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Abstract - Composite structures are extensively employed in various engineering applications to enhance strength and optimize 

overall performance through lightweight design. However, the complex manufacturing process of composite structures often 

introduces discontinuities like voids, holes, inclusions, cracks, delamination, and flaws. The interfacial cracks, particularly inter-

laminar debonding, interact with these discontinuities, posing a risk of failure in engineering components. Hence, studying Stress 

Intensity Factor (SIF) for various materials with interface cracks is important to avoid calamitous failures in various engineering 

applications. The stochastic approach is also applied by considering the random variables on material properties to obtain more 

accurate and optimized results. 
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1. Introduction 
Dissimilar or composite structures find extensive use in 

numerous engineering applications due to their enhanced 

strength-to-weight ratio, which improves overall performance. 

However, the complex manufacturing process of composite 

structures introduces various discontinuities like holes, voids, 

inclusions, cracks, delamination, and flaws.  

Among these, the interfacial cracks, specifically inter-

laminar debonding, interacting with the discontinuities, can 

possibly lead to failure in the different engineering 

components. Hence, it is important to study the Stress 

Intensity Factor (SIF) for various materials with interface 

cracks to prevent calamitous failures in various engineering 

applications. 

In recent studies, researchers have examined Mode-I and 

the mixed-mode SIFs using diverse methodologies. Williams 

[1] explored the oscillatory behavior of interfacial cracks in 

dissimilar isotropic materials. Using the CVM, Sih et al. [2] 

produced a thorough equation to calculate stress, 

displacement, and SIF at the crack tip.. Dundurs [3] introduced 

parameters specific to orthogonal materials. Rice [4], along 

with Woo and Wang [5], expanded research on bimaterial 

interfacial crack plates. Additionally, Miyazaki et al. [6] 

investigated SIFs using the boundary element method for the 

aforementioned issues. 

Chow et al. [7] present a finite element hybrid approach 

to determine displacements, strains, and the SIF near the 

interface crack-tip in various anisotropic media. Deng [8] 

performed asymptotic separation and delamination tests on 

composite panels. Lee et al. [9] investigated the SIF in the 

orthotropic materials under the dynamic loading conditions. 

Bjerkén and Persson [10] evaluated SIFs for various cases of 

bimaterial interfacial crack plates. Shukla et al. [11] analyzed 

the dynamic and static fracture failure at orthotropic and 

isotropic material interfaces using photo-elasticity. Sukumar 

et al. [12] presented that for cases of fractures at bimaterial 

interfaces, discontinuity enrichment functions were developed 

to determine the mixed-mode SIF. 

Bordas et al. [13] introduced an object-oriented enriched 

finite element code by XFEM to solve different discontinuity 

problems. Menk and Bordas [14] proposed functions for 

enriching anisotropic and polycrystalline biomaterials using 

the XFEM. Ashari et al. [15] presented an enrichment function 

for orthotropic biomaterials and investigated various cases 

using the XFEM. Pathak et al. [16] evaluated several cases of 

bimaterial interfacial crack plates using the element-free 

Galerkin approach and the XFEM. Sharma et al. [17] 

investigated Mixed-Mode SIFs for the bimaterial of 

piezoelectric with a sub-interfacial crack by XFEM. The 

CVMMM was used by Gao et al. [18] to study the SIF for the 

crack in different materials. Hu et al. [19] assessed the crack 
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problem with a line interface crack and established a novel 

approach to studying different cases of an inclined crack in a 

bimaterial. Akhondzadeh et al. [20] provided stress singularity 

numerical models for XFEM multi-material contact 

challenges. Wang et al. [21] introduced higher-order 

enrichment functions that are material-dependent in XFEM to 

study interface crack issues that are curved and linear. Fan et 

al. [22] presented the DDM to evaluate bimaterial interface 

crack problems. Kumar et al. [23] evaluated the influence of 

interface cracks in cemented acetabular cups. Xiao et al. [24] 

introduced the single-region Boundary Element Method to 

analyze slant isotropic planes and interfaces of an isotropic 

bimaterial. Chai et al. [25] analyzed the interfacial elliptic 

crack SIFs and suggested the relative displacement basic 

functions for bimaterials. 
 

The researchers have tackled the complexities of fracture 

mechanics, addressing different discontinuities such as cracks 

and interactions with inclusions/voids. Kaung et al. [26] 

utilized the Boundary Collocation Method to investigate crack 

emanation of holes in biomaterials. Sukumar et al. [27] 

presented enrichment functions of material interfaces in the 

XFEM using the level set method. Li et al. [28] evaluated 

Mode-I Stress Intensity Factors (SIFs) for cracks and 

inclusions by the Eshelby method. Belytschko et al. [29] 

presented XFEM’s Volterra dislocation model for 

discontinuity problems: determining Peach-Koehler forces in 

complex scenarios. Shedbale et al. [30] presented the central 

crack issue with inclusions and holes for fatigue-life 

evaluation utilizing XFEM.  

 

Natrajan et al. [31] and Sharma [32] studied various 

cracks with inclusion interactions to analyze SIFs by 

implementing the XFEM. Tafreshi [33] developed an 

algorithm to evaluate Jk-integrals for bimaterial interfacial 

cracks considering BECSS. Ebrahimi et al. [34] employed 

multi-pole methods (MPM) to simulate a crack with inclusion 

cases in brittle materials with separate crack dynamics. Yu et 

al. [35] assessed strong weak discontinuities by XFEM and 

using local approaches. Ismail et al. [36] examined SIF with 

numerous cracks at junctions in bimaterial plates. The Author 

presented curved interfacial modeling with element 

partitioning-free for the holes using XFEM.  

 

Lal et al. [37] investigated an edge crack isotropic 

problem with voids and inclusions using various loading 

scenarios using the XFEM. The Author used XFEM to assess 

a variety of crack-void/inclusion interaction problems using 

Object-Oriented Programming (OOP). The Author explored 

interactions of various discontinuities in orthotropic plates 

through XFEM. Lal et al. [38] and Lal and Palekar [39] 

investigated laminate composite problems using stochastic 

XFEM with SOPT and MCS, considering random parameters. 

