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Abstract - Composite structures are extensively employed in various engineering applications to enhance strength and optimize
overall performance through lightweight design. However, the complex manufacturing process of composite structures often
introduces discontinuities like voids, holes, inclusions, cracks, delamination, and flaws. The interfacial cracks, particularly inter-
laminar debonding, interact with these discontinuities, posing a risk of failure in engineering components. Hence, studying Stress
Intensity Factor (SIF) for various materials with interface cracks is important to avoid calamitous failures in various engineering
applications. The stochastic approach is also applied by considering the random variables on material properties to obtain more

accurate and optimized results.
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1. Introduction

Dissimilar or composite structures find extensive use in
numerous engineering applications due to their enhanced
strength-to-weight ratio, which improves overall performance.
However, the complex manufacturing process of composite
structures introduces various discontinuities like holes, voids,
inclusions, cracks, delamination, and flaws.

Among these, the interfacial cracks, specifically inter-
laminar debonding, interacting with the discontinuities, can
possibly lead to failure in the different engineering
components. Hence, it is important to study the Stress
Intensity Factor (SIF) for various materials with interface
cracks to prevent calamitous failures in various engineering
applications.

In recent studies, researchers have examined Mode-I and
the mixed-mode SIFs using diverse methodologies. Williams
[1] explored the oscillatory behavior of interfacial cracks in
dissimilar isotropic materials. Using the CVM, Sih et al. [2]
produced a thorough equation to calculate stress,
displacement, and SIF at the crack tip.. Dundurs [3] introduced
parameters specific to orthogonal materials. Rice [4], along
with Woo and Wang [5], expanded research on bimaterial
interfacial crack plates. Additionally, Miyazaki et al. [6]
investigated SIFs using the boundary element method for the
aforementioned issues.

OSE)

Chow et al. [7] present a finite element hybrid approach
to determine displacements, strains, and the SIF near the
interface crack-tip in various anisotropic media. Deng [8]
performed asymptotic separation and delamination tests on
composite panels. Lee et al. [9] investigated the SIF in the
orthotropic materials under the dynamic loading conditions.
Bjerkén and Persson [10] evaluated SIFs for various cases of
bimaterial interfacial crack plates. Shukla et al. [11] analyzed
the dynamic and static fracture failure at orthotropic and
isotropic material interfaces using photo-elasticity. Sukumar
et al. [12] presented that for cases of fractures at bimaterial
interfaces, discontinuity enrichment functions were developed
to determine the mixed-mode SIF.

Bordas et al. [13] introduced an object-oriented enriched
finite element code by XFEM to solve different discontinuity
problems. Menk and Bordas [14] proposed functions for
enriching anisotropic and polycrystalline biomaterials using
the XFEM. Ashari et al. [15] presented an enrichment function
for orthotropic biomaterials and investigated various cases
using the XFEM. Pathak et al. [16] evaluated several cases of
bimaterial interfacial crack plates using the element-free
Galerkin approach and the XFEM. Sharma et al. [17]
investigated Mixed-Mode SIFs for the bimaterial of
piezoelectric with a sub-interfacial crack by XFEM. The
CVMMM was used by Gao et al. [18] to study the SIF for the
crack in different materials. Hu et al. [19] assessed the crack
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problem with a line interface crack and established a novel
approach to studying different cases of an inclined crack in a
bimaterial. Akhondzadeh et al. [20] provided stress singularity
numerical models for XFEM multi-material contact
challenges. Wang et al. [21] introduced higher-order
enrichment functions that are material-dependent in XFEM to
study interface crack issues that are curved and linear. Fan et
al. [22] presented the DDM to evaluate bimaterial interface
crack problems. Kumar et al. [23] evaluated the influence of
interface cracks in cemented acetabular cups. Xiao et al. [24]
introduced the single-region Boundary Element Method to
analyze slant isotropic planes and interfaces of an isotropic
bimaterial. Chai et al. [25] analyzed the interfacial elliptic
crack SIFs and suggested the relative displacement basic
functions for bimaterials.

The researchers have tackled the complexities of fracture
mechanics, addressing different discontinuities such as cracks
and interactions with inclusions/voids. Kaung et al. [26]
utilized the Boundary Collocation Method to investigate crack
emanation of holes in biomaterials. Sukumar et al. [27]
presented enrichment functions of material interfaces in the
XFEM using the level set method. Li et al. [28] evaluated
Mode-l Stress Intensity Factors (SIFs) for cracks and
inclusions by the Eshelby method. Belytschko et al. [29]
presented XFEM’s Volterra dislocation model for
discontinuity problems: determining Peach-Koehler forces in
complex scenarios. Shedbale et al. [30] presented the central
crack issue with inclusions and holes for fatigue-life
evaluation utilizing XFEM.

