q1g)  

     

    # Updating Q1g guess 

    Q1g=Q1.copy()     

 

#--------- LOOP 2 ----------#       

    # Common Pipe 

    Q2g[1]=Q1g[1] 

 

# Hardy Cross function call 

    Q2= Hardy_Cross(R2,Q2g)  

     

    # Error for loop 1 

    e2=abs(Q2-Q2g) 

     

    # Updating Q2g guess 

    Q2g=Q2.copy() 

     

    # Common Pipe 

    Q1g[1]=Q2g[1] 

        

    # Error Evaluation 

    error=sum(e1**2+e2**2) 

     

    # Loop counter increment 

    count+=1 
 

4. Implementation of Python Functions to 

Solve Problems  
In this section, some numerical problems will be taken 

up to show the accuracy and ease with which complex pipe 

flow problems can be done. 
 

Question 1:  Solve below mentioned network : 
 

 
 

In this problem, only one loop is there, so the first task 

is to guess the values of flow rates in each pipe of the loop. 

The guess values are written on each pipe along with the 

respective resistances (K).  Assume a clockwise direction of 

the loop the array of resistances and initial discharge will be; 

𝑹 = [𝟐, 𝟏, 𝟒] and 𝑸𝒈 = [𝟒𝟓, 𝟐𝟓,−𝟏𝟓] . The negative sign of 

discharge in pipe of resistance 4 is taken; as in a clockwise 

direction, the assumed motion of fluid will be opposite to the 

loop direction. The detailed program will be as follows: 

 

Python Modules and Function 

from numpy import * 

def Hardy_Cross(R,Qg): 

    """ 

    Function to evaluate corrected 

discharge in a loop 

    Input: Array of R and assumed 

discharge (Q) 

    Output: Updated discharge 

    """ 

    numerator=sum(R*abs(Qg)*Qg) 
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    denominator=sum(2*R*abs(Qg)) 

    dQ=numerator/denominator 

    Q=Qg-dQ 

    return Q 

Main Program 

R=array([2,1,4]) 

Qg=array([45,25,-15]) 

 

error=1 

count=1 

 

while error>1.E-10: 

#---- LOOP 1 -----# 

    Q= Hardy_Cross(R,Qg) 

     

    e=abs(Q-Qg)  

     

    # Updating Q1g guess 

    Qg=Q.copy()     

 

    error=sqrt(sum(e**2)) 

     

    count+=1 

print(Q) 

Data display 

from pandas import * 

pipe=array(["AC","CB","BA"]) 

data={'Pipe':pipe,'Q':Q} 

df=DataFrame(data) 

df 
 

The output of the following program will be: 

 
The negative value tells that the discharge is opposite to the 

assumed loop's direction.  
 

Question 2:  Solve below mentioned network : 
 

 

There are two loops, i.e. an extra loop compared to the p

revious question. Here also, the first thing which we will be 

doing is selecting guess values for each pipe considering Eq. 

1. The initial guess is written along each pipeline. 

 

 Pipes R 𝑸𝒈 

 

Loop1 

AD 

DB 

BA 

 

[4,1,2] 
 

[50,10, −40] 

 

Loop2 

CD 

DB 

BC 

 

[2,1,1] 
 

[−20,10,20] 

  

 The point to focus on is that the common guess pipe mu

st be updated after applying Hardy cross to each loop. The p

rogram will be as follows (from here onwards, the main prog

ram and the display portion will be shown as functions, and 

modules will remain the same): 

 

Main Program 

# Loop 1 

R1=array([4,1,2]) 

Q1g=array([50,10,-40]) 

 

# Loop 2 

R2=array([2,1,1]) 

Q2g=array([-20,10,20]) 

 

error=1 

count=1 

 

while error>1.E-8: 

#---- LOOP 1 -----# 

    Q1= Hardy_Cross(R1,Q1g) 

     

    e1=abs(Q1-Q1g)  

     

    # Updating Q1g guess 

    Q1g=Q1.copy()     

 

#---- LOOP 2 -----#       

    Q2g[1]=Q1g[1] 

     

    Q2= Hardy_Cross(R2,Q2g)  

     

    e2=abs(Q2-Q2g) 

     

    # Updating Q2g guess 

    Q2g=Q2.copy() 

     

    Q1g[1]=Q2g[1] 

         

    error=sqrt(sum(e1**2)+sum(e2**2)) 

 

    count+=1 
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Data display 

from pandas import * 

Lp1=array(["AD","DB","BA"]) 