Khatri and Lal [40, 41] evaluated MMSIF, the corresponding 

Coefficients Of Variation (COV), and the crack propagation 

behavior for plates with the crack and hole subjected to 

various loading conditions using stochastic XFEM with 

SOPT. 

 

Wang et al. [45] present an improved peridynamics 

technique for simulating interfacial and sub-interfacial crack 

development in bimaterials, which successfully addresses 

singularity and mesh-dependency problems. Numerical data 

accurately match analytical and XFEM benchmarks, proving 

the model’s ability to forecast crack initiation and propagation 

routes reliably. R Nikhil et al. [46] study uses a fracture model 

based on instability to forecast crack initiation in modified 

9Cr–1Mo steel, taking into account the influence of void 

nucleation and growth. Ping Li et al. [47] present a novel 

strength–energy criterion for bimaterial interface crack 

propagation in order to increase prediction accuracy. Its 

efficiency over conventional methods is demonstrated by 

numerical and experimental validation. Maria A. and 

Vladislav [48] examine stress singularities in the generalized 

Comninou frictional contact model to gain insights into the 

behavior of interface cracks in anisotropic bimaterials. Palekar 

et al. [49] used the stochastic XFEM in their work to examine 

fracture in orthotropic laminated plates with double-edge 

cracks. It quantifies the effects of uncertainties in material and 

geometry on stress intensity factors and fracture behavior. 

This literature review shows that researchers have 

devoted considerable attention to investigating various 

discontinuity interactions in composite materials using 

XFEM. They have employed diverse numerical methods to 

analyze Stress Intensity Factors (SIFs) considering 

interactions of cracks, voids, and inclusions in isotropic and 

orthotropic plates, as well as in bimaterials, addressing 

inclusions-voids with interface crack problems. This study 

aims to assess the Normalize Stress Intensity Factor (NSIF) 

using XFEM for an isotropic bimaterial problem involving 

interfacial edge cracks and void/inclusion interactions. A 

stochastic approach will also be applied, considering random 

variables for material properties. The primary focus of this 

study is to investigate NSIFs (KI and KII) and investigate the 

interaction of void/inclusions in interfacial edge crack 

isotropic bimaterials using XFEM, supplemented by a 

stochastic approach incorporating random material properties. 

The researcher has looked at the discontinuity issue with 

composite materials as well as a few applications of stochastic 

methods to analyzing SIF, but they have discovered very few 

combinations of them, discontinuities with bimaterial, and 

have used a stochastic approach. 

2. Mathematical Formulation 
The current study evaluates the NSIFs of the traction-free 

interface crack between two distinct media, taking into 

account the fundamental mathematical formulation of a 

bimaterial as reported by Asadpoure et al. [44] and 

Muhammadi S. [43]. In this study, the capricious bimaterial 

geometry is taken into consideration with different 

discontinuities such as void-inclusion, interfacial crack, under 
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traction force - ft, global Cartesian coordinate - (X, Y),  

displacement - u, crack-tip located at (x1, y1) – the local 

Cartesian coordinate axis, and the local polar coordinate (r, θ). 

Figure 1 shows the crack-tip enclosed by Γ, the Γ-contour, and 

A -internal area with capricious boundary conditions. 

 

 
Fig. 1 Capricious bimaterial geometry of any kind with an interface fracture 

2.1. An Isotropic Bimaterial Interface 

Deng presented the fundamental asymptotic evaluation 

for a propagating and stationary interfacial edge crack in the 

isotropic bimaterial [8]. Sukumar et al. [12] presented the 

asymptotic solutions for an isotropic bimaterial edge crack 

by adopting the techniques of Rice [4], Mohammadi S. [43], 

and ignoring the effect of contact and crack propagation. 

Appendix -1 contains a detailed derivation of it.  

 
2.2. XFEM Mathematical Formulation 

This work takes into account those proposed by 

Mohammadi S. [43] and Asadpoure et al. [44] presented a 

general equation and boundary condition for the fracture 

field. 

 

𝛻𝜎 + 𝑓𝑞 = 0      in     Ω   (1) 

       𝜎𝑛 = 𝑓𝑡            on     ᴦt    (2)                                                                                                             

       𝑢 = 𝑢̄               on     ᴦu      (3)               

       𝜎𝑛 = 0             on    ᴦc     (4)                     

 

  Where, Γt – external traction of the domain, Γu – 

displacement, Γc – the traction-free crack-boundary, σ-stress 

tensor, ft- external traction, and body force.                                                                                       

                                                                                                                                                      

XFEM can accurately predict the displacement at any 

position x inside the crack field by using the CFEM. And 

the enrichment hypothesis considers the effect of the crack 

tip and the crack surface,  

 

𝑢ℎ(𝑥) =∑ℕ𝑗(𝑥)𝑢𝑗

𝑛

𝑗=1

⏞      
𝐶𝐹𝐸𝑀

+∑ℕ𝑘(𝑥)𝛩(𝑥)𝑎𝑘

𝑐𝑟𝑘

𝑘=1

⏞          
𝑋𝐹𝐸𝑀𝑒𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡

 
(5) 

 

In CFEM, uj represents each node’s regular degree of 

freedom and the discontinuous enrichment function, while 

Nj and Nk represent the discontinuity enrichment for j and 

k. Mohammadi S. [43] and Asadpoure et al. [44] regard each 

parameter of the XFEM enrichment function as provided. 

