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Abstract - In order to lower hazardous emissions and improve the diesel engine characteristics, there has been a recent push 

for appropriate alternative fuels and improved performance tactics. In order to analyze the diesel engine behavior with variable 

compression ratios, the combined effect of alternate fuel and thermal barrier-coated engine crown was studied. Using Mahua 

Oil Methyl Esters (MOME) with various Compression Ratios (CR) ranging from 17:1, 19:1, and 21:1 at various load 

circumstances, the performance, emission, and combustion characteristics of the thermal barrier-coated VCR engine were 

examined and contrasted with those of diesel and non-coated or standard engines. Based on observed results, the adiabatic 

engine with a higher compression ratio of 21 (CR21-AE-B100) demonstrated the following characteristics: a higher cylinder 

gas pressure of 61.7 bar, a higher heat release rate of 78.6 J/oCA, a shorter ignition delay period of 9.8 oCA, a maximum brake 

thermal efficiency of 28.12%, the lowest Brake Specific Fuel Consumption (BSFC) of 0.3423 kg/kW h, a maximum Nitric Oxide 

(NO) emission of 575 ppm, and lowest smoke opacity of 37.8%.  
 

Keywords - Adiabatic coating, Bond coat, Top coat, Combustion and emission, Mahua oil methyl ester, Performance. 

1. Introduction  
Due to climate change, the world has been experiencing 

flash floods, droughts, increasing sea levels, surface 

temperatures, unexpected, intense rainstorms, and other 

natural disasters for the past 20 years. The primary cause of 

this climate change is the harmful emissions from 

conventional fuels used in industries, automobile engines, and 

human-made activities, including carbon monoxide, carbon 

dioxide, nitrogen oxides, smoke, and Particle Matter (PM) [1].  

 

To meet their energy demands and improve their 

economic standing, heavily populated nations like India rely 

on importing crude oil from the Middle East. Heavy-duty 

engines are used in India for both agricultural and 

transportation reasons [2, 3]. When diesel engines were used, 

dangerous emissions such as smoke, Unburned Hydrocarbons 

(UHC), Carbon Monoxide (CO), Carbon Dioxide (CO2), and 

Nitrogen Oxides (NOx) were released. These emissions have 

a negative impact on the human respiratory system and 

contribute to climate change.  Therefore, in order to achieve 

strict emission standards without sacrificing engine 

performance, it is necessary to find innovative ways to employ 

alternative fuels in diesel engines and engine modification 

tactics.  

  

By varying engine parameters such as injection timing, 

pressure, compression ratio, and adiabatic or thermal barrier 

coating, the majority of researchers are creating biodiesel from 

different feedstocks and attempting to improve diesel engine 

performance. Poor viscosity, volatility, injector coking, and 

poor atomisation characteristics were among the key issues 

with using edible or non-edible oils in diesel engines [4]. 

Therefore, the only method to improve the viscosity, 

volatility, and atomisation properties of biodiesel is to 

transesterify the non-edible oils. One of the alternatives for 

traditional diesel in meeting the world's energy needs and 

reducing dangerous emissions is biodiesel [5, 6]. With the 

exception of its low emission profile and heating value, 

biodiesel has been shown to be a dependable alternative to 

traditional diesel.. Non-edible feedstocks such as mahua, 

karanja, neem, jatropha, rubber, linseed, pomegranate seed, 

and lemon peel oil can be used to create biodiesel, hence 

avoiding confrontation with the food crisis [7-13].  

 

Additional research showed that combining thermal 

barrier-coated diesel engine parts and biodiesel improved the 

engine behaviour. Sharad P. Jagtap et al. (2020) studied the 

characteristics of a low heat rejection engine with Jatropha 

biodiesel.  In their investigation, 250µm mullite material 

(Metco 6150) was applied to the piston crown surfaces. When 

compared to engines that were not coated, the results showed 

a lower emission profile.  However, mixing biodiesel and 5% 

anhydrous ethanol to create the E05B10 mixture resulted in a 

further improvement in performance and reduced emission 

http://www.internationaljournalssrg.org/
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profile [14].  Karthickeyan et al. (2020) studied a single 

cylinder direct injection diesel engine with pomegranate seed 

biodiesel (B20).  The plasma spray coating method was used 

to determine that Yttria Stabilised Zirconia (YSZ) was TBC. 

Because of its higher cylinder temperature, B20 demonstrated 

greater thermal efficiency in both CE and TBCE at high 

compression ratios, injection pressures, and injection timings. 