Natrajan et al. [31] and Sharma [32] studied various
cracks with inclusion interactions to analyze SIFs by
implementing the XFEM. Tafreshi [33] developed an
algorithm to evaluate Jk-integrals for bimaterial interfacial
cracks considering BECSS. Ebrahimi et al. [34] employed
multi-pole methods (MPM) to simulate a crack with inclusion
cases in brittle materials with separate crack dynamics. Yu et
al. [35] assessed strong weak discontinuities by XFEM and
using local approaches. Ismail et al. [36] examined SIF with
numerous cracks at junctions in bimaterial plates. The Author
presented curved interfacial modeling with element
partitioning-free for the holes using XFEM.

Lal et al. [37] investigated an edge crack isotropic
problem with voids and inclusions using various loading
scenarios using the XFEM. The Author used XFEM to assess
a variety of crack-void/inclusion interaction problems using
Object-Oriented Programming (OOP). The Author explored
interactions of various discontinuities in orthotropic plates
through XFEM. Lal et al. [38] and Lal and Palekar [39]
investigated laminate composite problems using stochastic
XFEM with SOPT and MCS, considering random parameters.
Khatri and Lal [40, 41] evaluated MMSIF, the corresponding
Coefficients Of Variation (COV), and the crack propagation
behavior for plates with the crack and hole subjected to
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various loading conditions using stochastic XFEM with
SOPT.

Wang et al. [45] present an improved peridynamics
technique for simulating interfacial and sub-interfacial crack
development in bimaterials, which successfully addresses
singularity and mesh-dependency problems. Numerical data
accurately match analytical and XFEM benchmarks, proving
the model’s ability to forecast crack initiation and propagation
routes reliably. R Nikhil et al. [46] study uses a fracture model
based on instability to forecast crack initiation in modified
9Cr-1Mo steel, taking into account the influence of void
nucleation and growth. Ping Li et al. [47] present a novel
strength—energy criterion for bimaterial interface crack
propagation in order to increase prediction accuracy. Its
efficiency over conventional methods is demonstrated by
numerical and experimental validation. Maria A. and
Vladislav [48] examine stress singularities in the generalized
Comninou frictional contact model to gain insights into the
behavior of interface cracks in anisotropic bimaterials. Palekar
et al. [49] used the stochastic XFEM in their work to examine
fracture in orthotropic laminated plates with double-edge
cracks. It quantifies the effects of uncertainties in material and
geometry on stress intensity factors and fracture behavior.

This literature review shows that researchers have
devoted considerable attention to investigating various
discontinuity interactions in composite materials using
XFEM. They have employed diverse numerical methods to
analyze Stress Intensity Factors (SIFs) considering
interactions of cracks, voids, and inclusions in isotropic and
orthotropic plates, as well as in bimaterials, addressing
inclusions-voids with interface crack problems. This study
aims to assess the Normalize Stress Intensity Factor (NSIF)
using XFEM for an isotropic bimaterial problem involving
interfacial edge cracks and void/inclusion interactions. A
stochastic approach will also be applied, considering random
variables for material properties. The primary focus of this
study is to investigate NSIFs (K, and Ky) and investigate the
interaction of void/inclusions in interfacial edge crack
isotropic bimaterials using XFEM, supplemented by a
stochastic approach incorporating random material properties.
The researcher has looked at the discontinuity issue with
composite materials as well as a few applications of stochastic
methods to analyzing SIF, but they have discovered very few
combinations of them, discontinuities with bimaterial, and
have used a stochastic approach.

2. Mathematical Formulation

The current study evaluates the NSIFs of the traction-free
interface crack between two distinct media, taking into
account the fundamental mathematical formulation of a
bimaterial as reported by Asadpoure et al. [44] and
Muhammadi S. [43]. In this study, the capricious bimaterial
geometry is taken into consideration with different
discontinuities such as void-inclusion, interfacial crack, under
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traction force - f, global Cartesian coordinate - (X, Y), Figure 1 shows the crack-tip enclosed by 7', the I"-contour, and
displacement - u, crack-tip located at (xi, y1) — the local A -internal area with capricious boundary conditions.
Cartesian coordinate axis, and the local polar coordinate (r, 6).