 

According to Shedbale et al. [29] and Equation (5), void 

or inclusion for XFEM approximation is obtained for two-

dimensional media with varying discontinuities, such as 

cracks 

 

𝑢ℎ(𝑥) =∑ℕ𝑗(𝑥)𝑢𝑗

𝑛

𝑗=1

+∑ℕ𝑘(𝑥) (𝐻(𝜉(𝑥))

𝑐𝑓

𝑘=1

−𝐻(𝜉(𝑥𝑘))) 𝑎𝑘 

+∑ ℕ𝑙(𝑥) (∑ (ℚ𝑡
1(𝑥) − ℚ𝑡

1(𝑥𝑙))ℂ𝑙
𝑡1𝑐𝑡𝑝1

𝑡=1 )
𝑐𝑡𝑝1
𝑙=1 +

∑ ℕ𝑚(𝑥) (∑ (ℚ𝑡
2(𝑥) − ℚ𝑡

2(𝑥𝑚))ℂ𝑚
𝑡2𝑐𝑡𝑝2

𝑡=1 )
𝑐𝑡𝑝2
𝑚=1   (6) 
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           +∑ℕ𝑗(𝑥)

𝑛

𝑗=1

𝜙(𝑥)𝑑𝑗⏟    
𝑗∈𝑛𝑖𝑛𝑐𝑙

+∑ℕ𝑗(𝑥)

𝑛

𝑗=1

[𝜓(𝑥) − 𝜓(𝑥𝑗)]𝜈𝑗⏟          
𝑗∈𝑛𝑣𝑜𝑖𝑑

 

 

While cf - many nodes in the supported field for a crack 

surface, however not the crack tip, ctp1, ctp2 - number of 

nodes in the affected field connected to crack-tips 1 and 2, 

ak,ℂ𝒍
𝒕𝟏 ,ℂ𝒎

𝒕𝟐  - crack surface nodes and crack tip-1, 2  

additional degree vector of the freedom, respectively. 

ℚ𝑡
1,ℚ𝑡

2
 - enrichment function of the crack tip 1, 2, 

respectively. ctp1 or ctp2 nodes represent the enriched 

function. The Heaviside function H(ξ) enriches crack-

supported field nodes and is not part of either the ctp1 or 

ctp2. 

 

Points that are located on the crack’s positive side 

receive a +1, while all other points get -1, according to the 

𝐻(𝜉(𝑥)) following definition: 

 

𝐻(𝜉) = {
+1 𝜉 ∈ 𝛺+

−1 𝜉 ∈ 𝛺−
 (7) 

and, 

nincl = the group of nodes whose components are removed 

through inclusion 

void = the group of nodes whose components are removed 

through void 

dj = nodal enriched dof accompanying with 𝜙(𝑥); where, 

(𝑥) - level set function imitative, 

 

𝜙(𝑥) = ±𝑚𝑖𝑛‖𝑥 −𝑥𝛤‖   (8) 

where, xг - the closest point from point x in the 

interface       

νj = the ѱ(x) - related nodal enhanced dof;  

where ѱ(x) – Heavyside function, considered +1value 

for the nodes outside a hole, 0 value for the nodes inside a 

hole. 

 

2.2.1. Isotropic Interface Enrichment Function 

The following is how Sukumar et al. [12] developed the 

isotropic bimaterial, 
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
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cos sin
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
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(9) 

 
Note that because the oscillatory index (ω) is 

determined using the characteristics of isotropic 

materials, Equation (9) cannot be applied to an 

orthotropic-bimaterial.  

 

This is identical to the unidirectional orthotropic 

media’s enrichment function that Asadpoure et al. 

presented. [44]: 

 

 

[ℚ𝑙(𝑟, 𝜃)]𝑙=1
4

= [√𝑟 𝑐𝑜𝑠
𝜃1

2
√𝑔1(𝜃), √𝑟 𝑐𝑜𝑠

𝜃2

2
√𝑔2(𝜃), √𝑟 𝑠𝑖𝑛

𝜃1

2
√𝑔1(𝜃), √𝑟 𝑠𝑖𝑛

𝜃2

2
√𝑔2(𝜃)]          (10) 

 

𝑔𝑖(𝜃) = √𝑐𝑜𝑠
2 𝜃 +

𝑠𝑖𝑛2 𝜃

𝑝𝑗
2 ,      𝑗 = 1, 2         (11) 

 

𝜃𝑗 = 𝑡𝑔
−1 (

𝑦

𝑝𝑗𝑥
) = 𝑡𝑔−1 (

𝑡𝑔𝜃

𝑝𝑗
)        (12) 

 

 
According to Mohammadi S. [43], the generic 

formulation in global form for an orthotropic material by the 

XFEM is defined.    

 

𝐾 × 𝑈 = 𝐹           (13) 

 

Where K, as defined by Shedbale et al. [29], is the overall 

stiffness matrix and F is the force vector, 

𝐾𝑖𝑗
𝑒 =

[
 
 
 
 
 
 
𝐾𝑖𝑗
𝑢𝑢   𝐾𝑖𝑗

𝑢𝑎   𝐾𝑖𝑗
𝑢ℂ   𝐾𝑖𝑗

𝑢𝑑   𝐾𝑖𝑗
𝑢𝑣

𝐾𝑖𝑗
𝑎𝑢   𝐾𝑖𝑗

𝑎𝑎   𝐾𝑖𝑗
𝑎ℂ   𝐾𝑖𝑗

𝑎𝑑   𝐾𝑖𝑗
𝑎𝑣

𝐾𝑖𝑗
ℂ𝑢  𝐾𝑖𝑗

ℂ𝑎   𝐾𝑖𝑗
ℂℂ   𝐾𝑖𝑗

ℂ𝑑    𝐾𝑖𝑗
ℂ𝑣

𝐾𝑖𝑗
𝑑𝑢   𝐾𝑖𝑗

𝑑𝑎   𝐾𝑖𝑗
𝑑ℂ   𝐾𝑖𝑗

𝑑𝑑   𝐾𝑖𝑗
𝑑𝑣

𝐾𝑖𝑗
𝑣𝑢   𝐾𝑖𝑗

𝑣𝑎   𝐾𝑖𝑗
𝑣ℂ   𝐾𝑖𝑗

𝑣𝑑     𝐾𝑖𝑗
𝑣𝑣
]
 
 
 
 
 
 

 (14) 

 