[15]. 

 

Curry leaf (Murraya koenigii) biodiesel was used by 

Karthickeyan Viswanathan et al. (2020) to study a Thermal 

barrier-covered combustion chamber on a diesel engine.  B25-

fueled coated engines demonstrated improved thermal 

efficiency of 0.49%. Additionally, the ceramic-coated engine 

was found to have improved combustion characteristics [16]. 

Using Moringa oleifera biodiesel, Karthickeyan (2019) 

examined the behaviour of YSZ-coated diesel engines. It was 

found that the coated engine had superior engine qualities 

[17].  

 

The importance of using TBC to improve combustion 

characteristics by serving as a thermal insulating layer and 

consuming energy inside the combustion chamber was 

covered by Öztürk et al. (2019).  When employing low heating 

value biodiesel, this calculated tactic was used to enhance 

engine performance [18]. 

 

Abbas et al. (2018) used a combination of biodiesel and 

pyrogallol to analyse a YSZ-coated engine. Compared to 

uncoated engine characteristics, it displayed superior engine 

characteristics. The coating materials, such as zirconia, 

zirconia with aluminium oxide, and fused zirconia, were 

examined to expand the study. At all load situations, fused 

zirconia outperformed the other two chosen coating materials 

[19].   

 

Using warmed linseed oil, Yilmaz and Gumus (2014) 

investigated Lombardini 6LD400 diesel engines under both 

conventional and ceramic-coated engine settings. It was noted 

that the greater combustion temperature resulted in improved 

engine performance for the Cr3C2-coated engine [20]. The 

influence of TBC on diesel engines with waste cooking oil 

biodiesel–diesel blends was documented by Selman Aydın 

and Cenk Sayın (2014). In their investigation, a base layer of 

100 µm NiCrAl was coated on the piston, intake, and exhaust 

valves. A 400 µm top coating material consisting of a blend of 

88% ZrO2, 4% MgO, and 8% Al2O3 was also applied. With 

Nitrogen Oxide (NOx) emissions excluded, the results showed 

that the coated engine exhibited a reduction in both the 

emission profile and Brake-Specific Fuel Consumption 

(BSFC). Additionally, the coated engines showed higher 

cylinder gas pressure and Heat Release Rate (HRR [21].  

 

According to Buyukkaya and Cerit (2008), the use of 

thermal barrier coatings resulted in improved combustion 

characteristics, reduced emissions, lower fuel consumption, 

and increased thermal efficiency [22]. Investigation of TBC 

on the engine using the plasma spray approach was covered 

by Parlak A. (2005). The negative impacts of wear, corrosion, 

oxidation, and friction were generally lessened in the ceramic-

coated parts with improved engine performance 

characteristics[23]. 

  

1.1. Statement of Novelty 

According to the literature review, when utilising 

biodiesel with or without engine modifications, thermal 

barrier-coated engine parts can lower heat rejection, enhance 

thermal efficiency, improve combustion characteristics, and 

reduce emission profiles. However, the combined impact of 

TBC and changing engine settings with biodiesel was limited.   

 

Additionally, only a small number of researchers used 

Mahua Oil Methyl Esters (MOME), which were made from 

Mahua oil that was readily available in India, to study diesel 

engines.  These studies did not cover the concurrent impact of 

modifying engine operating conditions and applying a heat 

barrier coating. Therefore, utilising Mahua Oil Methyl Esters 

(MOME), an attempt was made to examine the combined 

effect of the TBC piston crown of a variable compression ratio 

diesel engine. The obtained results were related to both diesel 

and non-coated engines. 

 

2. Materials and Methods 
Transesterification was used in the study to turn Mahua 

oil into biodiesel. By changing the compression ratios from 

17:1 to 21:1 in increments of 2, the performance, emissions, 

and combustion characteristics of a single-cylinder, four-

stroke direct-injection diesel engine were examined using 

biodiesel. The outcomes were contrasted with those of a TBC 

engine. 

 
2.1. Biodiesel Production  

Due to higher oil content and accessibility among other 

feed stocks, Mahua oil was selected for the synthesis of 

biodiesel [24, 25]. At room temperature, it seemed semisolid 

and yellow. Two-stage transesterification procedures were 

chosen to turn raw Mahua oil into biodiesel. The first step 

involved adding methanol and highly concentrated H2SO4 to 

raw oil at about 55 °C for two hours. In the second step, the 

catalyst KOH and reactant methanol were combined with the 

leftover oil. For two hours, the mixture was heated to around 

55 °C.  

