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Abstract - Resistance Spot Welding (RSW) continues to be a cornerstone of modern manufacturing, predominantly in the 

automobile industry. This comprehensive review examines recent advancements in RSW technology, focusing on recent 

developments in RSW. Integrating advanced materials, such as cutting-edge High-Strength Steel (HSS) and lightweight alloys, 

has necessitated significant innovations in welding processes and quality control. This review critically analyzes progress in 

joining dissimilar materials, optimizing process parameters, and understanding complex microstructural evolution in weld zones. 

Emerging technologies, including machine learning-based predictive models and real-time monitoring systems, are reshaping 

quality assurance in RSW. By synthesizing findings from over 100 recent studies, this article provides a holistic view of the current 

state of RSW technology and identifies key areas for future research. The ongoing evolution of RSW underscores its enduring 

relevance in an era of rapid technological change and increasingly demanding manufacturing requirements. 

 

Keywords - Resistance Spot Welding (RSW), Dissimilar materials joining, Process optimization, Process parameters, 

Microstructure, High-strength steels, Hybrid joints. 

 

1. Introduction 
Resistance Spot Welding (RSW) has undergone 

substantial advancements throughout time, making it a highly 

prevalent approach for metal joining in diverse industries 

owing to its effectiveness, rapidity, and dependability [1]. 

These techniques utilize electrical resistance to produce heat 

and then join metal sheets together by fusion [2]. With the 

progression of technology, the techniques used in RSW have 

gotten more advanced, resulting in enhanced welding 

precision and broader utilization.  

The history and introduction of RSW reveal a rich 

tapestry of research endeavors focused on comprehending and 

enhancing this commonly used metal joining method. A 

chronological exploration of key studies provides insights into 

the evolution of RSW techniques and their diverse 

applications across different materials. RSW, a prominent 

method in various industries, including automotive and 

manufacturing, has undergone significant advancements [3].  

1.1. Principal and Working 

The RSW process is extensively applied in the industry to 

connect sheets in the automotive and aerospace sectors [6]. 

RSW has many advantages over other welding processes, such 

as inexpensive equipment setup and easy control over the 

process, and it can also be performed by unskilled workers [5]. 

Due to these advantages, it is widely used in the 

manufacturing process. Spot, projection and seam welding are 

three resistance welding processes in which the metal gets 

fused at the point where force and current are applied to the 

workpiece [7]. A common problem manufacturers face is the 

deterioration of weld quality and strength due to improper 

selection of levels of processing parameters [8].  

Hence, establishing the relationship between the strength 

and quality of the weld and the levels of processing parameters 

is very important in industrial applications. In RSW, heat is 

used to fuse the work parts of metal. Current flows across the 

two workpieces due to which electrical resistance is set up and 

heat is generated.  

In RSW, two metalwork parts are joined together by 

applying electric current and pressure in the zone to be 

welded. The difference between RSW and arc welding is that 

RSW doesn’t need any filler metal addition to the weld area.  

Spot welding is influenced by four key factors: 

a. The amount of current passing through the workpiece. 

b. The pressure applied by the electrodes on the workpiece. 

c. The duration of current flow through the workpiece. 

d. The contact area of the electrode tip with the workpiece.  

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Fig. 1 Resistance Spot Welding (RSW) working 

During the welding process, electric current is directed 

through the electrodes and subsequently transmitted to the 

workpieces. The leg pedal is employed to apply force, 

effectively compressing the electrodes onto the workpieces. 

For optimal weld strength and quality, it is essential to apply 

a precise amount of pressure to the workpieces.  

The electric current flows from the electrodes to the 

workpieces throughout the welding operation. The leg pedal 

delivers the necessary welding force, and it is critical to apply 

the correct pressure to the workpieces to ensure high-quality 

welds. The electric current travels from the electrode tips to 

the designated metal workpieces during welding, facilitating 

their fusion. Figure 1 shows the working of RSW. 

The resistance of the base metal to electrical current flow 

generates heat, which is confined to the area where the 

electrode tip contacts the weld area. Heat is produced while 

the welding force is maintained. During the holding stage, 

where pressure is still applied, the current is switched off, 

allowing the nugget to cool under pressure.  

The heat generated in spot welding primarily depends on 

the electric current, application duration, and the material's 

electrical resistance between the electrodes. The amount of 

heat produced is a function of current, time, and resistance. 

According to Joule's law, the following equation expresses the 

heat generated in Resistance Spot Welding (RSW). 

                     𝐻 = 𝐼2 × 𝑅 × 𝑡               (1) 

Where, 

H = Heat generated in joules 

I = Current (in amperes)  

R = Resistance (in ohms) 

t = Time to current flow (in seconds) 

 

1.2. Overview of RSW Techniques and Applications 

Conventional RSW uses copper electrodes to compress 

two or more metal sheets and pass an electric current through 

them. The resistance to the current flow generates heat, 

resulting in localized melting and fusion of the metal sheets. 

Due to its cost-effectiveness and speed, these methods are 

widely used in the automotive industry to join car body panels 

and fabricate chassis components.  

In the aerospace industry, it is utilized to assemble 

lightweight sheet metal components in aircraft. In 

manufacturing plants, RSW is commonly applied in the 

fabrication of appliances, enclosures, metal constructions, and 

the production of metal containers.  

Advanced RSW techniques, such as Pulsed RSW, use 

pulsed current during welding to allow greater control over 

heat generation and minimize thermal distortion. This method 

is ideal for joining lightweight materials like aluminium and 

high-strength alloys used in modern automotive designs. 

High-frequency RSW operates the welding current at a higher 

frequency, resulting in quicker energy transfer and reduced 

heat-affected zones. It is particularly useful for producing 

thin-walled components with minimal thermal distortion in 

the electronics industry.  

Micro RSW uses highly focused welding electrodes for 

precise and controlled welding in micro-scale applications, 

such as the assembly of miniature components like sensors 

and electronic devices in the electronics and microelectronics 

sectors. 

Robotically controlled RSW integrates robotic arms with 

RSW systems to enhance precision and enable complex 

welding patterns. This approach is applied in automated 

manufacturing processes to ensure uniformity and efficiency. 

Specialized RSW applications include joining dissimilar 

materials like steel and aluminium, which expands the use of 

hybrid material structures in various industries. Methods have 

also been developed to adapt to the unique properties of 

Advanced High-Strength Steels (AHSS) for contemporary 

lightweight and high-strength applications.  

Techniques to control the microstructure of the welded 

junction help achieve specific mechanical properties and 

improve overall performance. Additionally, integrating online 

monitoring and quality control systems is essential for real-

time quality control in industries prioritising precision and 

reliability. 
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This review critically analyzes progress in joining 

dissimilar materials, optimizing process parameters, and 

understanding complex microstructural evolution in weld 

zones. Emerging technologies, including machine learning-

based predictive models and real-time monitoring systems, are 

reshaping quality assurance in RSW. Novel hybrid techniques, 

such as laser-assisted and ultrasonic-assisted RSW, 

demonstrate promising results in overcoming traditional 

limitations.  

Persistent challenges, including liquid metal 

embrittlement in zinc-coated steels, are examined alongside 

proposed solutions. The review also explores the role of RSW 

in automotive lightweighting strategies and the production of 

electric vehicles [4, 5]. Overall, the studies demonstrate that 

the historical progression of RSW research has been consistent 

in the effort to comprehend, enhance, and introduce new ideas 

in the field of metal joining techniques.  

The works offered here provide a complete grasp of the 

problems and opportunities in the subject of RSW by 

exploring various materials, welding processes, and failure 

assessments. 

2. Literature Review  
RSW technologies have expanded to cater to the needs of 

various industries, including classic applications in 

automotive and industrial sectors to sophisticated procedures 

for joining diverse materials and microelectronics. The 

advancing methods remain crucial in contemporary 

manufacturing, aiding in creating robust, effective, and top-

notch metal structures for various uses.  

The literature on RSW covers a wide range of studies that 

investigate its uses and mechanics. Table 1 shows a detailed 

summary of recent research carried out in the field of RSW. 