𝐹𝑖
𝑒 = {𝐹𝑖

𝑢 𝐹𝑖
𝑎 𝐹𝑖

ℂ𝑡1 𝐹𝑖
ℂ𝑡2  𝐹𝑖

ℂ𝑡3   𝐹𝑖
ℂ𝑡4  𝐹𝑖

𝑑   𝐹𝑖
𝑣}
𝑇

 (15) 

  

U - nodal parameter vector  

 

𝑈 = {𝑢𝑎ℂ𝑡1ℂ𝑡2ℂ𝑡3ℂ𝑡4 𝑑 𝑣}
𝑇  (16) 
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Where 

 

𝐾𝑖𝑗
𝑟𝑠 = ∫ (𝐵𝑖

𝑟)𝑇𝐷𝐵𝑗
𝑠𝑑𝛺

𝛺𝑒
      (r, s= u, a, ℂ, d, v)     (17) 

 

𝑓𝑖
𝑢 = ∫ ℕ𝑖𝑓

𝑡𝑑𝛤 + ∫ ℕ𝑖𝑓
ℂ𝑡𝑑𝛺

𝛺𝑒𝛤𝑡

 

 

𝑓𝑖
𝑎 = ∫ ℕ𝑖𝐻𝑓

𝑡𝑑𝛤 + ∫ ℕ𝑖𝐻𝑓
ℂ𝑡𝑑𝛺

𝛺𝑒𝛤𝑡
          (18) 

 

𝑓𝑖
ℂ𝑡𝛼 = ∫ ℕ𝑖𝐹𝛼𝑓

𝑡𝑑𝛤 + ∫ ℕ𝑖𝐹𝛼𝑓
ℂ𝑡𝑑𝛺

𝛺𝑒𝛤𝑡
 ,            𝛼=1,2,...,8    

(19) 

 

𝑓𝑖
𝑑 = ∫ ℕ𝑖𝜙(𝑥)𝑡𝑑𝛤 + ∫ ℕ𝑖𝜙(𝑥)ℂ𝑑𝛺𝛺𝑒𝛤𝑡

  (20) 

 

𝑓𝑖
𝑣 = ∫ ℕ𝑖(𝜓(𝑥) − 𝜓(𝑥𝑖))𝑡𝑑𝛤 + ∫ ℕ𝑖(𝜓(𝑥) −𝛺𝑒𝛤𝑡

𝜓(𝑥𝑖))ℂ𝑑𝛺 (21) 

 

Obtained matrix, 

𝐵𝑖
𝑢 = [

ℕ𝑖,𝑥1 0

0 ℕ𝑖,𝑦1

ℕ𝑖,𝑦1 ℕ𝑖,𝑥1

]        (22) 

 

𝐵𝑖
𝑎 = [

(ℕ𝑖𝐻)𝑥1 0

0 (ℕ𝑖𝐻)𝑦1
(ℕ𝑖𝐻)𝑦1 (ℕ𝑖𝐻)𝑥1

]       (23) 

 

𝐵𝑖
ℂ𝑡 = [𝐵

𝑖

ℂ𝑡1 𝐵
𝑖

ℂ𝑡2 𝐵
𝑖

ℂ𝑡3 𝐵
𝑖

ℂ𝑡4]       (24) 

 

𝐵
𝑖

ℂ𝑡𝛼 = [

(ℕ𝑖𝐹𝛼)𝑥1 0

0 (ℕ𝑖𝐹𝛼)𝑦1
(ℕ𝑖𝐹𝛼)𝑦1 (ℕ𝑖𝐹𝛼)𝑥1

] ,                 𝛼=1,2,...,8  (25) 

 

𝐵𝑖
𝑑 = [

(ℕ𝑖  𝜙(𝑥)),𝑥 0

0 (ℕ𝑖  𝜙(𝑥)),𝑦
(ℕ𝑖  𝜙(𝑥)),𝑦 (ℕ𝑖  𝜙(𝑥)),𝑥

]

3×8

 (26) 

 

 

𝐵𝑖
𝑣 =

[
 
 
 
 
(ℕ𝑖(𝜓(𝑥) − 𝜓(𝑥𝑖))),𝑥 0

0 (ℕ𝑖(𝜓(𝑥) − 𝜓(𝑥𝑖))),𝑦

(ℕ𝑖(𝜓(𝑥) − 𝜓(𝑥𝑖))),𝑦 (ℕ𝑖(𝜓(𝑥) − 𝜓(𝑥𝑖))),𝑥]
 
 
 
 

3×8

 

(27) 

 

2.3. NMMSIF Mathematical Formulation 

Similar to Mohammadi S. [43], this study employs the 

integral domain technique to model a fracture in an orthotropic 

(homogeneous) material with integral. Evaluate the 

NMMSIFs KI and KII, 

 

𝐽 = ∫ (𝜎𝑖𝑗
𝜕𝑢𝑗

𝜕𝑥
−𝑊𝑠𝑡𝛥1𝑗)𝐴

𝜕𝑞

𝜕𝑥𝑗
𝑑𝐴             (28) 

 

The defined domain’s real and auxiliary conditions, 

taking into account two equality criteria. The J - integral, Js 

(through the effect of both circumstances), is determined. 

Furthermore, as seen in Figure 1, from the crack tip, where 

q=1, to the outer boundary of Γ, where q=0, the value of q 

changes continuously, see Appendix 1 for more. All additional 

displacement and stress fields are included in one. 

 

By combining the auxiliary and real conditions, the J-

integral is calculated like this: 

 

𝐽𝑆 = 𝐽𝐴𝑐𝑡 +   𝐽𝐴𝑢𝑥 +   𝑀 (29) 

 

Here, M found,    

 

𝑀 = ∫ [𝜎𝑖𝑗
𝜕𝑢𝑖

𝑎𝑢𝑥

𝜕𝑥
+ 𝜎𝑖𝑗

𝑎𝑢𝑥 𝜕𝑢𝑖

𝜕𝑥
−𝑊𝑠𝑡

𝑚𝛥1𝑗]
𝜕𝑞

𝜕𝑥𝑗
𝑑𝐴

𝐴
       (30) 

 

or linear elastic conditions, 

 

𝑊𝑠𝑡
𝑚 =

𝜎𝑖𝑗𝜀𝑖𝑗
𝑎𝑢𝑥+𝜎𝑖𝑗

𝑎𝑢𝑥𝜀𝑖𝑗

2
        (31) 

 

The crack tip, where FE analysis is becoming more 

precise, shares a similar route freedom as the original J-

integral and is used to calculate the M-integral. 