Crack

X

Fig. 1 Capricious bimaterial geometry of any kind with an interface fracture

2.1. An Isotropic Bimaterial Interface

Deng presented the fundamental asymptotic evaluation
for a propagating and stationary interfacial edge crack in the
isotropic bimaterial [8]. Sukumar et al. [12] presented the
asymptotic solutions for an isotropic bimaterial edge crack
by adopting the techniques of Rice [4], Mohammadi S. [43],
and ignoring the effect of contact and crack propagation.
Appendix -1 contains a detailed derivation of it.

2.2. XFEM Mathematical Formulation

This work takes into account those proposed by
Mohammadi S. [43] and Asadpoure et al. [44] presented a
general equation and boundary condition for the fracture
field.

Vo+fi=0 in Q (1)

on=f* on n (2
u=1 on rn, (3)
on=20 on rc (4)

Where, Ty — external traction of the domain, Ty —
displacement, T'c —the traction-free crack-boundary, o-stress
tensor, f'- external traction, and body force.

XFEM can accurately predict the displacement at any
position x inside the crack field by using the CFEM. And
the enrichment hypothesis considers the effect of the crack
tip and the crack surface,

/ Xy
7/
-~ -

ft

Material-1

Domain Q &

0 Interface

Crack tip ‘

Inclusion/void

Material-2

CFEM XFEMenrichment
n crk
(5)
Wi (x) = Z N; () + Z N, ()0 ()
j=1 k=1

In CFEM, uj represents each node’s regular degree of
freedom and the discontinuous enrichment function, while
Nj and Nk represent the discontinuity enrichment for j and
k. Mohammadi S. [43] and Asadpoure et al. [44] regard each
parameter of the XFEM enrichment function as provided.

According to Shedbale et al. [29] and Equation (5), void
or inclusion for XFEM approximation is obtained for two-
dimensional media with varying discontinuities, such as
cracks

ul(x) = Z N; ()
=1

J

cf
+ D 1 (HEW)
k=1

~ H(E ) o
+ Zi (0 (BE (Qh 60 — Q) ) +
Torl2 N () (26252 (Q200) — Q2em) ) C) - (6)
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+ Z N; (x) qb(x)d
j=1 ]enmcl
- ZN (9 [ e = eIy

J€Nyoid

While cf - many nodes in the supported field for a crack
surface, however not the crack tip, ctps, ctp2 - number of
nodes in the affected field connected to crack-tips 1 and 2,
ak,Cfl,Cﬁ,Zl - crack surface nodes and crack tip-1, 2
additional degree vector of the freedom, respectively.
Qi,Q? - enrichment function of the crack tip 1, 2,
respectively. ctp. or ctp, nodes represent the enriched
function. The Heaviside function H(¢) enriches crack-
supported field nodes and is not part of either the ctp; or
ctp2.

Points that are located on the crack’s positive side
receive a +1, while all other points get -1, according to the

H(&(x)) following definition:

+1 ¢ent

-1 €en” )

HE) = {

and,
Nincl = the group of nodes whose components are removed
through inclusion
wid = the group of nodes whose components are removed
through void
d; = nodal enriched dof accompanying with ¢ (x); where,
(x) - level set function imitative,

[0, 0], =

sin2 6

gi(0) = [cos?6 + el j=12 (11)
J
R O tge)
b=t (pjx) ‘ (p, (12)
According to Mohammadi S. [43], the generic

formulation in global form for an orthotropic material by the
XFEM is defined.
KXU=F (13)

Where K, as defined by Shedbale et al. [29], is the overall
stiffness matrix and F is the force vector,

[\/FCOSGZ_l\/ 91(9)'\/700562_2\/ 92(9);\/751'"%\/91(9).\551'”92_2\/ 92(9)]
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¢(x) = £min|lx — x|l (8)
where, xr - the closest point from point x in the
interface
vj = the y(X) - related nodal enhanced dof;
where y(x) — Heavyside function, considered +1value
for the nodes outside a hole, 0 value for the nodes inside a
hole.