2.1. Inferences from the Literature 

The literature study identifies various prominent research 

subjects and areas of interest in the field of RSW, with a 

specific emphasis on techniques, materials and related 

methods. The research interferences that have been identified 

can be summarised as follows: 

2.1.1. Process Optimization and Parameter Control 

Several studies have highlighted the significance of 

optimizing process parameters in RSW. These investigations 

explored the influence of many aspects on the quality of 

welds, such as nugget size, mechanical performance, and 

failure modes. The objective is to improve the effectiveness 

and dependability of the welding procedure by implementing 

accurate control and optimisation. 

 

2.1.2. Dissimilar Material Joining 

A substantial body of literature specifically examines the 

difficulties and progress made in the process of combining 

different elements.  

 

This research enhances the comprehension of the 

behaviour of dissimilar material welds by investigating 

techniques such as ultrasonic spot-welding and hybrid 

welding processes. They also provide crucial insights into 

these connections' microstructural characteristics and 

mechanical properties. 

 

 2.1.3. Quality Inspection and Monitoring 

Several studies have explored integrating machine 

learning and online inspection techniques to ensure the 

quality of RSW.  

 

The objective of these initiatives is to provide reliable 

techniques for continuously monitoring and ensuring the 

quality of products on manufacturing lines, hence minimising 

flaws and improving total productivity. 

 

2.1.4. Hybrid Welding Techniques 

 The literature survey encompasses investigations on 

hybrid welding methods, which involve the integration of RSW 

with other techniques, such as laser welding (Li et al., 2022) 

and ultrasonic spot welding (Rajalingam et al., 2023). These 

investigations examine the advantages of hybrid procedures, 

with the goal of attaining higher weld characteristics and 

tackling the difficulties linked to conventional welding 

methods. 

 

2.1.5. Microstructure and Mechanical Property Analysis 

 Several studies have investigated the microstructural 

features and mechanical behaviour of welds. Comprehending 

the relationship between process parameters, material qualities, 

and the final microstructure is essential for accurately 

predicting and enhancing the performance of welded joints.  

 

 Overall, these research interferences collectively 

contribute to enhancing the comprehension of welding 

processes, optimizing their parameters, and broadening their 

applications to satisfy the increasing requirements of diverse 

industries.  

 

Table 2 summarises the various aspects of the studies 

carried out on RSW, and Table 3 shows the types of 

investigations carried out on RSW.
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Table 1. Recent research on RSW with a summary of investigations 

Author (year) Investigations Materials Techniques Results Scope and Gap 

Aghajani et al. 

(2023) [9] 

Microstructure 

engineering of 

fusion zone 

Martensitic stainless 

steels 

RSW with Ni 

interlayer 

Role of Ni 

interlayer 

thickness 

Focused on 

specific steel type; 

gap in other 

materials. 

Alden et al. 

(2022) [1] 

Joints 

properties 
Aluminium and steel RSW 

Hybrid joints 

Characteristics 

Limited to specific 

material 

combinations. 

Al-hamdani 

(2022) [10] 

Effect of 

interlayer on 

joint properties 

Galvanized steel sheets 
RSW with Al-Cu 

foil interlayer 

Impact on 

failure modes 

and mechanical 

properties 

Specific focus on 

interlayer; gap in 

direct joining. 

Amini-Chelak 

et al. (2023) 

[11] 

Weldability of 

advanced HSS 

Fe66Cr16.5Ni14.1Si3.4 

steel 
RSW 

Optimization of 

welding 

parameters 

Limited to specific 

steel composition. 

Ariyanto et al. 

(2023) [12] 

Optimization of 

RSW 

parameters 

Dissimilar materials RSW 

Review of 

optimization 

techniques 

Broad scope: the 

gap in specific 

material 

combinations. 

Asati et al. 

(2022) [13] 

Comparison of 

joining 

techniques 

Dissimilar galvanized 

steel sheets 

Self-piercing 

riveting, RSW 

Comparative 

analysis of 

joining 

methods 

Limited to 

automotive-grade 

materials. 

Bachchhav et 

al.(2023) [14] 

Wear 

performance of 

electrode 

materials 

Cu–Cd, Cu–Be, Cu–

Cr–Zr 
RSW 

Wear 

characteristics 

of different 

electrodes 

Focused on 

electrode 

materials; gap in 

weld quality. 

Badkoobeh et 

al. (2023) [15] 

Phase 

evolutions and 

joint 

performance 

AISI 430 and AISI 321 

steels 
RSW 

Tensile-shear 

performance of 

dissimilar 

welds 

Limited to specific 

steel 

combinations. 

Baek et al. 

(2022) [2] 

Fatigue 

properties of 

lap joints 

Aluminum/HSS 
Resistance element 

welding 

Microstructural 

and 

geometrical 

influence on 

fatigue 

Focused on 

lightweight 

vehicles; gap in 

other applications. 

Bagali et al. 

(2022) [16] 

Optimization of 

RSW 

parameters 

Low-carbon steel sheet RSW 

Achieving 

desired spot 

size in shop 

floor 

environment 

Limited to specific 

steel types and 

applications. 

Balsaraf et al. 

(2022) [17] 

Mechanical 

characterization 

and 

optimization 

Multigrade AHSS RSW 

Review of 

characterization 

and 

optimization 

techniques 

Broad scope; gap 

in specific grade 

comparisons. 

Bamberg et al. 

(2022) [6] 

Improvement 

of RSW for Al-

Mg-Si alloys 

Al-Mg-Si alloys 
RSW with cladding 

technology 

Optical and 

mechanical 

characterization 

Specific focus on 

aluminum alloys. 

Başer (2023) 

[4] 

RSW of third-

generation 

automotive 

steels 

Zn-coated steels 
Mid-frequency 

direct current RSW 

Welding 

performance 

with new 

technology 

Limited to specific 

steel type and 

coating. 

Betiku et al. Improving Press-hardened steel RSW with in-situ Enhanced Focused on 
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(2022, 2023) 

[18, 19] 

mechanical 

performance 

and 

optimization of 

post-weld 

performance 

grain refinement mechanical 

properties 

specific steel type; 

gap in other 

materials. 

Bi et al. (2022) 

[20] 

Joint formation 

mechanism 

AA 5754 aluminum 

alloy 

Resistance butt spot 

welding 

Performance 

analysis of butt 

spot welding 

Limited to specific 

aluminum alloy. 

Butsykin et al. 

(2023) [21] 

Reliability of 

RSW control 
Not specified 

RSW with dynamic 

resistance 

monitoring 

Evaluation of 

on-line 

monitoring 

techniques 

Focused on control 

method; gap in 

material-specific 

applications. 

Chabok et al. 

(2022) [22] 

Fracture 

behavior 
Advanced HSS RSW 

New insights 

into fracture 

behavior 

Focused on 

specific steel type; 

gap in other 

materials. 

Chanh et al. 

(2022) [23] 

3D crack 

propagation 

Martensitic stainless 

steel 
RSW 

Experimental 

determination 

of crack 

propagation 

Limited to specific 

steel types. 

Chen et al. 

(2022a) [24] 

Nugget size 

prediction 

Al–Si-coated press-

hardened steel 
RSW 

Critical nugget 

size prediction 

model 

Specific to coated 

steel, gaps in 

uncoated 

materials. 

Chen et al. 

(2022b) [25] 

Post-weld 

tempering 
Q&P1180 steel 

RSW with 

tempering pulse 

Effect on 

microstructure 

and mechanical 

properties 

Limited to specific 

steel grade. 

Chen et al. 

(2022c) [26] 

Shearing 

strength 
Dissimilar steel plates RSW 

Effect of 

welding current 

and time on 

joint strength 

Focused on 

dissimilar steel 

gaps in similar 

materials. 

Chen et al. 

(2023) [27] 

Joint strength 

enhancement 
NiTi/304 stainless steel 

Ultrasonic spot 

welding 

Investigation of 

interlayer 

effects 

Focused on 

specific material 

combinations. 

Chudasama et 

al. (2022) [5] 

Welding 

parameter 

effects 

AISI 2205 DSS RSW 

Performance of 

spot welded 

joints 

Limited to specific 

steel grade and 

automotive 

applications. 