 

To calculate the SIF, Chow et al. [7] presented a 

relationship for subordinating the SIF to - integral. M-integral 

orthotropic bimaterial medium: 

 

𝐾𝑖 = 2∑ 𝑈𝑖𝑚𝑀(𝑢, 𝑢
𝑎𝑢𝑥(𝑚)),       2

𝑚=1 𝑖 = 1, 2     (32) 

 

The SIFs KI and KII are found by using two conditions 

(𝐾𝐼
𝑎𝑢𝑥 = 1, 𝐾𝐼𝐼

𝑎𝑢𝑥 = 0) , (𝐾𝐼𝐼
𝑎𝑢𝑥 = 1, 𝐾𝐼

𝑎𝑢𝑥 = 0) 
respectively, and 

 

𝑈 = [(𝐿1
−1 + 𝐿2

−1)−1(𝐼 + 𝛽2)]−1           (33) 

 

𝛽 = (𝐿1
−1 + 𝐿2

−1)−1(𝑆1𝐿1
−1 − 𝑆2𝐿2

−1)−1  (34) 

 

As Barnett and Lothe (1973) explain, the subscripts 1 and 

2 represent the top and bottom media, respectively, whereas S 

and L represent the corresponding 2 × 2. Deng [8] outlines the 

precise conditions for when a genuine Barnett Lothe tensor 

has no zero components in an orthotropic medium. 

𝑆21 = [
𝐶66(√𝐶11𝐶22−𝐶12)

𝐶22(𝐶12+2𝐶66+√𝐶11𝐶22)
]

1

2
,      𝑆12 = −√

𝐶22

𝐶11
𝑆21 (35) 

 

𝐿11 = (𝐶12 + √𝐶11𝐶22)𝑆21,      𝐿22 = −√
𝐶22
𝐶11

𝐿11     (36) 
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Where Cij is the abbreviated version of the 4th order elastic 

constant tensor 𝐶𝑖𝑗𝑘𝑙 = 𝑆𝑖𝑗𝑘
−1, each layer’s S and L components 

are identified separately. 

 

2.4. FOPT and SOPT by implementing the XFEM 

Stochastic XFEM extends deterministic XFEM by 

incorporating arbitrariness in various properties, including 

material, geometry, and loadings, through the Second-Order 

Perturbation Technique (SOPT) by expansion of the Taylor 

series. Compared to other stochastic methods, perturbation 

techniques are notably more efficient. In the engineering 

issues involving the random variables, the parameters’ 

Coefficients of Variation (COV) are typically slight [40, 41]. 

In this study, both the static and random components of 

MMSIFs (mixed–mode intensity factor) are expressed as 

functions of the random and static components or the first and 

for 1st and 2nd modes of SIF, respectively. This relationship 

can be illustrated as: 

 

,              (37) 

The MMSIFs 
 
value is subject to various random 

variables 𝑒𝑖,
 independent or dependent on each other, with the 

mean 𝜇𝑒𝑖and 
standard deviation𝜎𝑒𝑖 . In addition, the MMSIFs 

can be displayed using random variables  and  as: 

 

If, n =I and n=II,  

𝐾𝐼 = 𝐾𝐼(𝑒𝑖) ,   𝐾𝐼𝐼 = 𝐾𝐼𝐼(𝑒𝑖)               (38) 

Currently, the perturbation method or Taylor series 

expansion method is utilized to introduce randomness into the 

system as follows: 

𝐾 = 𝐾𝑛(𝜇𝑒𝑖) + ∑ 𝑒𝑖
𝑁
𝑖=1

𝜕𝐾𝑛

𝜕𝑒𝑖
+
1

2
∑ ∑ 𝑒𝑖𝑒𝑗

𝑁
𝑗=1

𝑁
𝑖=1

𝜕2𝐾𝑛

𝜕𝑒𝑖𝜕𝑒𝑗

    

       (39) 

Where 𝑒𝑖, 𝑒𝑗  - random variables are denoted 

with (𝑥𝑖 − 𝜇𝑒𝑖) and (𝑥𝑗 − 𝜇𝑒𝑗), respectively, 𝐾𝑛(𝜇𝑒𝑖)
 
- mean 

values of the MMSIFs using the input variable..  

The 𝐸[𝐾𝑛
′ ]mean of the first order of K is represented by, 

𝐸[𝐾𝑛
′ ] ≈ 𝐾𝑛(𝜇𝑒𝑖)

    
                             (40) 

Now, the 1st order variance of K is indicated by, 

𝑉𝑎𝑟(𝐾 ′) ≈ ∑ ∑
𝜕𝐾𝑛

𝜕𝑒𝑖

𝜕𝐾𝑛

𝜕𝑒𝑗

𝑛
𝑗=1

𝑛
𝑖=1 𝐶𝑂𝑉[𝑒𝑖, 𝑒𝑗]

 

               (41) 

 

in which  - total quantity of the random variable and 

𝐶𝑂𝑉[𝑒𝑖, 𝑒𝑗] = [𝐴][𝐴
′],                         (42) 

[𝐴] =

[
 
 
 
 

𝜎𝑒1
2 𝐶𝑂𝑉(𝑒1, 𝑒2) . . . . 𝐶𝑂𝑉(𝑒1, 𝑒𝑖)

𝐶𝑂𝑉(𝑒2, 𝑒1) 𝜎𝑒2
2 . . . . 𝐶𝑂𝑉(𝑒2, 𝑒𝑖)

. . . . . . . . . . . . . . . .
𝐶𝑂𝑉(𝑒𝑖 , 𝑒2) 𝐶𝑂𝑉(𝑒𝑖, 𝑒2) . . . . 𝜎𝑒𝑖

2
]
 