2.2.1. Isotropic Interface Enrichment Function
The following is how Sukumar et al. [12] developed the
isotropic bimaterial,
[«/—cos ) sing, \/Fcos(z;)e"””cosg,
\/FCOS(
JFsin(
JFsin(
(e
(

o w()e‘“”sing Jreos(@)e cosZ, ®
2

Jertsin g, Fsin()e™ cos

Jer'sing, Fsin(a)ercos

)

)

Jrcos

Jrsin(@ e’“”sin%sin 0, «/Fsin(Z))e”"’ cosgsine}

w0 i O 4
e smzsm6’ J—cos( )e coszsme

Note that because the oscillatory index (w) is
determined using the characteristics of isotropic
materials, Equation (9) cannot be applied to an
orthotropic-bimaterial.

This is identical to the unidirectional orthotropic
media’s enrichment function that Asadpoure et al.
presented. [44]:

(10)
— \C d —
K K K K K
C d
Kt KG® KG KGKG
_ | pCu pcC CC pCd pC
K§ = |Kj" K K- Ki® Kg® (14)
d d dC pdd pd
Ki* KG® K§ KG® K
C d
K K K KK
re = |pr pa pCo pCe G pCa pd g T (15)
A LA A T i i i
U - nodal parameter vector
U= {uaCyCryCi3Ceq d v}’ (16)
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Where
K[ = [,(B))'DBjd2 (r,s=u,a,C,d,V) 7)
g = [ viptar + | wpcean
ry ne
fit = [ NHf AT + [ NHfd0) (18)
fite = Jp NiFoftdr + [, NiFof “tde2 a=12,..8
(19)

fif = [, Nip COtdr + [, Nip(x)Cd2 (20)

f = o M@ ) = e))tdl + [ N (x) —
P(x;))CdA (21)

Obtained matrix,

Ni,x1 0 ]
gr=| 0 Nl @2
Ni,y1 Ni.x1.
(NiH)x1 0
(NiH)y1 (NiH)xl_
B =[5 B B© B (@4
N (NiF(x)x1 0
Bl}ta _ 0 (N:F)y, |, a=1,2,..,8 (25)
(NiF(x)y1 (NiF(X)x1
(Ni ¢(x))x 0
B = 0 (N; ¢(x)) (26)
MNi @)y (N P(0)) 3x8
(V@) = w(xi))),x 0
By = 0 (M) —p(x)),
(CACIGRRTCH) M GHCIORSTEN N N
(27)

2.3. NMMSIF Mathematical Formulation

Similar to Mohammadi S. [43], this study employs the
integral domain technique to model a fracture in an orthotropic
(homogeneous) material with integral. Evaluate the
NMMSIFs K; and K,
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- ouj 9q
J=J, (Uij i WstA1j)a—xjdA (28)
The defined domain’s real and auxiliary conditions,
taking into account two equality criteria. The J - integral, J®
(through the effect of both circumstances), is determined.
Furthermore, as seen in Figure 1, from the crack tip, where
g=1, to the outer boundary of I, where q=0, the value of q
changes continuously, see Appendix 1 for more. All additional
displacement and stress fields are included in one.

By combining the auxiliary and real conditions, the J-
integral is calculated like this:

]S — ]Act + ]Aux + M (29)
Here, M found,
_ Juit* ou; aq
M = fA I:O-ij Ep + O'il}ux a_x - sthlj:I adA (30)
or linear elastic conditions,
w,m = DA )

2

The crack tip, where FE analysis is becoming more
precise, shares a similar route freedom as the original J-
integral and is used to calculate the M-integral.

To calculate the SIF, Chow et al. [7] presented a
relationship for subordinating the SIF to - integral. M-integral
orthotropic bimaterial medium:

K =232  UmM(u,u®m), =12 (32)

The SIFs K, and Ky are found by using two conditions
K =1, K> =00, (K =1, K" =0)
respectively, and

U=[L'+ LY A+ 5] (33)

B ="+ L)Lt — S, L) (34)

As Barnett and Lothe (1973) explain, the subscripts 1 and
2 represent the top and bottom media, respectively, whereas S
and L represent the corresponding 2 x 2. Deng [8] outlines the
precise conditions for when a genuine Barnett Lothe tensor
has no zero components in an orthotropic medium.
1

C66(m_clz) 2 512 = — ’%Szl (35)

S = )
21 I:CZZ(CIZ+ZC66+\/CIIC22)
Cz2
L = (C12 + v C11C22)521, Ly; =— C_L11 (36)
11
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Where Cj; is the abbreviated version of the 4™ order elastic
constant tensor C;jy, = Si},%, each layer’s S and L components
are identified separately.