 

The second stage products were allowed to be washed 

with water to remove moisture and excess methanol from the 

Mahua Oil Methyl Ester (MOME), and the residual oil was 

heated to about 110 °C. MOME was mixed in different 

amounts with regular diesel, ranging from 20% to 80%. The 

fuel characterization of MOME and its blends with diesel was 

determined as per the ASTM D6751 standard.  Table 1 

displays the physical-chemical characteristics of diesel,  

MOME, and its blends, along with raw Mahua Oil (MO)  
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Table 1.  Fuel  properties of Diesel Mahua Oil, MOME, and its blends 

Fuel Properties 
Diesel 

 

Mahu

a Oil 
B20 B40 B60 B80 

B100 

/MOME 

ASTM 

Standard 

Density (kg/m3) at 

27oC 
851 925 858 865 872 879 

886 

 

ASTM 

D1298 

Kinematic Viscosity 

@ 40C 
2.432 24.58 2.780 2.989 3.258 3.742 4.329 

ASTM 

D445 

Calorific value 

MJ/kg 
42.08 36.23 41.30 40.53 39.75 38.97 

 

38.20 

 

ASTM D40 

Flash Point °C 42 232 101 108 114 123 130 
ASTM 

D93 

Cetane index 55 57 48.3 50.3 52.3 54.0 61 
ASTM 

D976 

Copper Strip 

corrosion 
1a 1a 1a 1a 1a 1a 1a 

ASTM 

D130 

According to ASTM D1298, the fuel blend's density was 

calculated and found to be within acceptable bounds. The 

MOME, or biodiesel, had a lower heating value than diesel but 

a higher one than raw Mahua oil. MOME and its blends 

showed a higher flash point for safer handling and storage. 

The biodiesel exhibited a slightly higher Cetane index or 

better ignition quality. One consequence of corrosiveness on 

copper engine components is the corrosion of copper strips. 

MOME and its blends displayed a slightly tarnished strip that 

was identified as "1a" and nearly identical to a freshly polished 

strip. 

 

2.2. Thermal Barrier Coating or Adiabatic Coating 

Because the coated engine reduces heat transmission in 

the combustion chamber, it is more reliable and durable than 

a regular or non-coated engine, leading to improved engine 

performance. The engine valve, piston crown, and cylinder 

head can all be affected by TBC [26]. This work used the 

plasma spray coating process to cover the piston crown with a 

150 µm thick NiCrAl (Nickel-Chromium-Aluminum) bond 

coat and a 200 µm thick top coat of Yttria (Y2O3)-stabilized 

Zirconia (ZrO2) (YSZ). A preliminary study was used to 

determine the thickness and composition of a suitable 

adiabatic coating.  Figure 1 displays TBC TBC-coated piston 

crown. 

 
Fig. 1 TBC coated piston crown 

2.3. Experimental Setup and Methodology 

The line diagram and photographs of the experimental 

setup are shown in Figures 2 and 3.  A single-cylinder, four-

stroke, variable compression ratio multifuel engine with an 

eddy current dynamometer was considered for the study. 

Technical specifications of the diesel engine are given in 

Table 2. In the current investigation, the cylinder head can be 

raised or lowered to alter the compression ratio. This affects 

the clearance volume that is obtained.  

 

 
Fig. 2 Photo of test engine setup 

 

 
Fig. 3 Schematic diagram of experimental setup 

 

1. Diesel Engine, 2. Angle encoder,  3. Balancing wheel, 4. Knob for VCR, 

5.  Intake Filter, 6. Air Storage Tank, 7. Inductor dynamometer,                          

8. AVL 5 Gas Instrument, 9. Opacity tester, 10. DAS, 11. Engine 

Foundation     
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Using MOME or B100, experimental tests were carried 

out for Standard or non-coated Engines (SE) and TBC coated 

or Adiabatic Engines (AE) at various compression ratios 

between  17:1, 18:1, and 21:1 under varying load 

circumstances ranging from 0% to 100% with increments of 

25%. All of the measuring devices were checked, adjusted, 

and calibrated through a series of trial tests. Engine behaviours 

of different fuels at a steady 1500 rpm with varied loads and 

compression ratios were all covered in the engine study.  

 

The results of this study's use of MOME to modify the 

compression ratios of adiabatic or TBC-coated engines were 

compared to those of the normal or non-coated engine.   