 
 
 

  43) 

And [𝐴′] =

[
 
 
 
1 𝜌𝑒1,𝑒2 . . . 𝜌𝑒1,𝑒𝑖

𝜌𝑒2,𝑒1 1 . . . 𝜌𝑒2,𝑒𝑖
. . . . . . . . . . . .
𝜌𝑒𝑖,𝑒1 𝜌𝑒𝑖,𝑒1 . . . 1 ]

 
 
 

  

   (44) 

 

Where and a are the random variables’ 

associated coefficient matrices and standard deviation, 

respectively. Furthermore, 

𝜎𝑒1 ,  𝜎𝑒2 , . . . , 𝜎𝑒𝑖 = 𝐶𝑂𝑉(𝑒𝑖 , 𝑒𝑗) 𝐾𝑛(𝜇𝑒1 ,  𝜇𝑒2 , . . . . , 𝜇𝑒𝑖) and    

 
,

,

.i j

i j

i j

e e

e e

COV e e


 


  

                        (45) 

 

Where, 𝐶𝑂𝑉(𝑒𝑖 , 𝑒𝑗) for uncorrelated random variables, 

the relationship between the random variable and its values is 

set to be zero. On the other hand, 𝜌𝑒𝑖,𝑒𝑗  for the interrelated 

random variable, any value of the COC- coefficient of 

correlation can be assumed. 

Using a higher-order term in the Taylor series expansion 

of 𝐾𝑛(𝑒𝑖) can help get a better estimate of the average and 

spread of MMSIFs 𝐾. The second-order mean of MMSIFs 𝐾 

is obtained by using the SOPT method, which is a second-

order perturbation technique: 

𝐸[𝐾 ′′] = 𝐾𝑛(𝜇𝑒𝑖) +
1

2
𝑉𝑎𝑟{𝐾𝑛}          (46) 

 

And the response’s 𝐸[𝐾𝑛
′′]

 
matching second-order 

variance matrix, which is displayed as follows, is equivalent 

to the 1st order matrix of variance provided in Equation (40): 

𝑉𝑎𝑟{𝐾 ′′} = 𝑉𝑎𝑟{𝐾 ′}                  (47) 

The information about the 3rd and 4th moments of this is 

needed for the estimation of the 2nd order variance. 

Nevertheless, this kind of information is typically unavailable. 

For the majority of real-world engineering applications, using 

the 2nd order mean and 1st order variance is seen to be 

sufficient. The MMSIFs’ KI and KII mean and variance are 

computed in this manner. Standard deviation (SD) can also be 

computed as follows: 

Standard Deviation (SD) = √Variance 

Moreover, the Coefficient of Variance (COV) is: 

 

COV = SD/Mean 

( )nK f K
mod

mod

I for e I
n

II for e II


 



nK

IK IIK

 , 1,2,...,i j N

n

 A
'A  
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Because of its intricate derivations and expressions, the 

SOPT is challenging to integrate. Therefore, the Finite 

Difference Method (FDM) can be used to calculate the first-

order sensitivity with respect to specified random 

variables{
𝜕𝐾𝑛

𝜕𝑒𝑖
𝑅}. FDM is used to calculate the first-order 

sensitivity as follows: 

 
𝜕𝐾𝑛

𝜕𝑒𝑖
=

𝐾𝑛(𝑒𝑖+𝛿𝑒𝑖)−𝐾𝑛(𝑒𝑖−𝛿𝑒𝑖)

2𝛿𝑒𝑖
 

                (48)  
 

Where 𝜕𝑒𝑖is a deviation from the mean values of the 

random variables’ coefficient of variation, or the design 

parameter. Mean-centered SOPT is used to analyze the mean 

values as well as the standard deviation. The perturbation 

technique’s shortcomings are (a) for the solution to be 

obtained up to the required precision, the variability in 

randomness should remain moderate, i.e., the Coefficient of 

Variance (COV) < 0.2, where COV represents the relative 

amount of uncertainty/ randomness. (b) Because the partial 

derivatives
𝜕𝐾𝑛

𝜕𝑒𝑖
 
𝜕2𝐾𝑛

𝜕𝑒𝑖𝜕𝑒𝑗
 must be calculated, the approach has a 

higher computing cost, particularly in large stochastic 

dimensions.  

3. Results and Discussion  
3.1. The Crack Plate at the Bimaterial Interface is under an 

Uniaxial Tensile Force  

Numerical studies are carried out on bimaterial interface 

edge crack scenarios under uniaxial tensile loads, both with 

and without void/inclusion, using XFEM. The geometric 

dimensions, following Pathak et al. [16], are set at 200 mm × 

100 mm (length × width) for all interfacial edge crack cases.  

The XFEM is used to implement 1176 elements and 1250 

nodes in total, with Q4-elements being used for numerical 

simulations in all scenarios within the MATLAB code. Each 

case study assesses plain strain conditions and evaluates the 

NSIF - KI and KII accordingly. 

 and   with uniaxial-

tensile stress  

3.1.1. Problem for the Validation   

The validation study uses XFEM to analyze a bimaterial 

interface edge-cracked plate under uniaxial tensile stress. The 

geometry remains consistent with the dimensions mentioned 

earlier. This work sets an uniaxial tensile stress to σ = 1 MPa. 

Both materials have the same Poisson’s ratio (ν = ν1 = ν2), set 

to 0.3.  

The ratio of Young’s modulus E2/E1 is taken as 2 and 100, 

where E1 = 205.8 MPa, following the parameters used by 

Pathak et al. [16]. For the various ratios (a/W = 0.2, 0.3, 0.4, 

0.5, and 0.6) of an interface edge crack length, NSIFs KI and 

KII are calculated and compared to Pathak et al. [16] findings. 

Figure 2 shows a problem domain, FE meshing for a 

bimaterial interface edge crack problem. 

          
(a)                                (b)                                                                (c) 

Fig. 2 Uniaxial tensile loading on a bimaterial interface edge-crack, (a) Problem, (b) FE mesh, and (c) Mesh optimization. 