2.4. FOPT and SOPT by implementing the XFEM

Stochastic XFEM extends deterministic XFEM by
incorporating arbitrariness in various properties, including
material, geometry, and loadings, through the Second-Order
Perturbation Technique (SOPT) by expansion of the Taylor
series. Compared to other stochastic methods, perturbation
techniques are notably more efficient. In the engineering
issues involving the random variables, the parameters’
Coefficients of Variation (COV) are typically slight [40, 41].
In this study, both the static and random components of
MMSIFs (mixed—mode intensity factor) are expressed as
functions of the random and static components or the first and
for 1%t and 2™ modes of SIF, respectively. This relationship
can be illustrated as:

K=f(Kn),n:{ | formode—|I 37)

Il formode-II

The MMSIFs K value is subject to various random
variables e; independent or dependent on each other, with the
In addition, the MMSIFs

mean M"ian q standard deviationo,,.

can be displayed using random variables K, and K, as:
If, n =l and n=II,

K, =K;(e)), Ky =Ky(e) (38)

Currently, the perturbation method or Taylor series
expansion method is utilized to introduce randomness into the
system as follows:

U

K= K(:uel)—l'ZLl la
Where e;, ¢ (i, j =1,2,...,

ZKn

LT a0 (39)
N) - random variables are denoted

with (x; — ;) and (x]- - #e,-), respectively, K, (u,) - mean
values of the MMSIFs using the input variable..

The E[K, ]Jmean of the first order of K is represented by,
E[Kr;] ~ Kn(:uei) (40)

Now, the 1% order variance of K is indicated by,

9Kp 0Ky

Var(K) = X1, X7 Sy ZECOV ey € (41)

in which N - total quantity of the random variable and

covle, ¢;] = [A1[4], (42)
[ a2 COV(ey,e5) COV(ey, e)]
[4] = COV (ey, e1) oZ, COV(ez.ei)| 43)
lcovieen covieey o ot ]
1 Peye, Peye;
And[a]=|Pezer 1 Peaey
Pere; Perer - 1
(44)

Where[A]and [A']a are the random variables’

associated coefficient matrices and standard deviation,
respectively. Furthermore,

. Me;)  and
(45)

Oeyr OeyroverOg; = COV(ei,e]-) Kn(uel, Heyre--

p - COV (e.¢)
OO,

Where, COV (e;, ¢;) for uncorrelated random variables,
the relationship between the random variable and its values is
set to be zero. On the other hand, Peie; for the interrelated

random variable, any value of the COC- coefficient of
correlation can be assumed.

Using a higher-order term in the Taylor series expansion
of K, (e;) can help get a better estimate of the average and
spread of MMSIFs K. The second-order mean of MMSIFs K
is obtained by using the SOPT method, which is a second-
order perturbation technique:

EK"] = Ky (ue,) + 3 Var{K,} (46)

And the response’s E[K,] matching second-order
variance matrix, which is displayed as follows, is equivalent
to the 1% order matrix of variance provided in Equation (40):

Var{K"} = Var{K} 47

The information about the 3™ and 4" moments of this is
needed for the estimation of the 2™ order variance.
Nevertheless, this kind of information is typically unavailable.
For the majority of real-world engineering applications, using
the 2™ order mean and 1% order variance is seen to be
sufficient. The MMSIFs’ K; and K; mean and variance are
computed in this manner. Standard deviation (SD) can also be
computed as follows:

Standard Deviation (SD) = v/Variance
Moreover, the Coefficient of Variance (COV) is:

COV = SD/Mean
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Because of its intricate derivations and expressions, the
SOPT is challenging to integrate. Therefore, the Finite
Difference Method (FDM) can be used to calculate the first-

order sensitivity with respect to specified random
variables{%}. FDM is used to calculate the first-order
14

sensitivity as follows:

9Kn _ Kn(ej+8e;)—Kn(e;—8e;)
6_el- - 28e;

Where Jde;is a deviation from the mean values of the
random variables’ coefficient of variation, or the design
parameter. Mean-centered SOPT is used to analyze the mean
values as well as the standard deviation. The perturbation
technique’s shortcomings are (a) for the solution to be
obtained up to the required precision, the variability in
randomness should remain moderate, i.e., the Coefficient of
Variance (COV) < 0.2, where COV represents the relative

amount of uncertainty/ randomness. (b) Because the partial
derivativesZ:® 0 Kn

de; Oe;dej
higher computing cost, particularly in large stochastic
dimensions.