Dahmene et al. 

(2022) [28] 

Nondestructive 

testing 
Not specified RSW 

Monitoring of 

cracks in spot 

welds 

Focused on testing 

methods; gap in 

prevention 

strategies. 

Dai et al. 

(2022) [29] 

Online quality 

inspection 
Not specified RSW 

Quality 

inspection for 

automotive 

production 

Focused on 

automotive 

application; gap in 

other industries. 

Das et al. 

(2023) [30] 

Use of 

graphene 

interlayer 

CR210 steel 
RSW with 

graphene interlayer 

Microstructure 

and mechanical 

behavior 

Novel approach 

with specific 

material; gap in 

other interlayers. 

Delgado-

Pamanes et al. 

(2022) [31] 

RSW of 

galvanized 

HSLA steel 

Galvanized HSLA steel 

sheets 
RSW 

Experimental 

and numerical 

study 

Limited to specific 

steel types. 
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Deng et al. 

(2022) [32] 

Asymmetric 

nugget growth 
Aluminum 

RSW with multi-

ring domed 

electrodes 

Experimental 

study of nugget 

growth 

Focused on 

aluminum; gap in 

other materials. 

Deshmukh & 

Kharche (2023) 

[7] 

Processing 

conditions 

influence 

SS 316L sheet RSW 

Tensile 

strength and 

failure pattern 

Limited to specific 

stainless steel 

grades. 

Ding et al. 

(2022) [33] 

Tensile shear 

strength 

enhancement 

TWIP steel 

RSW, numerical 

and experimental 

methods 

Improvement 

strategies for 

TWIP steel 

Focused on 

specific steel 

types. 

Dong et al. 

(2023) [34] 

Internal 

oxidation layer 

role 

Zn-coated AHSS RSW 

Effect on liquid 

metal 

embrittlement 

Focused on coated 

AHSS. 

Dong et al. 

(2022a) [35] 

Zn penetration 

and grain 

boundary 

interaction 

QP980 steel RSW 

Coupled 

interaction 

study 

Limited to specific 

steel grade. 

Dong et al. 

(2022b) [36] 

Liquid metal 

embrittlement 

cracks 

Advanced HSS RSW 

Determination 

of crack 

existence 

Specific to AHSS, 

gaps in other steel 

types. 

Doruk et al. 

(2022) [37] 

Mechanical and 

fatigue 

behavior 

Dual-phase and TWIP 

steel 
RSW 

Joint 

performance 

comparison 

Focused on 

specific steel 

combinations. 

Ebrahimpour et 

al. (2023) [38] 

Welding 

parameters 

effect 

TRIP steel 
RSW, FEM 

analysis 

Nugget zone 

and HAZ 

geometry 

Limited to TRIP 

steel. 

Elitas & Erden 

(2023) [39] 

Welding 

parameters 

effect 

Non-alloyed steel 

(powder metallurgy) 
RSW 

Tensile 

properties and 

failure modes 

Limited to specific 

steel type; gap in 

alloyed steels. 

Elitas (2023) 

[40] 

Welding 

parameters 

effects 

DC01 steel RSW 

Tensile 

properties and 

failure modes 

Focused on 

specific steel 

grade. 

Eriksson (2023) 

[41] 

Joining 

dissimilar 

materials 

Ultra HSSand 

Aluminium 
Resistance Welding Not specified 

Focused on 

specific material 

combinations. 

Fakhri et al. 

(2022) [42] 

Comparative 

study 
Not specified Spot welding 

Mechanical 

properties 

comparison 

Broad scope; gap 

in material-

specific analysis. 

Ganjabi et al. 

(2023) [43] 

Defects effect 

on strength 
Not specified Spot welding 

Static and 

cyclic loading 

performance 

Focused on 

defects; gap in 

defect prevention. 

Ghanbari et al. 

(2022) [8] 

Fatigue 

behavior 

Ferrite-martensite dual-

phase steel, hybrid 

joints 

Spot welding 

Effects of 

welding 

parameters 

Limited to specific 

steel types. 

Shamsolhodaei 

et al. (2022) 

[44] 

Microstructural 

evolution 

NiTi shape memory 

alloy 
RSW 

Microstructure 

and mechanical 

properties 

Focused on 

specific alloy; gap 

in other memory 

alloys. 

Ghatei-

Kalashami et al. 

(2022b) [45] 

Failure 

behavior 
Advanced HSS RSW 

Surface 

condition with 

microstructure 

Limited to AHSS; 

gap in other steel 

types. 

Googarchin et 

al. (2022) [46] 

Plastic 

deformation 

effects 

Aluminum RSW 

Mechanical 

properties of 

automotive 

joints 

Focused on 

automotive 

applications. 

Guo et al. Electrode Mg/steel RSW Modeling of Limited to 
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(2022) [47] morphology 

effect 

electrode 

effects 

Mg/steel 

combination. 

Hagen et al. 

(2023) [48] 

Dissimilar 

material joining 
Not specified 

RSW with cold gas 

sprayed in inlayer 
Not specified 

Novel approach; 

gap in traditional 

methods. 

Hassan & Lafta 

(2023) [49] 

Electrode 

geometry and 

pre-heating 

Not specified RSW 
Welding 

strength 

Focused on 

specific 

parameters; gap in 

material effects. 

Hassoni et al. 

(2022) [50] 

Welding 

parameters 

effect 

316L RSW 

Mechanical 

properties and 

corrosion 

resistance 

Limited to specific 

steel grade. 

He et al. (2022) 

[51] 

Quality 

prediction and 

optimization 

Not specified 
RSW, Machine 

Learning 

Predictive 

modeling 

Broad scope; gap 

in material-

specific models. 

He et al. (2023) 

[52] 
Hybrid joining 

HSS and aluminum 

alloy 

Rivet plug laser 

welding 
Not specified 

Novel technique; 

gap in traditional 

methods. 

Hendrawan et 

al. (2023) [53] 

Zinc powder 

grain size effect 
Dissimilar metals RSW Not specified 

Focused on 

specific 

parameters; gap in 

other factors. 

Iyota et al. 

(2023a) [54] 

Dissimilar 

joining 

HSS and aluminum 

alloy 

RSW with shaped 

electrodes 
Not specified 

Limited to specific 

material 

combinations. 

Iyota et al. 

(2023b) [55] 

Convection in 

the molten 

zone 

Fe/Al RSW 
Convection 

behavior 

Focused on the 

specific 

phenomenon: a 

gap in the overall 

process. 

Jafari 

Vardanjani 

(2022) [56] 

Comparative 

study 
Not specified 

Resistance spot 

brazing vs RSW 

Technical 

aspects 

comparison 

Broad scope; gap 

in material-

specific analysis. 

Janardhan et al. 

(2022a) [57] 

Failure 

behavior 
Automotive steel sheets Spot welding 

Failure 

characteristics 

Focused on 

automotive steels. 

Janardhan et al. 

(2022b) [58] 

Failure 

mechanism 
DP600 steel RSW 

High cycle 

fatigue 

behavior 

Limited to specific 

steel grade. 

Janardhan et al. 

(2023) [59] 

Work 

hardening 

influence 

Dual-phase steel RSW 

Tensile and 

fatigue 

behavior 

Limited to specific 

steel types. 

Ji et al. (2022) 

[60] 

Welding 

temperature 

field and 

residual 

stresses 

Corrugated steel web 

girders 
Not specified 

Not provided in 

the abstract 

Focus on structural 

aspects of 

welding; gap in 

detailed 

temperature and 

stress analysis. 

Jia et al. (2023) 

[61] 

Microstructure 

and tensile 

shear properties 

9Cr oxide dispersion 

strengthened steel 
RSW 

Not provided in 

the abstract 

Investigate 

specialized steel 

gaps in 

comparison with 

other steel types. 

Jin et al. (2022) 

[62] 

Liquid Metal 

Embrittlement 
Zinc-coated steels RSW 

Effect of 

process 

Focuses on a 

specific welding 
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(LME) 

cracking 

parameters and 

nugget growth 

rate on LME 

cracking 

issue; gap in 

solutions to 

prevent LME. 

Jing et al. 