 
The study of mesh optimization depicted in Figure 2(c) 

reveals that, in comparison to the results obtained by Pathak 

et al. [16], the NSIF values are lower when using 882 nodes 

(21 x 42), but closer to the results obtained with 1250 nodes 

(25 x 50). Additionally, the NSIFs results obtained with 1250 

and 1500 nodes exhibit a very similar trend. Therefore, for this 

study, 1250 nodes are considered the optimal mesh density. 

The NSIFs KI and KII are found for the various ratios (a/W) of 

crack length with E2/E1 = 2 and compared with Pathak et al. 

[16] results, as shown in Figure 3(a). It has been noted that the 

results obtained closely match those of Pathak et al. [16]. 

Similarly, NSIFs KI and KII are found for the different a/W - 

 .I IK K a  .  II IIK K a 
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crack length ratio with E2/E1 = 100 and compared with Pathak 

et al.’s [16] results, as illustrated in Figure 3(b). Again, the 

results are found to be very close to those obtained by Pathak 

et al. [16]. Figure 3 shows that NSIFs KI increase while NSIFs 

KII decrease by increasing a/W = 0.2, 0.3…, 0.6 subject to an 

uniaxial tensile load.

   
Fig. 3 NSIFs KI and KII for a bimaterial interface edge-crack subject to uniaxial tensile load, (a) E2/E1 = 2, and (b) E2/E1 = 100. 

 

The XFEM solution approach employed in Pathak et al. 

[16] literature review is employed in this work. As depicted in 

Figure 3, the results obtained in the present study show 

improvement ranging from 7% to 9% for crack length ratios 

(a/W) of 0.2 – 0.6 by implementing the Matlab analytical 

code. Particularly for a/W= 0.6, significantly amended results 

were found, indicating a notable difference compared to the 

literature results.  

Pathak et al. [16] compared their findings with those 

obtained using the EFGM (Element Free Galerkin Method) 

and results from other researchers. In the present work, the 

XFEM was used, and the results were compared specifically 

with the XFEM results found by Pathak et al. [16]. 

 

3.1.2. The Void/Inclusion is aligned with a Bimaterial 

Interface Edge-Crack 

With the bimaterial interface edge-crack in alignment with 

a circular void/inclusion, a system is exposed to a uniaxial 

tensile force using XFEM. The radius of the void/inclusion is 

0.10W, where W is the plate’s width. When E2/E1 = 2, the 

material properties for the inclusion are E2 × 103 MPa, and 

when E2/E1 = 100, they are E2 × 105 MPa. As seen in Figure 

4, the void or inclusion is positioned at L/2 and W/4.  

The characteristics of a material, the uniaxial tensile stress, 

and different interface edge-crack lengths – a/W align with 

those employed in a validation problem study to assess the 

NSIFs KI and KII. This study aims to examine the impact of an 

inclusion or void oriented parallel to the interfacial edge crack 

in situations where E2/E1 = 2 and = 100 

 
Fig. 4 The geometry of an inclusion or void that is aligned with a 

bimaterial interface edge crack under uniaxial tensile load 

Figure 5(a) shows that NSIF KI increases to 16% when 

considered a void and decreases to 12% when considering that 

inclusion. Conversely, the NSIF KII decreases nearly 2.1 times 

to the void, increasing by nearly 2.8 times to inclusion, as the 

crack length ratio (a/W) increases from 0.2 to 0.6 for E2/E1 = 

2. Similarly, in Figure 5(b), with an inclusion, the NSIF KI is 

seen to fall to about 20%, while with a void, it rises to about 

13%. The NSIF, on the other hand, is seen to behave 

differently. Over the same a/W range, the NSIF KII drops close 

to 2.3 times to void, and increases close to 2.3 times to the 

inclusion. Except for when E2/E1 = 100, it is between 0.2 and 

0.6. Notably, the NSIF KI increases with void and decreases 

with inclusion, whereas the NSIF KII exhibits the opposite 

trend when compared to the scenario without a void or 

inclusion. This variation is more pronounced at a/W = 0.5 and 
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0.7. Furthermore, the disparity between the results of the three 

cases is more pronounced for a/W=0.6 compared to a/W=0.2, 

primarily due to the fact that the position of the void or 

inclusion remains the same for all three cases, and as the crack 

length increases, the crack tip moves closer to the 

void/inclusion, amplifying its influence.

  
(a)                                                                                         (b) 

Fig. 5 When under uniaxial tensile load, the bimaterial interface edge-crack was aligned with the KI and KII of the void/inclusion 

NSIFs, (a) E2/E1 = 2,  (b) E2/E1 = 100

 
3.2. Stochastic Analysis of Void/Inclusion is Aligned at a 

Bimaterial Interface with an Edge Crack 

In this scenario, Stochastic XFEM analysis is used to 

examine an edge-crack under uniaxial tensile stress in the 

form of a circular void or inclusion aligned with a bimaterial 

interface. A void or an inclusion has a radius of 0.10W, and 

the inclusion material has a Young’s modulus of E2 × 103 MPa 

for the case where E2/E1 = 2. The location of a void or an 

inclusion is set at L/2 and W/4, as depicted in Figure 6. The 

characteristics of a material, the uniaxial tensile stress, and 

different interface edge-crack lengths (a/W) remain consistent 

with those used in the validation problem study to analyze the 

Coefficient of Variation (COV) and the mean of NSIFs KI and 

KII using XFEM and SOPT. This investigation aims to assess 

the effect of a single void or an inclusion in line with the 

interface edge-crack of the case where E2/E1 = 2. 

 
Fig. 6 The geometry of a void or an inclusion aligned to an abimaterial 

interface edge crack under the uniaxial tensile load 

 
(a) 

 
(b) 

Fig. 7 NSIFs KI and KII for a crack at the edge of a bimaterial 

interface, either in a void or an inclusion, when the material is 

subjected to uniaxial tensile stress, (a) E2/E1 = 2, (b) E2/E1 = 100. 