(48)

must be calculated, the approach has a

3. Results and Discussion
3.1. The Crack Plate at the Bimaterial Interface is under an
Uniaxial Tensile Force

Numerical studies are carried out on bimaterial interface
edge crack scenarios under uniaxial tensile loads, both with

and without void/inclusion, using XFEM. The geometric
dimensions, following Pathak et al. [16], are set at 200 mm x
100 mm (length x width) for all interfacial edge crack cases.

The XFEM is used to implement 1176 elements and 1250
nodes in total, with Q4-elements being used for numerical
simulations in all scenarios within the MATLAB code. Each
case study assesses plain strain conditions and evaluates the
NSIF - K, and Ky, accordingly.

K, =K, /o7 .a and K, =K, /o /7. a withuniaxial-

tensile stress

3.1.1. Problem for the Validation

The validation study uses XFEM to analyze a bimaterial
interface edge-cracked plate under uniaxial tensile stress. The
geometry remains consistent with the dimensions mentioned
earlier. This work sets an uniaxial tensile stress to c = 1 MPa.
Both materials have the same Poisson’s ratio (v = vi = vy), set
to 0.3.

The ratio of Young’s modulus E»/E; is taken as 2 and 100,
where E; = 205.8 MPa, following the parameters used by
Pathak et al. [16]. For the various ratios (/W = 0.2, 0.3, 0.4,
0.5, and 0.6) of an interface edge crack length, NSIFs K, and
Ky are calculated and compared to Pathak et al. [16] findings.
Figure 2 shows a problem domain, FE meshing for a
bimaterial interface edge crack problem.

4
—=— K, Pathak etal. (2012)
~@— K, 1250 nodes
== K 882 nodes
3_ —y— K, 1500 nodes
K, Pathak et al. (2012)
Ev —4— K, 1250 nodes
L2 2 - K, 882 nodes
4 2- —®— K, 1500 nodes
o
o
ree et o
N v
. et = 1 4
——> §
Z
L2
El' Vi O"_"\'————.\l
A\Y |
-1 T T T 1
l l l l l l 02 03 0.4 0.5 0.6
c a/W
(a) (b) (c)

Fig. 2 Uniaxial tensile loading on a bimaterial interface edge-crack, (a) Problem, (b) FE mesh, and (c) Mesh optimization.

The study of mesh optimization depicted in Figure 2(c)
reveals that, in comparison to the results obtained by Pathak
et al. [16], the NSIF values are lower when using 882 nodes
(21 x 42), but closer to the results obtained with 1250 nodes
(25 x 50). Additionally, the NSIFs results obtained with 1250
and 1500 nodes exhibit a very similar trend. Therefore, for this

52

study, 1250 nodes are considered the optimal mesh density.
The NSIFs K, and Ky, are found for the various ratios (a/W) of
crack length with E»/E; = 2 and compared with Pathak et al.
[16] results, as shown in Figure 3(a). It has been noted that the
results obtained closely match those of Pathak et al. [16].
Similarly, NSIFs K; and Ky, are found for the different a/W -
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crack length ratio with E»/E; = 100 and compared with Pathak
et al.’s [16] results, as illustrated in Figure 3(b). Again, the
results are found to be very close to those obtained by Pathak

——K Pathak et al. (2012)
—8—K, Present

@K, Pathak et al. (2012)
—¥—K , Present ;

Normalized K, K,

O

0.3

0.4 0.5

a/'W

0.2

et al. [16]. Figure 3 shows that NSIFs K| increase while NSIFs
Ky decrease by increasing a/W = 0.2, 0.3..., 0.6 subject to an
uniaxial tensile load.

—— K Pathak et al. (2012)
K, Present

K, Pathak et al. (2012)
—¥— K, Present

0.4 0.5 0.6

a/W

Fig. 3 NSIFs K, and Ky, for a bimaterial interface edge-crack subject to uniaxial tensile load, (a) E2/E:1 = 2, and (b) E2/E1 = 100.

The XFEM solution approach employed in Pathak et al.
[16] literature review is employed in this work. As depicted in
Figure 3, the results obtained in the present study show
improvement ranging from 7% to 9% for crack length ratios
(a/W) of 0.2 — 0.6 by implementing the Matlab analytical
code. Particularly for a/W= 0.6, significantly amended results
were found, indicating a notable difference compared to the
literature results.

Pathak et al. [16] compared their findings with those
obtained using the EFGM (Element Free Galerkin Method)
and results from other researchers. In the present work, the
XFEM was used, and the results were compared specifically
with the XFEM results found by Pathak et al. [16].