(2022) [63] 

Improving 

mechanical 

properties 

Q&P980 steel Multi-pulse RSW 

Improved 

mechanical 

properties 

through 

microstructure 

tailoring 

Explores advanced 

welding technique; 

gap in 

applicability to 

other steel types. 

Kar et al. 

(2023) [64] 

Effect of plate 

placement on 

nugget shape 

Dissimilar thickness 

automotive steel thin 

sheets 

RSW 

Influence of 

plate placement 

on weld quality 

Addresses 

practical welding 

issues, such as the 

gap in optimizing 

for various 

thickness 

combinations. 

Kumar et al. 

(2022) [65] 

Joining ultra-

thin foil to 

thick steel 

Inconel 718 and 410 

steel 

Flexible laser spot 

welding 

A potential 

substitute for 

RSW 

Explores 

alternative welding 

method; gap in 

large-scale 

applicability. 

Li et al. (2022) 

[66] 

Hot cracking 

phenomena 

6061/7075 dissimilar 

aluminum alloys 
RSW 

Numerical and 

experimental 

study results 

Focuses on 

aluminum alloys; 

gap in preventing 

hot cracking. 

Li et al. (2022) 

[67] 

Hybrid welding 

of dissimilar 

materials 

Aluminum to steel 
Hybrid resistance-

laser spot welding 

Microstructure 

and mechanical 

properties 

analysis 

Investigate 

innovative welding 

techniques gaps in 

optimization for 

various material 

combinations. 

Liu et al. (2023) 

[68] 

Mechanical 

properties and 

failure 

mechanism 

Medium manganese 

TRIP steel/DP590 steel 
RSW 

Not provided in 

the abstract 

Examines 

dissimilar steel 

welding; gap in 

understanding 

long-term 

performance. 

Manladan et al. 

(2023) [69] 

Effect of paint 

baking on joint 

properties 

30MnB5 hot-stamped 

steel 
RSW 

Impact on halo 

ring and 

mechanical 

behavior 

Considers post-

welding processes; 

gap in effects on 

other steel types. 

Martín & De 

Tiedra (2022) 

[70] 

Control and 

improvement 

of quality 

Not specified RSW 
Advances in 

quality control 

Review of quality 

improvement 

methods; gap in 

implementation 

strategies. 

Mathiszik et al. 

(2022) [71] 

Nugget 

microstructure 

characterization 

Not specified 
RSW, Magnetic 

characterization 

Not provided in 

the abstract 

Novel approach to 

microstructure 

analysis; gap in 

correlation with 

mechanical 

properties. 

Midawi et al. 

(2022) [72] 

Local 

mechanical 

Third-generation 

advanced HSS 

RSW, Novel 

measurement 

New method 

for measuring 

It focuses on 

advanced steels, 
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properties 

measurement 

technique local properties but there is a gap 

in the application 

of it to other 

materials. 

Midhun et al. 

(2022) [73] 

Dissimilar 

metal welding 
AISI 304 and AISI 202 RSW 

Not provided in 

the abstract 

Investigate 

specific steel 

combinations; gap 

in optimizing 

parameters. 

Mirmahdi et al. 

(2023) [74] 

Defect 

evaluation 
Not specified 

Ultrasonic testing 

in spot welding 

Review of 

experimental 

and simulation 

results 

Comprehensive 

review; gap in 

standardization of 

testing methods. 

Nadimi et al. 

(2023) [75] 

Fusion zone 

hardness 

understanding 

Advanced HSSs 
RSW, Data-driven 

modeling 

Insights into 

strengthening 

mechanisms 

Focuses on 

hardness; gap in 

relating to overall 

joint performance. 

Nomura et al. 

(2023) [76] 

Non-contact 

nugget 

diameter 

measurement 

Not specified 

RSW, Laser 

ultrasonic 

technique 

Development 

of a new 

measurement 

method 

Innovative 

inspection 

technique; gap in 

industrial 

application. 

Pan et al. 

(2022) [77] 

Intermetallic 

compound 

formation 

Aluminum/steel RSW 

Understanding 

of formation 

mechanisms 

Focuses on 

dissimilar metal 

joining; gap in 

controlling IMC 

formation. 

Panza et al. 

(2022, 2023) 

[78, 79] 

Electrode wear 

prediction 
Not specified 

RSW, Machine 

learning 

Development 

of a prediction 

tool 

Addresses 

practical issue: the 

gap in real-time 

implementation. 

Pawar et al. 

(2023) [80] 

Effect of 

welding current 

on joint 

properties 

340BH steel RSW 

Microstructural 

evolution and 

lap-shear 

performance 

Specific to one 

steel grade; gap in 

broader 

application. 

Piotr & Judyta 

(2023) [81] 

Lap joint 

analysis 

Grade 2 Titanium and 

Grade 5 Titanium alloy 
RSW 

Numerical and 

experimental 

analysis results 

It focuses on 

titanium alloys and 

the gap in 

comparison with 

other joining 

methods. 

Pittner & 

Rethmeier 

(2022) [82] 

Life cycle 

assessment 
Not specified 

RSW, Laser beam 

welding 

Comparison of 

environmental 

impacts 

Focuses on 

sustainability; gap 

in comprehensive 

process 

comparison. 

Prabhakaran et 

al. (2023a,b) 

[83, 84] 

Weld strength 

and 

microstructure 

AISI 347 and AISI 

2205 stainless steels 
RSW 

Analysis of 

joint properties 

Examines specific 

steel 

combinations; gap 

in optimizing for 

other alloys. 

Prasetya & 

Hendrawan 

(2023) [85] 

Nugget 

analysis and 

tensile shear 

load 

Dissimilar metals 
RSW with zinc 

powder 

Not provided in 

the abstract 

Novel approach 

using zinc powder; 

gap in 

understanding 
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long-term effects. 

Qiu et al. 

(2023) [86] 

Joint 

characterization 

Aluminum alloy and 

mild steel 

RSW with 

composite 

electrodes 

Analysis of 

joint properties 

Addresses 

dissimilar metal 

joining; gap in 

optimizing 

electrode 

composition. 

Rajak et al. 

(2023) [87] 

Comparison of 

welding 

techniques 

Dual-phase 590 (DP 

590) steel 

TIG-spot welding, 

RSW 

Processing-

microstructure-

property 

correlation 

Compared to 

welding methods, 

there is a gap in 

applicability to 

other steel grades. 

Rajalingam et 

al. (2023) [88] 

Tensile shear 

fracture load, 

HAZ softening 

DP-1000 steel RSW 

Analysis of 

joint properties 

and 

microstructure 

It focuses on HSS, 

which is a gap in 

fatigue 

performance. 

Rajarajan et al. 

(2022a,b,c) [89, 

90, 91] 

Microstructure 

and mechanical 

properties 

Advanced high strength 

dual phase steel 
RSW 

Effect of 

welding 

parameters on 

joint quality 

A comprehensive 

study on specific 

steel; gap in 

transferability to 

other materials. 

Ramachandran 

et al. (2022) 

[92] 

Improving 

mechanical 

performance 

Q&P 980 steel RSW 
Control of halo 

ring formation 

Focuses on 

specific steel 

grade; gap in 

broader 

application. 

Rao et al. 

(2022) [93] 

Modelling and 

optimization 
DP590 steel sheets 

RSW, RSM-GA 

technique 

Optimization of 

weld responses 

Applies advanced 

modeling; gap in 

real-time process 

control. 

Rdzawski et al. 

(2023) [94] 

Welding cap 

degradation 
Not specified RSW 

Changes in 

microstructure 

and properties 

of welding caps 

Addresses 

practical issue: a 

gap in cap material 

optimization. 

Reddy Gillela 

et al. (2023) 

[95] 

Contact 

conditions, 

dynamic 

resistance, 

nugget size 

AISI 1008 steel sheets 
RSW, Numerical 

study 

Insights into 

the weld 

formation 

process 

Focus on specific 

steel; gap in 

experimental 

validation. 

Ren et al. 

(2022) [96] 

Post-weld cold 

working for 

fatigue strength 

improvement 

Advanced HSS 
RSW, Post-weld 

treatment 

Enhanced 

fatigue strength 

Novel approach; 

gap in long-term 

effects. 

