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Abstract - Polymer ceramic composites are finding applications in many fields, one of which is biomedical. Scaffolds act as 

support material for bone regeneration. Polylactic acid, a naturally degradable material which has good mechanical properties, 

is chosen as the polymer matrix, and 45S5 bioactive glass is chosen as ceramic filler, which is bio active. The weight proportions 

of 2.5,5 and 10 of filler are added to the polymer matrix and extruded to get a filament of diameter 1.75 mm. The filaments are 

3d printed into cubical scaffolds. The mechanical characteristics of 3d printed composites are investigated. 
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1. Introduction 
One of the important parts of the human body, which is 

often subjected to injuries and disorders, is bone [15]. There 

are various efforts made by the scientific community to 

address this issue [1]. It is seen that bioactive glass containing 

silicate developed by Hench when dissolved in the human 

body, releases ions which aid in bone regeneration [2]. Sol-

gel derived bioactive glasses are economical and possess 

better properties essential for cell proliferation [3]. Though 

bioactive glasses have good bioactivity, they lack sufficient 

mechanical strength [4]. Polymers have been identified as 
very useful materials for biomedical applications. [5] Poly 

Lactic Acid (PLA) is being established as a promising 

material for bone regeneration [6].  

 

The combination of polymer and bioactive ceramics 

provides the advantage of tailorable mechanical properties and 

enhanced bioactivity [7]. There are many fabrication methods 

for producing polymer bioactive glass composites. Because of 

the limited bioactivity of cellulose fibres, bioactive glass 

particles are incorporated by the Vacuum filtration technique 

which has proven to improve osteoconductivity. [8] Hong et 
al. [9] have used freeze drying to incorporate different classes 

of bioactive glasses into natural collagen fibre and have seen 

improvement in bioactivity under immersion in simulated 

body fluid.  

 

The melt impregnation technique was used by Lehtonen 

et al. [10] to fabricate PLDLA/bioactive glass composites, 

which resulted in improved degradation rates and reduced 

stress shielding. Robocasting method employed by Russias et 

al. [11] has improved the stiffness and bioactivity of PLA/ 

bioactive glass composites. PCL/bioactive glass composite 

scaffolds were fabricated by Cannillo et al. [12] using a salt 
leaching technique that had improved porosity 

biocompatibility but reduced strength. Misra et al. [13] 

fabricated (P[3HB])/bio-active glass by solvent casting 

technique using chloroform as the solvent. The composites 

have reduced crystallinity but increased glass transition 

temperature and improved bioactivity. 

2. Processing Techniques 
2.1. Sol-gel Processing of 45S5 Bioactive Glass 

Synthesis of 45S5 bioactive glass by sol-gel is 

performed using the methodology adopted by Pirayesh et al. 

[14] Initially, 5 grams of sample is synthesized, and after 
confirmation with XRD results, 20 grams of powder is 

prepared. The reagents calcium nitrate tetrahydrate, nitric 

acid, sodium nitrate tetraethyl orthosilicate, and triethyl 

phosphate are mixed in appropriate proportions as per the 

literature and stirred using a magnetic stirrer followed by 

drying to remove moisture and sintering it at 700◦ C. Figure 

1 shows sol-gel synthesis of bioactive glass. 

 

2.2. Preparation of Composite Filament by Extrusion 

Polylactic acid (PLA) pellets of size 3-4 mm are procured 

from Biotec, Tamilnadu, India. These pellets are blended with 

bioactive glass using a grinder. The resultant mixture is fed 

into RP extruder, which is maintained at 155 ◦ C to obtain a 

filament of uniform diameter of 1.75   0.05 mm. Figure 2 

shows the composite filament-making process.
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Fig. 1 Synthesis of 45S5 bioactive glass powder 
 

 
Fig. 2 Composite filament making process 

 

 
Fig. 3 3D printed scaffold 

 

2.3. 3D Printing of Composite Filament 

In order to perform 3d printing of composite filament, 

FDM based Flash forge 3d printer is used. The solid model of 

the cubical scaffold of dimensions 3cm with a pore size of 

1000 µm is done using solid works modeling software. The 

printing parameters used are 0.1mm layer thickness, extrusion 

temperature of 225◦ C and nozzle speed of 60mm/s. Figure 3 

shows the 3D printed part. 