M B Vaghela et al. / IJME, 12(10), 46-59, 2025 

55 

This study investigates the impact of random system 

parameters on Young’s modulus (E1). The fundamental 

system random variable (bi) utilized for bimaterial interfacial 

edge crack plates is defined as follows: b1 = E11. Figure 7 and 

Table 1 depict the influence of the random variable E1 on the 

Coefficient of Variation (COV) and the mean of NSIFs. It is 

investigated that the mean values of NSIF KI increase by 16% 

when considering a void, and decrease to 12% when 

considering an inclusion. Conversely, the mean value of NSIF 

KII decreases to 2.1 times to void and increases to 2.8 times to 

inclusion as the crack length ratio (a/W) increases from 0.2 to 

0.6 for E2/E1 = 2. Notably, NSIF KI increases with void and 

decreases with inclusion, whereas NSIF KII exhibits the 

opposite trend compared to the scenario without a void or an 

inclusion. This variance is more pronounced at a/W = 0.5 and 

0.6. 

 
 

Table 1. How much does each random variable bi (where i = 1) affect the average value and the COV of KI and KII in a 

bimaterial plate with an edge crack at the interface when the plate is under a uniaxial tensile load? 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Conclusion 
The NSIF KI exhibits a notable increase in the presence 

of a void and a decrease when an inclusion is introduced, 

whereas NSIF KII  shows the opposite behavior, decreasing 

with a void and increasing with an inclusion. These variations 

are particularly pronounced in the case of an interface edge 

crack at normalized crack lengths of a/W = 0.5 and 0.6, 

highlighting the sensitivity of the SIFs to these geometrical 

and material changes. When a stochastic approach is 

employed, the mean values of NSIF KI and KII maintain a 

consistent trend, and their Coefficients of Variation (COVs) 

are observed to be close to zero, indicating minimal variability 

and a high degree of reliability in the results under the given 

conditions. To enhance the understanding of these behaviors, 

further investigations should focus on a wider range of crack 

geometries, material combinations, and loading conditions. 

Incorporating three-dimensional models and experimental 

validation would strengthen the reliability of these 

findings.The study is limited to specific interface 

configurations and assumes idealized conditions, which may 

not fully capture complexities in real-world applications. The 

stochastic approach, while effective, may require refinement 

to account for nonlinear interactions and higher-order effects. 

The findings offer insights into how cracks behave in 

uncertain conditions, which helps with material selection, 

structural design, and reliability evaluation. In engineering 

applications, this method promotes composite and bimaterial 

systems that are more secure, resilient, and resistant to 

damage.
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RV a/W NSIF 

Without 

Void/Inclusion 
Void Inclusion 

Mean COV Mean COV Mean COV 

E1 

0.2 
KI 1.2469 0.0141 1.2251 0.0139 1.2585 0.0138 

KII -0.0467 0.0004 -0.0609 0.0010 -0.0518 0.0017 

0.3 
KI 1.4977 0.0189 1.4902 0.0186 1.4992 0.0187 

KII -0.0808 0.0028 -0.1170 0.0033 -0.0396 0.0023 

0.4 
KI 1.8893 0.0265 1.9041 0.0263 1.8697 0.0265 

KII -0.1190 0.0009 -0.1760 0.0057 0.0046 0.0038 

0.5 
KI 2.5816 0.0377 2.6680 0.0371 2.4871 0.0372 

KII -0.1800 0.0076 -0.2740 0.0095 0.0885 0.0446 

0.6 
KI 3.3947 0.0613 3.9568 0.0688 3.0074 0.0603 
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Appendix 1: Isotropic Bimaterial Interfaces 

Sukumar et al. [12] used methods from Rice [4], Mohammadi S. [46], and other researchers, but they did not consider 

the effects of contact and crack spreading. They created an approximate solution for cracks in materials that have the same 

properties throughout. Deng [8] made the basic approximate solution for cracks that happen because of friction, focusing on 

stationary and moving cracks along the boundary between two different materials in uniform solids, especially looking at the 

material on top of the boundary (k = 1).  
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𝑢𝑦 =
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(A2) 

For the substance over the interface (k = 1), where 

 

𝜅 = {

3 − 𝜈

1 + 𝜈
       plane stress

3 − 4𝜈      plane strain
 

(A3) 

And the SIF K is,
 

𝐾̄ = 𝐾𝐼 + 𝑖𝐾𝐼𝐼  (A4) 

They are characterized similarly to the classical SIF, 

[𝜎𝑦𝑦 + 𝑖𝜎𝑥𝑦]𝑟→0
𝜃=0

=
𝐾̄𝑟𝑖𝜀

√2𝜋𝑟 
(A5) 

K and the rate of energy release can be connected by, 

𝐺 =
1
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(A6) 

Where each material’s effective Young’s modulus 𝐸𝑘
′  (k = 1, 2) defines the equivalent bimaterial elastic modulus, or E12 

𝐸′ = {
    𝐸           Plane Stress
𝐸

1 − 𝜈2
        Plane Strain 

(A7) 

2

𝐸12
=
1

𝐸1
′
+
1

𝐸2
′  (A8) 

The oscillation index, or ε, is described as
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2𝜋
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1 + 𝛽
)

 (A9) 
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Whereby Dundurs [1969] defines the second Dunder parameter- β,  

𝛽 =
𝜇1(𝑘2 − 1) − 𝜇2(𝑘1 − 1)

𝜇1(𝑘2 + 1) + 𝜇2(𝑘1 + 1) (A10) 

By substituting –επ for επ, investigation - A1 and A2  may be applied to a point in the lower half plane. 

The angle of phase ψ, measured r away from the crack tip, is another significant measure used in defining interfacial 

fracture. 

𝜓 = 𝑡𝑎𝑛−1 [
𝑙𝑚(𝐾̄𝑟𝑖𝜀)

𝑅𝑒(𝐾̄𝑟𝑖𝜀)
]
 

(A11) 

According to Sukumar et al. [12], the angle of phase ψ represents the shear proportion of normal traction forces at a 

distance r away from the crack tip. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