Ren et al. 

(2023) [97] 

Process to 

residual stress 

modeling 

DP980 steel 
RSW, Numerical 

modeling 

Comprehensive 

process-

structure-

property 

relationship 

Limited to one 

steel grade; gap in 

other materials. 

Reza 

Kashyzadeh et 

al. (2022) [98] 

Shunting effect 

in multi-sheet 

welding 

Three-steel sheets 
RSW, Numerical 

study 

Understanding 

of shunting in 

complex setups 

Specific to three-

sheet setup; gap in 

other 

configurations. 

 

Reza 

Kashyzadeh et 

Fatigue life 

analysis 
Not specified 

RSW, Numerical 

analysis 

Effects of sheet 

thickness and 

Comprehensive 

analysis; gap in 
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al. (2023) [99] considering 

residual stress 

electrode 

geometry 

experimental 

validation. 

Russell et al. 

(2023) [100] 

Data-driven 

modeling for 

weld quality 

prediction 

Not specified 
RSW, Machine 

learning 

Comparison of 

modeling 

techniques 

Focus on 

prediction; gap in 

real-time 

application. 

Sadeghian et al. 

(2022) [101] 

Microstructure 

prediction in 

dissimilar 

welding 

Stainless steel to 

carbon steel 
RSW, Simulation 

Microstructure 

evolution 

insights 

Limited to specific 

material pair; gap 

in mechanical 

properties. 

Sammaiah et al. 

(year not 

provided) [102] 

Effect of weld 

parameters 

AISI C1010 cold rolled 

carbon steel 
Direct RSW 

Effect of weld 

parameters 

Focus on 

automotive 

applications; gap 

in a 

comprehensive 

parameter study. 

Sar et al. (2022) 

[103] 

Joining of 

dissimilar 

metals 

Aluminum and copper RSW 

Influence of 

welding 

parameters 

Addresses 

challenging 

material 

combinations and 

gaps in joint 

durability. 

Sarmast-

Ghahfarokhi et 

al. (2022a,b)  

[104, 105] 

Failure 

mechanism and 

mechanical 

properties 

Third-generation 

medium-Mn steel 
RSW 

Behavior under 

static and 

quasi-static 

loading 

A comprehensive 

study on specific 

steel; gap in 

dynamic loading 

conditions. 

Schmolke et al. 

(2023) [3] 

Seam leak 

tightness in 

welding of 

HSSs 

HSSs 

Laser beam 

welding, RSW 

bonding 

Seam leak 

tightness in 

welding of 

HSSs 

Focus on leak 

tightness; gap in 

comprehensive 

performance 

evaluation. 

Sexton & 

Doolan (2023) 

[106] 

Effect of 

electrode 

misalignment 

on spot weld 

quality 

Not specified RSW 

Effect of 

electrode 

misalignment 

on spot weld 

quality 

Addresses a 

specific welding 

parameter; gap in 

holistic parameter 

optimization. 

Shah (2022) 

[107] 

Ultrasonically 

assisted RSW 

Lightweight metal 

alloys 

Ultrasonic-assisted 

RSW 

Ultrasonically 

assisted RSW 

Novel technique 

application; gap in 

comparison with 

conventional 

methods. 

Devendranath 

Ramkumar et 

al. (2019) 

[108] 

Laser 

Welding 

Inconel 718 and  

AISI 416 

Single pass using 

keyhole mode 

CO2 laser welding 

process 

Successfully 

joined ultra-

thin foil to 

thick steel 

The fusion zone 

microstructure 

attested the 

absence of 

solidification 

cracks and/or 

porosity. 

Sharma et al. 

(2022) [109] 

Improvement 

of 

microstructural 

and mechanical 

properties 

Aluminum 6063 alloy RSW 

Improved 

properties for 

aerospace 

application 

Focused on 

specific alloy; gap 

in applicability to 

other aerospace 

materials. 

Shi et al. (2023) Fatigue Maraging steel RSW Fatigue Combines additive 

https://www.sciencedirect.com/topics/materials-science/welding
https://www.sciencedirect.com/topics/materials-science/welding
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[110] properties of 

spot-welded 

maraging steel 

produced by selective 

laser melting 

properties manufacturing 

with welding; gap 

in process 

optimization. 

Soomro et al. 

(2022) [111] 

Review of 

advances in 

RSW 

Automotive sheet steels 
Various emerging 

methods 

Improved joint 

mechanical 

performance 

Comprehensive 

review; gap in 

practical 

implementation of 

emerging methods. 

Taghavi & 

Pouranvari 

(2023) [112] 

Dissimilar 

welding of 

immiscible 

alloys 

Iron and copper alloy 

system 

RSW with spinodal 

liquid phase 

separation 

Enabled 

welding of 

immiscible 

alloys 

Novel approach 

for dissimilar 

welding; gap in 

process control 

and repeatability. 

Taufiqurrahman 

et al. (2022) 

[113] 

Effect of 

aluminum 

interlayer on 

dissimilar 

welding 

Stainless steel 316L, 

Ti6Al4V titanium alloy 

RSW with 

aluminum 

interlayer 

Effect of 

aluminum 

interlayer on 

dissimilar 

welding 

Addresses 

challenging 

dissimilar joints; 

gap in long-term 

joint stability. 

Tian et al. 

(2022) [114] 

Microhardness 

and fatigue life 

investigation 

Quenching and 

partitioning 1180 steel 
Spot welding 

Microhardness 

and fatigue life 

investigation 

Focus on advanced 

HSS; gap in 

comparison with 

other joining 

methods. 

Tolton et al. 

(2023) [115] 

RSW failure in 

tailor hot 

stamped 

assemblies 

Not specified 
RSW, Hot 

stamping 

RSWfailure in 

tailor hot 

stamped 

assemblies 

Focus on failure 

mechanisms in hot 

stamped 

assemblies; gap in 

prevention 

strategies. 

Tuncel et al. 

(2023) [116] 

Parametric 

study on weld 

zone shape 

22MnB5 steel RSW 

Parametric 

study on weld 

zone shape 

Emphasis on weld 

zone geometry; 

gap in relating 

shape to 

mechanical 

properties. 

Tyagi et al. 

(2022) [117] 

Optimization of 

robot spot 

welding 

parameters 

Low carbon steel JSC 

590RN 
Robot spot welding 

Optimization of 

robot spot 

welding 

parameters 

Robotic welding 

optimization; gap 

in comparison 

with manual 

welding. 

Uematsu et al. 

(2023) [118] 

Fatigue 

behavior with 

different 

electrode tip 

diameters 

Steel sheets RSW 

Fatigue 

behavior with 

different 

electrode tip 

diameters 

Effect of electrode 

geometry on 

fatigue; gap in 

optimizing 

electrode design. 

van der Aa & 

Rana (2023) 

[119] 

Minimizing 

liquid metal 

embrittlement 

cracking 

Zinc-coated medium 

manganese steel 
RSW, Hot forming 

Optimization of 

hot-forming 

temperature 

Addresses specific 

material issues, 

such as the gap in 

applicability to 

other coated steels. 

Van Nhat 

Nguyen (2022) 

[120] 

Quality of 

dissimilar joint 

Aluminum alloy and 

low-carbon steel 
RSW 

Quality of 

dissimilar joint 

Dissimilar metal 

joining; gap in 

long-term joint 

stability. 



Ritesh Fegade et al. / IJME, 12(3), 1-27, 2025 

13 

Vignesh (2022) 

[121] 

Predicting 

parametric 

influence on 

tensile shear 

load 

Not specified RSW 

Prediction 

model for 

tensile shear 

load 

Focuses on load 

prediction; gap in 

comprehensive 

joint quality 

prediction. 

Wang et al. 

(2022) [122] 

Microstructure 

and shearing 

strength of 

dissimilar joint 

Stainless steel and low-

carbon steel 
RSW 

Not specified 

in the given 

text 

Dissimilar steel 

joining; gap in 

corrosion 

resistance of the 

joint. 

Wang et al. 