 
Table 2. Technical specification of VCR engine 

General Details 

Computerized VCR Single 

Cylinder Four Stroke 

Engine (Multiple Fuel) 

Rated Power 5.2. kW at 1500 rpm 

Compression Ratio Variable from 5:1 to 22:1 

Bore 80 mm 

Stroke 110 mm 

Type of fuel Multiple fuel 

Loading Inductor Dynamometer 

Temperature Sensor 
Type K- Chromel   

thermocouples 

Make of the engine Kirloskar 

Starting Self-starter 

Cooling Water 

 

3. Results and Discussion 
3.1. Performance Characteristics 

3.1.1. Brake Thermal Efficiency 

Figure 4 shows the Braking Thermal Efficiency (BTE) of 

the Standard Engine (SE) and Adiabatic Engine (AE) utilising 

biodiesel or MOME under various load circumstances and 

compression ratios.  When CR17-AE-Diesel was compared to 

CR17-SE-Diesel, a higher brake thermal efficiency of 28.12% 

was achieved, mostly by the thermal barrier-coated piston 

crown.  B100's brake thermal efficiency was worse than 

diesel's, regardless of the engine's CR, standard operating 

conditions, or adiabatic operation.  

 

This is mostly because of biodiesel's lower net calorific 

value than diesel [27]. It was found that raising the 

compression ratio from 17:1 to 21:1 improved the braking 

thermal efficiency of biodiesel.  The CR21-AE-Biodesel 

demonstrated the highest brake thermal efficiency of 26.98% 

under 100% load conditions. 

 

The TBC piston crown improved combustion by raising 

the temperature and increasing the compression ratio, which 

in turn improved atomisation within the combustion chamber. 

 
Fig. 4 Variation of BTE for test fuels 

 

3.1.2. Brake Specific Fuel Consumption (BSFC) 

The Brake-Specific Fuel Consumption (BSFC) of test 

fuel under various engine settings, loads, and compression 

ratios is shown in Figure 5. As load conditions increased, 

B100 demonstrated a decrease in BSFC.  Due to the increased 

calorific value of diesel, a minimum BSFC of 0.30 kg/kW h 

was recorded for CR17-AE-Diesel. With 100% load 

conditions, the CR21-AE-B100 and C21-SE-B100 showed the 

lowest BSFCs of 0.34 kg/kW h and 0.36 kg/kW h, 

respectively. The higher resistance to flow and poor heating 

value of MOME were offset by the thermally coated piston 

crown and enhanced compression ratio.  However, compared 

to CR21-SE-B100 and CR21-AE-B100, the BSFC of CR19-

SE-B100 and CR19-AE-B100 had somewhat higher values. 

This is mostly due to the engine's insufficient compression 

ratios, which led to subpar atomisation. 

 

 
Fig. 5 BSFC of test fuels for various compression ratios and load 

conditions 

 

3.2. Emission Characteristics 

3.2.1. Carbon Monoxide (CO) Emission 

Figure 6 shows the Carbon Monoxide (CO) emissions 

from biodiesel at different compression ratios, normal 

engines, and adiabatic engines with brake power.  
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Fig. 6 Carbon Monoxide (CO) emission of test fuels 

 
As load conditions increase, so do the CO emissions from 

diesel and biodiesel. Under 100% load conditions, maximum 

CO emissions from CR17-SE-Diesel and CR17-AE-Diesel 

were 0.23% Vol and 0.2% Vol, respectively. Despite having a 

piston crown that has been thermally treated, diesel emits the 

most CO since it has no oxygen.  The impact of biodiesel 

viscosity on fuel spray properties is responsible for the 

elevated CO emissions of biodiesel under different load 

circumstances [30]. At 100 load conditions, the CR21-AE-

B100 produced the lowest CO emission of 0.06% Vol due to 

a higher compression ratio and an adiabatic engine. This is 

explained by the increased temperature brought on by the 

higher compression ratio of 21 and an adiabatic engine. 

           

3.2.2. Carbon Dioxide (CO2) Emission 

Carbon Dioxide (CO2) emissions of diesel and biodiesel 

under various load circumstances and compression ratios are 

illustrated in Figure 7. At 100% load conditions, the maximum 

CO2 emissions for CR17-SE-Diesel and                  CR17-AE-

B100 were 4.3% and 4.5%, respectively.  

 
Fig. 7 CO2 emission of test fuels for various compression ratios, SE, AE, 

and load conditions 

Because of greater temperatures in the cylinder and the 

higher oxygen content of biodiesel, test fuels' CO2 emissions 

are rising as load and compression ratios increase.  The 

thermally coated engine emitted more CO2 than the uncoated 

engine.   