 

2.4. XRD of Bioactive Glass 
X-ray diffraction analysis of 45S5 bioactive glass is 

carried out using Rigaku with a scanning speed of 3 deg/min 

operated at 40kV and 30mA with Cu anode as a target to 

determine the crystalline peaks. 

 

2.5. Morphology of Prepared Samples 

Scanning Electron Microscopy (SEM) and Energy 

Dispersive X-ray (Edax) analysis are carried out using a 

Hitachi S3700-N microscope with a maximum specimen size 

of 300 mm diameter with operating conditions of 3-4nm 

@30kV and magnification of 5x-300000x, to determine 
particle distribution and composition of the samples. 

 

 
Fig. 4 3D printed tensile test specimen 
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 stirring 
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24 hrs 

Heating in oven at 120°C for 

24 hrsstirring 
Heating in muffle furnace at 700°C 

hrsstirring 
Formation of Bioactive glass 

powder 



T.N. Aditya et al. / IJME, 11(6), 1-6, 2024  

3 

2.6. Mechanical Characterization of the 3D printed 

Composites 

Mechanical characterization of the composites with 

varying percentages of bioactive glass is performed. 

Properties like Compressive strength, Impact strength, 

Tensile strength, and flexural strength are determined by 3D 
printing samples according to ASTM standards. Figure 4 

shows a 3D printed tensile test specimen according to ASTM 

D638 specifications. 

 

3. Results 
3.1. X-ray Diffraction Analysis of Bioactive Glass 

X-ray diffraction analysis of Bioactive glass powder 

shows major peaks at 24.4◦, 27.5◦, 34.3◦, 39.4◦, 49.3◦, 61.7◦
 

which resembles the pattern of 45S5 bioactive glass 

available in the literature [14]. Figure 5 shows the XRD 

pattern of bioactive glass. 

 

 
Fig. 5 XRD pattern of 45S5 bioactive glass 

 

3.2. Morphology of Bioactive Glass and Composites 

SEM and Edax images of bioactive glass and its 

composites are depicted in Figure 6. Bioactive glass particles 

are of varying sizes between 4µm to 40µm.  
 

The uniform dispersion of bioactive glass particles in the 

polymer can be seen, and with an increase in bioactive glass 

content, there is an increase in particle distribution. Edax 

analysis of bioactive glass shows the primary element Silica 
and other elements such as sodium, calcium and phosphorous, 

which is the composition of 45S5 Bioactive glass. 

 

Edax analysis of composites indicates the dispersion of 

bioactive glass particles in PLA, which confirms the SEM 

images. 

3.3. Mechanical Characterisation of Composites 

Figure 7 shows the mechanical behaviour of polymer 

composites. With an increase in bioactive glass content, there 

is a reduction in tensile strength but Stiffness is increased. 

There is a reduction in impact strength, compressive strength, 

and flexural strength with an increase in bioactive glass 
content, whereas the difference in hardness is insignificant. 

 

 
Fig. 6 SEM and Edax Images of (a) 45S5 bioactive glass, (b) Pure PLA, 

(c) PLA -2.5% BG, (d) PLA -5% BG, and (e) PLA -10% BG at 500x 

magnification.
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Fig. 7 Mechanical behaviour of polymer composites 

 

4. Conclusion 
 In this work, 45 S5 bioactive glasses was synthesised 
through the sol-gel technique. PLA-BG composites 

filaments were prepared by extrusion process and the 

obtained filaments were extruded. The characterisation of 

filament reveals a uniform distribution of bioactive glass 

particles in the polymer matrix. A cubical scaffold of pore 

size1000µm is successfully 3d printed. The mechanical 
characterization of 3d printed parts indicates an increase in 

stiffness but a reduction in Compressive strength, Tensile 

strength, impact strength and flexural strength. These values 

are closer to the properties of cancellous bone. Hence, a 
customized part can be 3d printed with the required porosity 

for bone repair. 
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