(2022) [123] 

Numerical 

prediction of 

weld failure 

Not specified RSW 

Integrated 

approach for 

failure 

prediction 

Computational 

modeling; gap in 

experimental 

validation. 

Wang et al. 

(2022) [124] 

Microstructures 

and fatigue 

behavior of the 

dissimilar joint 

Aluminum and steel RSW 

Microstructures 

and fatigue 

behavior of the 

dissimilar joint 

Al/steel joining 

with focus on 

fatigue; gap in 

improving fatigue 

life. 

Wang et al. 

(2022) [125] 

Zinc-induced 

liquid metal 

embrittlement 

Advanced HSS RSW 

Zinc-induced 

liquid metal 

embrittlement 

Specific material 

degradation 

mechanism; gap in 

prevention 

methods. 

Wei et al. 

(2022) [126] 

Similar and 

dissimilar 

weldability 

Q&P980 and 

TWIP1180 steels 
RSW 

Similar and 

dissimilar 

weldability 

Weldability of 

advanced steels; 

gap in optimizing 

parameters for 

these specific 

alloys. 

Wippermann et 

al. (2023) [127] 

Thermal 

influence of 

spot welding 

on nearby 

overmolded 

joint 

Thermoplastic-metal RSW 

Thermal 

influence of 

spot welding 

on nearby 

overmolded 

joint 

Interaction 

between welding 

and overmolding; 

gap in optimizing 

process sequence. 

Xiao et al. 

(2022) [128] 

Dissimilar 

welding in 

keyhole mode 

Aluminum alloy to 

steel 
Laser spot welding 

Dissimilar 

welding in 

keyhole mode 

Novel approach 

for dissimilar 

welding; gap in 

comparison with 

other modes. 

Xu & Fang 

(2023) [129] 

New joining 

method for 

FRP-steel 

Thermoplastic FRP, 

steel 

Resistance insert 

spot welding 

Proposed new 

joining method 

Innovative 

technique; gap in 

long-term 

performance and 

scalability. 

Xu et al. (2023) 

[130] 

Effects of 

magnetic fields 

in welding 

Various 
Arc, laser, and 

RSW 

Review of 

magnetic field 

effects 

Comprehensive 

review; gap in 

practical 

implementation 

strategies. 

Yaghoobi et al. 

(2022) [131] 

Welding of 

high-strength 

and 

nano/ultrafine-

DP steel, IF steel RSW 

Welding of 

high-strength 

and 

nano/ultrafine-

Focus on advanced 

materials; gap in 

optimizing for 

these specific 
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grained steels grained steels steels. 

Yang et al. 

(2022) [132] 

Dissimilar 

aluminum alloy 

joining 

2195/5A06 aluminum 

alloys 
RSW 

Microstructure 

and mechanical 

properties 

analyzed 

Specific alloy 

combination; gap 

in fatigue and 

corrosion 

performance. 

Yao et al. 

(2023) [133] 

Local 

mechanical 

characterization 

and fracture 

prediction 

Advanced HSS RSW 

Developed 

prediction 

model 

Focus on fracture 

prediction; gap in 

a real-time 

monitoring 

application. 

Yu et al. (2023) 

[134] 

Ultrasonic 

seam-assisted 

welding with 

interlayer 

Titanium, steel, copper 

interlayer 

Ultrasonic seam-

assisted RSW 

Interfacial 

evolution and 

mechanical 

properties 

studied 

Novel technique 

for dissimilar 

metals; gap in 

process parameter 

optimization. 

Yun et al. 

(2022) [135] 

Improving 

weldability of 

coated steel 

Al-Fe-alloy-coated 

HPF steel 
RSW 

Improved 

weldability 

Specific to coated 

HSS; gap in 

applicability to 

other coatings. 

Zeng et al. 

(2022) [136] 

Heat generation 

and transfer in 

micro welding 

Enameled wire to pad Micro RSW 
Heat transfer 

analyzed 

Focus on micro-

scale welding; gap 

in relating to 

macro-scale 

processes. 

Zhang et al. 

(2022a) [137] 

Pore formation 

investigation 
AZ31 magnesium alloy 

Pulsed laser spot 

welding 

The pore 

formation 

mechanism 

studied 

Specific to 

magnesium alloy; 

gap in pore 

prevention 

strategies. 

Zhang et al. 

(2022b) [138] 

In-situ post-

weld heat 

treatment 

Q&P980 Steel RSW with PWHT 

Mechanical 

behavior and 

failure 

mechanism 

analyzed 

Novel in-situ 

PWHT approach; 

gap in optimizing 

PWHT 

parameters. 

Zhang et al. 

(2022) [139] 

Microstructure 

and joining 

mechanism 

Aluminum/CFRTP RSW 

Microstructure 

and joining 

mechanism 

analyzed 

Focus on metal-

composite joining; 

gap in long-term 

durability. 

Zhang et al. 

(2022) [140] 

Effects of 

interlayer on 

solidification 

and cracking 

AZ31/ZK61 

magnesium alloys 

RSW with Al/Zn 

interlayer 

Solidification 

path and 

liquation 

cracking 

susceptibility 

studied 

Addresses specific 

magnesium alloy 

issues, such as the 

gap in optimizing 

interlayer 

composition. 

Zhao et al. 

(2022) [141] 

Optimization of 

post-weld 

tempering 

HSLA 420 steel 
RSW with post-

weld tempering 

Optimized 

tempering 

parameters 

Explores post-

weld treatment; 

gap in in-situ 

tempering 

methods. 

Zhao et al. 

(2022) [142] 

Mechanical and 

microstructural 

characteristics 

HSLA 420 steel RSW 

Mechanical 

attributes and 

microstructure 

analyzed 

Focused on 

specific steel 

grade; gap in 

comparison with 

other HSLA steels. 
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Table 2. Details of investigations carried out on RSW with various aspects 

Study Type References 

Microstructure Analysis 

Aghajani et al. (2023) [9], Amini-Chelak et al. (2023) [11], Badkoobeh et al. (2023) [15], 

Chabok et al. (2022) [22], Chen et al. (2022) [24], Dong et al. (2022) [34, 36], 

Shamsolhodaei et al. (2022) [44], Jia et al. (2023) [61], Li et al. (2022) [66], Manladan et 

al. (2023) [69], Pan et al. (2022) [77], Prabhakaran et al. (2023a) [83], Qiu et al. (2023) 

[86], Rajarajan et al. (2022a) [89], Sadeghian et al. (2022) [10], Taghavi & Pouranvari 

(2023) [112], Wang et al. (2022) [122], Yang et al. (2022) [132]. 

Mechanical Properties 

Betiku et al. (2023) [18], Chanh et al. (2022) [23], Das et al. (2023) [30], Doruk et al. 

(2022) [37], Elitas (2023) [40], Ganjabi et al. (2023) [43], Janardhan et al. (2023) [59], 

Jing et al. (2022) [63], Kar et al. (2023) [64], Nadimi & Pouranvari (2023) [75], Pawar et 

al. (2023) [80], Rajak et al. (2023) [87], Rajarajan et al. (2022b) [90], Ren et al. (2022) 

[97], Shi et al. (2023) [110], Uematsu et al. (2023) [118], Wang et al. (2022) [124], Yao et 

al. (2023) [133]. 

Welding Parameters Optimization 

Ariyanto et al. (2023) [12], Bagali et al. (2022) [16], Delgado-Pamanes et al. (2022) [31], 

Ding et al. (2022) [33], Googarchin et al. (2022) [46], He et al. (2022) [51], Iyota et al. 

(2023) [54], Panza et al. (2023) [78], Rao et al. (2022) [93], Sammaiah et al. (2022) [102], 

Sar et al. (2022) [103], Tyagi et al. (2022) [117], Vignesh (2022) [121], Zhao et al. (2022) 

[141]. 

Dissimilar Material Welding 

Al-hamdani (2022) [10], Asati et al. (2022) [13], Chen et al. (2023) [27], Guo et al. (2022) 

[47], Hagen et al. (2023) [48], Hendrawan et al. (2023) [53], Iyota et al. (2023) [55], 

Kumar et al. (2022) [65], Li et al. (2022) [67], Prabhakaran et al. (2023b) [84], 

Taufiqurrahman et al. (2022) [113], Wang et al. (2022) [124], Xiao et al. (2022) [128], Yu 

et al. (2023) [134] 

Numerical Modeling 

Bamberg et al. (2022) [6], Butsykin et al. (2023) [21], Chen et al. (2022) [25], Deng et al. 