 

With a maximum CO2 emission of 5.3% Vol, CR21-AE-

B100 outperformed CR17-SE-Diesel and CR21-SE-B100 by 

1% and 0.2%, respectively. This is because the adiabatic 

engine with B100 or the increased compression ratio of 21 

both contributed to improved combustion. 

       

3.2.3. Unburnt Hydrocarbon (UHC) Emission 

Figure 8 displays the UHC emission of test fuels under 

conventional and adiabatic engine conditions with different 

compression ratios and load circumstances.  Under different 

load settings, test fuels' UHC emissions are rising.  

 

 
Fig. 8 UHC emission of test fuels 

 

Figure 8 demonstrates that, regardless of whether an 

engine is adiabatic or conventional, diesel emits more Unburnt 

Hydrocarbon (UHC) than biodiesel. Because of the greater 

exhaust temperature caused by the higher cylinder 

temperature, thermal barrier-coated engines demonstrated 

decreased UHC emissions of test fuels.  

 

Maximum load conditions, lower UHC emission of 38 

ppm for CR21-AE-B100. This is due to higher temperature 

and the TBC piston crown, all of which improve combustion. 

 

3.2.4. Nitric Oxide (NO) Emission 

Nitric Oxide (NO) emission for different test fuel 

compression ratios and loads is given in Figure 9.  

 

The increment in NO emission can be explained by a TBC 

piston crown, a greater compression ratio from 17 to 21, faster, 

improved combustion, and a greater cylinder gas temperature 

as a result of peak pressure [28, 29]. 



Gopal Radhakrishnan Kannan / IJME, 12(10), 1-9, 2025 

 

6 

 
Fig. 9 NO emission with various compression ratios and load conditions   

 

Maximum NO emission of 575 ppm was observed for 

CR21-AE-B100 at 100% load condition because biodiesel 

contains more oxygen and is heated to a higher temperature at 

an advanced compression ratio. 

 

3.2.5. Smoke Emission 

Smoke opacity of test fuels at various load circumstances 

and compression ratios is presented in Figure 10. CR21-AE-

B100 showed the lowest smoke opacity, measuring 37.8%.   

 

Because biodiesel has a larger oxygen content and burns 

better at higher compression ratios, it results in higher gas 

temperature [30], leading to improved combustion. When 

compared to non-coated engines, this could explain why test 

fuels like CR17-AE-B100 and CR19-AE-B100 had lower 

smoke levels. 

 

 
Fig. 10 Smoke opacity for different compression ratios and load 

conditions 

3.2.6. Exhaust Gas Temperature 

Figure 11 displays the Exhaust Gas Temperature (EGT) 

of diesel and biodiesel under different load situations and 

compression ratios.  Under various compression ratios, load 

conditions, and coated and non-coated engine settings, 

biodiesel's EGT is lower than that of diesel's due to low net 

heating value; the exhaust gas temperature decreases with a 

higher compression ratio [31]. The CR21-AE-B100 test fuel 

had the lowest exhaust gas temperature, measuring 198 °C.  

This is explained by the possibility of improved performance 

due to a lower exhaust gas temperature [32]. 

 

Fig. 11 EGT of test fuels for different compression ratios 

 

3.3. Combustion Characteristics 

3.3.1. Cylinder Pressure 

Figure 12 shows the cylinder pressure with the crank 

angle for standard, adiabatic engines operating at 100% load 

circumstances, as well as test fuels with different compression 

ratios.   

 

 
Fig. 12 Cylinder pressure of test  fuels 
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Due to improved combustion, the cylinder pressure 

increased as the compression ratio surged. Additionally, for all 

test fuels, the adiabatic engine displayed somewhat higher 

cylinder pressure than the SE operation. Because conventional 

diesel has a higher calorific value, CR17-AE and CR17-SE 

diesel were found to have maximum cylinder pressures of 

67.54 bar and 63.27 bar, respectively. CR21-AE-B100 

achieved a cylinder pressure of 61.7 bar, 5.6% higher than 

CR21-SE-B100. This is mostly due to the greater gas 

temperature produced by an adiabatic piston crown. 