3.1.2. The Void/Inclusion is aligned with a Bimaterial
Interface Edge-Crack

With the bimaterial interface edge-crack in alignment with
a circular void/inclusion, a system is exposed to a uniaxial
tensile force using XFEM. The radius of the void/inclusion is
0.10W, where W is the plate’s width. When E2/E;1 = 2, the
material properties for the inclusion are E; x 10° MPa, and
when E»/E; = 100, they are E, x 10° MPa. As seen in Figure
4, the void or inclusion is positioned at L/2 and W/4.

The characteristics of a material, the uniaxial tensile stress,
and different interface edge-crack lengths — a/W align with
those employed in a validation problem study to assess the
NSIFs K; and Kj;. This study aims to examine the impact of an
inclusion or void oriented parallel to the interfacial edge crack
in situations where E»/E; = 2 and = 100

53

Inclusion/void

L/ E; v,

w

JLllllll

G
Fig. 4 The geometry of an inclusion or void that is aligned with a
bimaterial interface edge crack under uniaxial tensile load

Figure 5(a) shows that NSIF KI increases to 16% when
considered a void and decreases to 12% when considering that
inclusion. Conversely, the NSIF Ky, decreases nearly 2.1 times
to the void, increasing by nearly 2.8 times to inclusion, as the
crack length ratio (a/W) increases from 0.2 to 0.6 for E2/E; =
2. Similarly, in Figure 5(b), with an inclusion, the NSIF K; is
seen to fall to about 20%, while with a void, it rises to about
13%. The NSIF, on the other hand, is seen to behave
differently. Over the same a/W range, the NSIF K|, drops close
to 2.3 times to void, and increases close to 2.3 times to the
inclusion. Except for when E»/E; = 100, it is between 0.2 and
0.6. Notably, the NSIF K, increases with void and decreases
with inclusion, whereas the NSIF K;; exhibits the opposite
trend when compared to the scenario without a void or
inclusion. This variation is more pronounced at a/W = 0.5 and
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0.7. Furthermore, the disparity between the results of the three
cases is more pronounced for a/\WW=0.6 compared to a/W=0.2,
primarily due to the fact that the position of the void or

K, Without Void/Inclusion
4 -e—K, Void

~#~K_ Inclusion

~¥—K_ Without Void/Inclusion

34 [o-K, void
(~@—K_ Inclusion
oF
of 21
=] "
g g
s 1
£
i} d
“ 0 . ——t—
T
i |
T T T 1
0.2 0.3 0.4 0.5 0.6
a/W
(a)

inclusion remains the same for all three cases, and as the crack
length increases, the crack tip moves closer to the
void/inclusion, amplifying its influence.
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Fig. 5 When under uniaxial tensile load, the bimaterial interface edge-crack was aligned with the Kl and KI1 of the void/inclusion
NSIFs, (a) E2/E1 =2, (b) E2/E1 =100

3.2. Stochastic Analysis of Void/Inclusion is Aligned at a
Bimaterial Interface with an Edge Crack

In this scenario, Stochastic XFEM analysis is used to
examine an edge-crack under uniaxial tensile stress in the
form of a circular void or inclusion aligned with a bimaterial
interface. A void or an inclusion has a radius of 0.10W, and
the inclusion material has a Young’s modulus of E, x 10° MPa
for the case where Ex/E; = 2. The location of a void or an
inclusion is set at L/2 and W/4, as depicted in Figure 6. The
characteristics of a material, the uniaxial tensile stress, and
different interface edge-crack lengths (a/W) remain consistent
with those used in the validation problem study to analyze the
Coefficient of Variation (COV) and the mean of NSIFs K, and
K using XFEM and SOPT. This investigation aims to assess
the effect of a single void or an inclusion in line with the
interface edge-crack of the case where E»/E; = 2.

L2

b Bl "
Inclusion/void

L2 E;v;
W

PELET

G
Fig. 6 The geometry of a void or an inclusion aligned to an abimaterial
interface edge crack under the uniaxial tensile load
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This study investigates the impact of random system
parameters on Young’s modulus (E1). The fundamental
system random variable (bi) utilized for bimaterial interfacial
edge crack plates is defined as follows: by = E11. Figure 7 and
Table 1 depict the influence of the random variable E; on the
Coefficient of Variation (COV) and the mean of NSIFs. It is
investigated that the mean values of NSIF K increase by 16%
when considering a void, and decrease to 12% when

considering an inclusion. Conversely, the mean value of NSIF
K decreases to 2.1 times to void and increases to 2.8 times to
inclusion as the crack length ratio (a/W) increases from 0.2 to
0.6 for E»/E; = 2. Notably, NSIF K, increases with void and
decreases with inclusion, whereas NSIF K exhibits the
opposite trend compared to the scenario without a void or an
inclusion. This variance is more pronounced at /W = 0.5 and
0.6.