Lp2=array(["CD","DB","BC"]) 

data={'Lp1':Lp1,'Q1':Q1,'Lp2':Lp2,'Q2'

:Q2} 

df=DataFrame(data) 

df 

 

The program output will be as follows: 

 
 

Question 3:  Solve below mentioned network : 

 

 
 

In this problem, again, there are two loops. The initial g

uess discharge along each pipe is shown in the figure.  
 Pipes R 𝑸𝒈 

 

Loop1 

AD 

DB 

BA 

 

[1,3,2] 
 

[80,20, −20] 

 

Loop2 

CD 

DB 

BC 

 

[2,3,1] 
 

[−35,20,40] 

 

The program will be as follows : 

Main Program 

# Loop 1 

R1=array([4,1,2]) 

Q1g=array([50,10,-40]) 

 

# Loop 2 

R2=array([2,1,1]) 

Q2g=array([-20,10,20]) 

 

 

error=1 

count=1 

 

while error>1.E-8: 

#---- LOOP 1 -----# 

    Q1= Hardy_Cross(R1,Q1g) 

     

    e1=abs(Q1-Q1g)  

     

    # Updating Q1g guess 

    Q1g=Q1.copy()     

 

#---- LOOP 2 -----#      

    Q2g[1]=Q1g[1] 

     

    Q2= Hardy_Cross(R2,Q2g)  

     

    e2=abs(Q2-Q2g) 

     

    # Updating Q2g guess 

    Q2g=Q2.copy() 

     

    Q1g[1]=Q2g[1] 

         

    error=sqrt(sum(e1**2)+sum(e2**2)) 

 

    count+=1 

Data display 

As nomenclatures are the same as in the previous 

problem so this portion will be the same as in Question 

2 

 

The program output will be as follows: 

 
 

Question 4:  Solve below mentioned network : 
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 In this problem, there are four loops. The initial guess di

scharge along each pipe is shown in the figure. The loops are 

as follows: 
 

 Pipes R 𝑸𝒈 

 

Loop 

1 

CD 

DE 

EB 

BC 

 

[2,3,

1,1] 

 

[50,30,-100,100] 

 

Loop2 

JD 

DE 

EH 

HJ 

 

[5,3,

1,4] 

 

[-20,30,80,280] 

 

Loop3 

GF 

FE 

EH 

HG 

 

[2,3,

1,2] 

 

 [-150,-50,80,-200] 

 

Loop4 

AF 

FE 

EB 

BA 

 

[3,3,

1,4] 

 

[300,-50,-100,-200] 

 

The program will be as follows : 

Main Program 

# Loop 1 

R1=array([2,3,1,1]) 

Q1g=array([50,30,-100,100]) 

 

# Loop 2 

R2=array([5,3,1,4]) 

Q2g=array([-20,30,80,280]) 

 

# Loop 3 

R3=array([2,3,1,2]) 

Q3g=array([-150,-50,80,-200]) 

 

# Loop 4 

R4=array([3,3,1,4]) 

Q4g=array([300,-50,-100,-200]) 

 

error=1 

count=1 

 

while error>1.E-8: 

 

#-------- LOOP 1 ---------# 

    Q1= Hardy_Cross(R1,Q1g) 

     

    e1=abs(Q1-Q1g)  

     

    # Updating Q1g guess 

    Q1g=Q1.copy()     

 

     

#-------- LOOP 2 ---------#   

# common b/w Loop 1 and 2 

    Q2g[1]=Q1g[1] 

     

    Q2= Hardy_Cross(R2,Q2g)  

     

    e2=abs(Q2-Q2g) 

     

    # Updating Q2g guess 

    Q2g=Q2.copy() 

 

# common b/w Loop 1 and 2    

    Q1g[1]=Q2g[1] 

     

#-------- LOOP 3 ---------#   

# common b/w Loop 2 and 3     

    Q3g[2]=Q2g[2] 

     

    Q3= Hardy_Cross(R3,Q3g)  

     

    e3=abs(Q3-Q3g) 

     

    # Updating Q2g guess 

    Q3g=Q3.copy() 

# common b/w Loop 2 and 3     

    Q2g[2]=Q3g[2]     
 

#-------- LOOP 4 ---------#   

# common b/w Loop 3 and 4 

    Q4g[1]=Q3g[1] 
     

    Q4= Hardy_Cross(R4,Q4g)  
     

    e4=abs(Q4-Q4g) 
     