     

3.3.2. Cylinder Gas Peak Pressure 

The cylinder gas peak pressure of test fuels under various 

load circumstances and compression ratios is shown in Figure 

13.  The cylinder gas peak pressures for CR17-SE-B100 and 

CR19-SE-B100 were found to be 33.7 bar and 35.2 bar, 

respectively, under low load conditions. Additionally, the 

biodiesel-fueled AE displayed lower cylinder gas peak 

pressures of 34.7 bar and 37.4 bar at lower compression ratios 

of 17 and 19.  

 
Fig. 13 Variation of cylinder gas peak pressure of test fuels 

 

However, the CR21-SE-B100 and CR21-AE-B100 

displayed a slightly lower cylinder gas peak pressure when 

compared to diesel fuel during SE and AE operation.  
 

3.3.3. Heat Release Rate 

Heat Release Rate (HRR) of test fuels with the varying 

crank angles is presented in   Figure 14.  Biodiesel 

demonstrated a lower HRR across the whole compression 

ratio range, regardless of SE and AE circumstances.  For 

CR21-AE-B100, the maximum heat release rate was recorded 

at 78.6 J/oCA.  
 

This is because the lower heating value, the oxygen 

component of MOME, along with advanced compression ratio 

and TBC, caused it to release heat at a faster pace.  However, 

under 100% load conditions, the CR21-SE-B100 

demonstrated a higher heat release rate of 77.5 J/oCA than the 

CR21-AE-B100.       

Fig. 14 Variation of the heat release rate of test fuels 

 

3.3.4. Ignition Delay 

The Ignition Delay (ID) duration of MOME and diesel 

under different load circumstances and compression ratios is 

shown in Figure 15. As loads increase, diesel and biodiesel's 

ignition delay times shorten.   When compared to diesel, 

biodiesel had a shorter ignition delay period, as can be seen 

from the figure, a thermal barrier-coated engine that reduces 

ignition delay for all test fuels due to improved combustion 

[28].  

 

 
Fig. 15 ID of test fuels at various compression ratios and loads 

 

CR21-AE-B100 had the smallest ignition delay duration 

(9.5 °C), which is less than that of the CR21-SE-B100 at the 

maximum load condition due to lessened Physical delay by the 

combined effect of higher CR and an adiabatic engine that 

raised the gas temperature.   

 

4. Conclusion           
In this work, the trans-esterification procedure was used 

to prepare the biodiesel, or MOME. According to ASTM 

guidelines, the fuel attributes of MOME blends and MOME 

were investigated and contrasted with those of conventional 
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fuel.  The following engine features were noted based on 

research findings: 

 Compared to CR17-SE-Diesel, CR17-AE-Diesel had a 

maximum brake thermal efficiency of 28.12%. When 

powered by biodiesel, adiabatic or thermal barrier-coated 

engines showed a significant increase in brake thermal 

efficiency.  

 CR17-AE-Diesel had the BSFC of 0.30 kg/kW h, which 

is slightly lower than that of CR17-SE-Diesel. At 

maximum load conditions, the C21-AE-B100 and C21-

SE-B100 showed the lowest BSFC of 0.34 kg/kW h and 

0.36 kg/kW h across different compression ratios.  

 The highest CO2 emission of 5.3% Vol was observed for 

CR21-AE-B100, which is 0.2% and 1% more than that of 

CR21-SE-B100 and CR17-SE-Diesel. At maximum load, 

CR21-AE-B100 achieved a minimum UHC emission of 

38 ppm. A maximum NO emission of 575 ppm was 

recorded with the CR21-AE-B100. The lowest smoke 

opacity of 37.8% was displayed by CR21-AE-B100.  

 The CR21-AE-B100 recorded a cylinder pressure of 61.7 

bar, 5.6% greater than the CR21-SE-B100.  

 CR21-AE-B100 achieved the highest heat release rate of 

78.6 J/oCA Under conditions of 100% load, the CR21-

AE-B100 displayed the smallest ignition delay duration, 

9.8 oCA. 

 

In comparison to a non-coated engine using conventional 

diesel, an adiabatic or thermal barrier-coated engine with 

MOME demonstrated improved engine performance at a CR 

of 21.  Additionally, MOME combined with TBC and VCR 

engines offers a good option for power plants and automobiles 

looking for an environmentally responsible and sustainable 

substitute for traditional diesel.  Through environmentally 

friendly, energy-efficient engine settings, the study supports 

the industry's energy demands, particularly for applications in 

heat engines and decentralised power production, where 

MOME utilization is becoming more popular. Additionally, 

the results of the study open the door for the creation of 

energy-efficient, flex-fuel, and sustainable cleaner diesel 

engines.
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