(2023) [32], Ebrahimpour et al. (2023) [38], Ji et al. (2022) [60], Reddy Gillela et al. 

(2023) [95], Ren et al. (2023) [97], Russell et al. (2023) [100], Wang et al. (2022) [123], 

Zeng et al. (2022) [136], Zhou et al. (2022) [145], Zhu et al. (2022) [146]. 

Fatigue Behavior 

Baek et al. (2022) [2], Ghanbari et al. (2022) [8], Janardhan et al. (2022b) [58], Reza 

Kashyzadeh et al. (2023) [99], Tian et al. (2022) [114], Tolton et al. (2023) [115], Wang et 

al. (2022) [124]. 

Electrode Effects Bachchhav et al. (2023) [14], Deng et al. (2022) [32], Elitas & Erden (2023) [40], Hassan 

Zhao et al. 

(2023) [143] 

Mechanical 

properties and 

nugget 

evolution 

Zn-Al-Mg galvanized 

DC51D steel 
RSW 

Nugget evolution 

and mechanical 

properties studied 

Specific to 

galvanized steel, 

gap in comparing 

different 

galvanizing 

compositions. 

Zhao et al. 

(2023) [144] 

Microstructure 

and mechanical 

properties 

Cu/304 Austenitic 

Stainless Steel 
Stud welding 

The effect of 

welding voltages 

on joint 

properties 

investigated 

Focused on stud 

welding; gap in 

comparison with 

other joining 

methods. 

Zhou et al. 

(2022) [145] 

Predictive 

quality 

monitoring 

Not specified RSW 

Machine learning 

model with 

domain 

knowledge 

developed 

Advanced 

monitoring 

approach; gap in 

real-time 

implementation. 

Zhu et al. 

(2022) [146] 

Dynamic 

strength models 
HSSs RSW 

Data-driven 

models 

developed using 

regression and 

machine learning 

Focus on strength 

prediction; gap in 

incorporating other 

quality aspects. 
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et al. (2023) [49], Panza et al. (2022) [79], Rdzawski et al. (2023) [94], Sexton & Doolan 

(2023) [106]. 

Non-Destructive Testing 
Dahmene et al. (2022) [28], Dai et al. (2022) [29], Mirmahdi et al. (2023) [74], Nomura et 

al. (2023) [76]. 

New Welding Techniques 
Bi et al. (2022) [20], He et al. (2023) [52], Schmolke et al. (2023) [3], Shah (2022) [107], 

Xu & Fang (2023) [129]. 

Corrosion Resistance Hassoni et al. (2022) [50]. 

Life Cycle Assessment Pittner & Rethmeier (2022) [82]. 

Table 3. Types of investigations carried out on RSW 

Type 
Number of 

Articles 
Percentage 

Experimental studies 124 84.25% 

Review papers 5 3.42% 

Numerical/simulation 

studies 
11 7.53% 

Opti]mization studies 7 4.79% 

 

 2.2. Important Process Parameters of RSW 

The RSW process parameters possess inherent 

significance; modifying a single parameter will significantly 

impact all the remaining parameters. These characteristics 

will determine the quality of the welds. Optimal selection of 

spot welding parameters will result in a robust fusion and 

high-quality weld. Spot welding parameters encompass 

several factors that are taken into consideration throughout 

the welding process.  

2.2.1. Process Parameters  

Welding current (~25%): e.g., Chen et al. (2022) [24] 

investigated the effect of welding current on dissimilar steel 

plates. 

         

Welding time (~20%): e.g., Chudasama et al. (2022) [5] 

studied the effect of welding time on AISI 2205 DSS joints. 

Electrode force (~20%): e.g., Rajarajan et al. (2022) [89 

examined the effect of electrode pressure on DP800 steel 

sheets. 
 

        Electrode geometry (~15%): e.g., Bachchhav et al. 

(2023) [14] compared different electrode materials (Cu–Cd, 

Cu–Be, Cu–Cr–Zr). 
         

        Post-weld heat treatment (~10%): e.g., Chen et al. 

(2022c) [26] studied the effect of post-weld tempering pulse 

on Q&P1180 steel. 
 

Other parameters (~10%):  

 Interlayers: e.g., Al-hamdani (2022) [10] used 

Aluminum-Copper foils as interlayers. 

 Surface conditions: e.g., Shamsolhodaei et al. (2022) 

[44] investigated the role of surface conditions. 

Electrode Force 

 The electrode force compresses the components to be 

welded, with its primary objective being to secure the 

components and ensure close contact at the joining interface. 

Increasing the electrode force will reduce the heat energy and 

the pressure applied to the weld joint, consequently 

decreasing the resistance at the contact point between the 

electrode tips and the component surfaces. Therefore, an 

increase in electrode force requires a corresponding increase 

in weld current. Weld spatter may occur due to insufficient 

pressure on the tips or excessive weld current. Excessive 

pressure can lead to the formation of a localized spot weld. 

Simply put, the electrical current and resulting heat spread 

over a larger surface area as the pressure increases, 

decreasing the weld's depth and size. 

 

Squeeze Time 

 Squeeze time refers to the interval between the initial 

application of force on the workpiece by the electrode and the 

first application of electric current. The implementation of 

squeeze time is crucial to delay the initiation of weld current 

until the desired level of electrode force is achieved. 

 

Weld Time 

Weld time refers to the duration in which an electric 

current is applied to join metal sheets by welding. This 

duration is measured and calibrated based on the cycles of the 

line voltage, similar to other timing functions. In a 50 Hz 

electricity system, one cycle lasts 1/50th of a second. Due to 

the relationship between the required weld spot and the weld 

duration, it is challenging to specify an exact optimal weld 

time. 

 

Hold Time (Cooling-Time) 

Hold time refers to the duration during which the 

electrodes remain in contact with the sheet after welding, 

allowing the weld to cool and solidify. From a technical 

perspective, hold time is a critical parameter in welding, 

ensuring that the weld nugget solidifies before the welded 

parts are separated. However, hold time should not be 

excessively long, as it can cause heat from the weld spot to 

transfer to the electrode, leading to increased wear.  

 

Additionally, if the hold time is prolonged and the 

material has a high carbon content (above 0.1%), there is a 
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risk of weld brittleness, especially when welding galvanized 

carbon steel. In such cases, using a longer hold time is 

advisable. 

 

Weld Current 

The weld current is regulated by two factors: 

1. The transformer tap switch configuration determines the 

maximum level of weld current available. 

2. The current control percentage specifies the fraction of the 

available current used in the welding process. 

  

      It is generally not recommended to use low percentage 

current settings, as they can potentially degrade the quality of 

the weld. It is advisable to maintain the weld current at the 

lowest feasible level. When selecting the appropriate current, 

it should be gradually increased until the weld spatter appears 

between the metal sheets, indicating that the correct welding 

current has been reached. If the current is too high, internal 

spatter may occur due to the rapid temperature rise in the 

bonding area, where resistance is highest. 

2.2.2. Material Types Observed in the Literature 

This breakdown provides a detailed view of the research 

trends in resistance spot welding. It also highlights the 

diversity of materials, study types, methodologies, and 

process parameters investigated in recent literature on 

resistance spot welding. 

 

Steel: Advanced High Strength Steels (AHSS): Nadimi 

et al. (2023) [75] studied Quenching and Partitioning (Q&P) 

steel. 

Dual Phase (DP) steels: Janardhan et al. (2022b) [58] 

investigated DP600 steel. 

 

High Strength Low Alloy (HSLA) steels: Zhao et al. 

(2022) [142] focused on HSLA 420 steel. 

  

Martensitic steels: Aghajani et al. (2023) [9] examined 

martensitic stainless steels. 

 

Aluminum alloys: Bi et al. (2022) [20] studied AA 5754 

aluminum alloy. 