Table 1. How much does each random variable bi (where i = 1) affect the average value and the COV of Kl and Kll ina
bimaterial plate with an edge crack at the interface when the plate is under a uniaxial tensile load?

.WithOUt. Void Inclusion
RV | a/W | NSIF Void/Inclusion
Mean cov Mean Ccov Mean cov
0.2 Ki 1.2469 0.0141 1.2251 0.0139 1.2585 0.0138
K -0.0467 0.0004 -0.0609 0.0010 -0.0518 0.0017
0.3 Ki 1.4977 0.0189 1.4902 0.0186 1.4992 0.0187
Ki -0.0808 0.0028 -0.1170 0.0033 -0.0396 0.0023
Es 04 Ki 1.8893 0.0265 1.9041 0.0263 1.8697 0.0265
Ki -0.1190 0.0009 -0.1760 0.0057 0.0046 0.0038
05 Ki 2.5816 0.0377 2.6680 0.0371 2.4871 0.0372
Ki -0.1800 0.0076 -0.2740 0.0095 0.0885 0.0446
0.6 Ki 3.3947 0.0613 3.9568 0.0688 3.0074 0.0603
Ki -0.4300 0.0140 -0.9335 0.0121 0.3626 0.0122

4. Conclusion

The NSIF K, exhibits a notable increase in the presence
of a void and a decrease when an inclusion is introduced,
whereas NSIF K;; shows the opposite behavior, decreasing
with a void and increasing with an inclusion. These variations
are particularly pronounced in the case of an interface edge
crack at normalized crack lengths of a/W = 0.5 and 0.6,
highlighting the sensitivity of the SIFs to these geometrical
and material changes. When a stochastic approach is
employed, the mean values of NSIF K; and K; maintain a
consistent trend, and their Coefficients of Variation (COVs)
are observed to be close to zero, indicating minimal variability
and a high degree of reliability in the results under the given
conditions. To enhance the understanding of these behaviors,
further investigations should focus on a wider range of crack
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Appendix 1: Isotropic Bimaterial Interfaces

Sukumar et al. [12] used methods from Rice [4], Mohammadi S. [46], and other researchers, but they did not consider
the effects of contact and crack spreading. They created an approximate solution for cracks in materials that have the same
properties throughout. Deng [8] made the basic approximate solution for cracks that happen because of friction, focusing on
stationary and moving cracks along the boundary between two different materials in uniform solids, especially looking at the
material on top of the boundary (k = 1).

e ¢m=0Re(Kr)ie
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9 9 9
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For the substance over the interface (k = 1), where
3—v | "
K=[1+v plane stress A3
3 —4v plane strain
And the SIF K is,
K:KI+iKII (A4)
They are characterized similarly to the classical SIF,
kris
[Uyy + iaxy]r—ﬂ) = (A5)
6=0 2nr
K and the rate of energy release can be connected by,
1 |K|? 1 K?+K§
| I - 1 + 11 (A6)

- ﬁcosh(ns) E'2 cosh(me)
Where each material’s effective Young’s modulus E;, (k = 1, 2) defines the equivalent bimaterial elastic modulus, or E*?

E Plane Stress
"= E
E [ Plane Strain (A7)
1—v2
2 1 1
— ==+—=
E2 E E, (A8)
The oscillation index, or ¢, is described as
_ 1 ] <1 — B)
a1+ (A9)
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Whereby Dundurs [1969] defines the second Dunder parameter- 3,
B = pr(ky — 1) — pp (kg — 1)
prCky + 1) + pp (kg + 1) (A10)

By substituting —ex for ex, investigation - ALl and A2 may be applied to a point in the lower half plane.

The angle of phase w, measured r away from the crack tip, is another significant measure used in defining interfacial
fracture.

Im(Kr)

lp = tan_l e ——

Re(Kri€)

According to Sukumar et al. [12], the angle of phase w represents the shear proportion of normal traction forces at a
distance r away from the crack tip.

(A11)
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