    # Updating Q2g guess 

    Q4g=Q4.copy() 
 

# common b/w Loop 1 and 2     

    Q3g[1]=Q4g[1] 
 

# common b/w Loop 4 and 1 

    Q1g[2]=Q4g[2] 

                                                                                                         

error=sqrt(sum(e1**2)+sum(e2**2)+s

um(e3**2)+sum(e4**2)) 

 

    count+=1 

Data display 

Lp1=array(["CD","DE","EB","BC"]) 

Lp2=array(["JD","DE","EH","HJ"]) 

Lp3=array(["GF","FE","EH","HG"]) 

Lp4=array(["AF","FE","EB","BA"]) 

 

data={'Lp1':Lp1,'Q1':Q1,'Lp2':Lp2,'Q2'

:Q2,'Lp3':Lp3,'Q3':Q3,'Lp4':Lp4,'Q4':Q

4} 

df=DataFrame(data) 

df 
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As in the problem, the last loop is also sharing the pipe 

with the first one, so the common pipe discharge has been up

dated before another while loop iteration will start. The prog

ram output will be as follows: 

 
 

As the main code has grown quite a bit, what can be done is 

one can make two more functions, one for loop and one for d

ata transfer between common pipes. This will reduce the size 

of the main program as follows: 

 

New Functions  

def Loops(R1,Q1g): 

     

    Q1=Hardy_Cross(R1,Q1g) 

     

    e1=abs(Q1-Q1g)  

     

    # Updating Q1g guess 

    Q1g=Q1.copy()   

 

    return Q1g,e1 

 

def common(Q1g,Q2g,comm_index): 

    # Common pipe 

    Q2g[comm_index]=Q1g[comm_index] 

    return Q2g 

Main Program 

# Loop 1 

R1=array([2,3,1,1]) 

Q1g=array([50,30,-100,100]) 

 

# Loop 2 

R2=array([5,3,1,4]) 

Q2g=array([-20,30,80,280]) 

 

# Loop 3 

R3=array([2,3,1,2]) 

Q3g=array([-150,-50,80,-200]) 

 

# Loop 4 

R4=array([3,3,1,4]) 

Q4g=array([300,-50,-100,-200]) 

 

#common=array([1,]) 

error=1 

count=1 

 

while error>1.E-8: 

    #---- LOOP 1 -----# 

    Q1g,e1=Loops(R1,Q1g) 

    # common 1 ---> 2 

    Q2g=common(Q1g,Q2g,1) 

     

    #---- LOOP 2 -----# 

    Q2g,e2=Loops(R2,Q2g) 

    # common 2 ---> 1 

    Q1g=common(Q2g,Q1g,1) 

    # common 2 ---> 3 

    Q3g=common(Q2g,Q3g,2) 

     

    #---- LOOP 3 -----# 

    Q3g,e3=Loops(R3,Q3g) 

    # common 3 ---> 2 

    Q2g=common(Q3g,Q2g,2) 

    # common 3 ---> 4 

    Q4g=common(Q3g,Q4g,1) 

     

    #---- LOOP 3 -----# 

    Q4g,e4=Loops(R4,Q4g) 

    # common 4 ---> 3 

    Q3g=common(Q4g,Q3g,1) 

    # common 4 ---> 1 

    Q1g=common(Q4g,Q1g,2)     

    

error=sqrt(sum(e1**2)+sum(e2**2)+s

um(e3**2)+sum(e4**2)) 

 

    count+=1 
 

 By doing the above moderation, the size of the main pro

gram has been reduced as a lot of the repetitive stuff has alre

ady been gone into the functions (Loop and common). Howe

ver, for smaller networks with one or two loops, one can foll

ow Questions 1 to 3. 
 

5. Conclusion  
 In this manuscript, a pipe flow network has been 

modelled with the help of the Hardy Cross method in python. 

First, a detailed explanation of the Hardy Cross algorithm has 

been done then an algorithm has been modelled in python. 

Four problems have been taken to check the function and 

program, and in all the cases, the Python code has given 

results in accordance with the literature. Practicing engineers 

and researchers will be able to address pipe flow issues 

accurately with the help of the methods described in this 

article. Computer programmes that have been created are 

extremely reliable and can be modified to address any kind 

of pipe flow network.  
 

Nomenclature 
ℎ Pressure head 

𝑄 Discharge, i.e. volume flow rate 

𝑅 Flow resistance 
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