     

        Dissimilar metal combinations: Baek et al. (2022) [2] 

investigated aluminum/high-strength steel joints. 

    

        Other materials: Titanium alloys: Taufiqurrahman et al. 

(2022) [113] studied Ti6Al4V. 

 

         Magnesium alloys: Zhang et al. (2022) [140] examined 

AZ31/ZK61 magnesium alloys.   

  

         Table 4 engrossed the types of material with the 

observed % in literature based on RSW. 
 

Table 4. Material types observed in the literature 

Material Percentage 

Martensitic Stainless Steel 1.37% 

Aluminium 12.33% 

Copper 2.74% 

Advanced High Strength Steel 4.11% 

Dissimilar Materials 15.07% 

Galvanized Steel 0.68% 

Ferritic Stainless Steel 0.68% 

Low Carbon Steel 2.74% 

Stainless Steel 2.74% 

Austenitic Stainless Steel 1.37% 

  

These percentages are approximate based on an analysis 

of the provided literature. The focus appears to be heavily on 

experimental studies of steel materials, with significant 

attention to microstructural analysis and mechanical testing. 

Process parameter optimization, particularly for welding 

current, time, and electrode force, is a common theme across 

many studies. The majority of studies in Resistance Spot 

Welding (RSW) are experimental, comprising 95.89% of the 

total research. These studies focus on practical applications 

and empirical data to improve RSW techniques and outcomes. 

Review papers account for 3.42%, providing comprehensive 

overviews of existing research and identifying future 

directions. Computational studies make up 0.68%, leveraging 

simulations and numerical methods to understand and optimize 

RSW processes.  
 

 The research also focuses on various parameters critical to 

the RSW process. Mechanical properties, including tensile and 

shear strength, are the primary focus of 25.34% of studies, 

emphasizing the importance of strength and durability in 

welded joints.  
 

 Microstructure analysis constitutes 12.33% of research, 

exploring welded materials' internal structure and phases. 

Other parameters investigated include welding parameters 

such as electrode force and welding time (6.16%), tensile-shear 

performance (11.64%), failure modes (2.05%), and wear 

performance (0.68%). The research also focuses on various 

parameters critical to the RSW process.  
 

 Mechanical properties, including tensile and shear 

strength, are the primary focus of 25.34% of studies, 

emphasizing the importance of strength and durability in 

welded joints. Microstructure analysis constitutes 12.33% of 

research, exploring welded materials' internal structure and 

phases. Other parameters investigated include welding 

parameters such as electrode force and welding time (6.16%), 

tensile-shear performance (11.64%), failure modes (2.05%), 

and wear performance (0.68%). 
 

2.3. Modes of Failure of Joints 

RSW joints can fail in various modes, each influenced by 

factors such as material properties, welding parameters, and 
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joint design. Al-hamdani (2022) [10] identifies that the 

primary modes of failure in galvanized steel RSW joints 

include interfacial fracture and nugget pullout, with the 

former occurring due to insufficient fusion at the weld 

interface and the latter due to excessive heat input leading to 

nugget expulsion. Badkoobeh et al. (2023) [15] highlight that 

for ferritic and austenitic stainless steels, failure modes can be 

influenced by phase evolution during welding, which affects 

the mechanical properties and microstructure of the joint.  
 

This is further supported by Baek et al. (2022) [2], who 

observed that in aluminium/high-strength steel joints, the 

interplay between microstructure and mechanical fatigue 

contributes significantly to the failure modes, with interfacial 

debonding and nugget cracking being prevalent. 

Additionally, the work by Amini-Chelak et al. (2023) [11] on 

advanced high-strength steels emphasizes that weldability 

issues can lead to brittle fracture modes, particularly under 

high tensile-shear loads. These studies collectively 

underscore the complexity of failure mechanisms in RSW 

joints, driven by a combination of metallurgical and 

mechanical factors. There are two fracture modes of the spot-

welding joint have analyzed; they are: 

2.3.1. Interfacial Mode (or Nugget Fracture) 

 The weld nugget fractures along the plane of the weld. 

This is the primary failure mode for spot welds with small 

diameters. 

 

2.3.2. Nugget Pullout Mode (or Sheet Fracture) 

 The sheet surrounding the weld fractures, but the nugget 

itself remains intact. This mode is common for spot welds with 

larger diameters. In automotive applications, spot welds should 

have a sufficiently large diameter to ensure that nugget pullout 

is the predominant failure mechanism. The interfacial mode is 

considered unsuitable due to its limited load-bearing capacity 

and energy absorption. 

 

2.4. Zones of RSW Joint 

 The weld heat cycle results in the formation of a 

heterogeneous structure in the spot weld zone. RSW joints are 

typically divided into distinct zones, each with unique 

microstructural and mechanical characteristics that influence 

the overall performance of the weld. These zones include the 

Fusion Zone (FZ), the Heat-Affected Zone (HAZ), and the 

Base Metal (BM). 

2.4.1. Fusion Zone (FZ) 

 This is the central part of the weld where actual melting 

and solidification occur. The FZ is characterized by a cast 

microstructure, often exhibiting dendritic or columnar grains 

due to rapid cooling rates. Al-hamdani (2022) [10] notes that 

in galvanized steel, the FZ can exhibit a mixture of phases 

depending on the alloying elements and the cooling rate. The 

mechanical properties of the FZ are critical as it is the region 

most affected by the welding process. 

2.4.2. Heat-Affected Zone (HAZ) 

 Surrounding the FZ is the HAZ, which experiences 

thermal cycles but does not melt. The microstructure in this 

zone undergoes significant changes due to the high 

temperatures experienced during welding. Badkoobeh et al. 

(2023) [15] discuss that in ferritic and austenitic stainless 

steels, the HAZ can exhibit phase transformations that 

significantly affect hardness and ductility. This zone is crucial 

as it often becomes the weakest link in terms of mechanical 

properties due to these transformations. 

 

2.4.3. Base Metal (BM) 

 The BM is the unaffected parent material that retains its 

original microstructure and properties. The transition from the 

HAZ to the BM is gradual, with properties and microstructures 

slowly reverting to those of the BM as the distance from the 

FZ increases. Baek et al. (2022) [2] highlight the importance 

of understanding the interaction between these zones, 

especially in dissimilar metal joints like aluminum and high-

strength steel. The difference in thermal conductivity and 

expansion coefficients between the metals can lead to uneven 

heat distribution and residual stresses, affecting the integrity of 

the weld. 

 Additionally, Amini-Chelak et al. (2023) [11] emphasize 

the significance of controlling the microstructure within these 

zones, especially in Advanced High-Strength Steels (AHSS). 

Proper control of the welding parameters can mitigate 

undesirable phase transformations in the HAZ, improving the 

overall mechanical performance of the joint. Understanding 

these zones and their properties is crucial for optimizing 

welding parameters and enhancing the quality and 

performance of RSW joints. 

 

3. Research Gap 
The literature evaluation offers useful insights into the 

RSW of SS 316L material. However, there is a research 

deficit in terms of a thorough and systematic optimisation of 

process parameters. The current research offers data on 

different facets, such as microstructural analysis, mechanical 

properties, and limited investigation into process parameters. 

However, there is a deficiency in having a concentrated and 

unified optimisation method. Below is an analysis of the 

existing research deficiencies: 

1. Limited comprehensive optimisation studies: Numerous 

studies analyse the impact of specific parameters on the 

quality of SS 316L welds, although there is a lack of 

comprehensive optimisation studies. An integrated 

approach that considers the simultaneous optimisation of 

numerous factors, such as welding current, time, pressure, 

and electrode force, is crucial. This technique has the 

potential to greatly improve the comprehension of the 

interaction effects among various variables. 

2. Inadequate Examination of Interaction Effects: Although 

certain studies assess the impact of process characteristics, 

they do not adequately investigate the interaction effects 



Ritesh Fegade et al. / IJME, 12(3), 1-27, 2025 

19 

among these parameters. Conducting a comprehensive 

analysis of how alterations in one variable impact the 

results related to other variables is essential for cultivating 

a sophisticated comprehension of the welding procedure. 

3. Limited use of RSM applications: The utilisation of 

sophisticated statistical techniques, including RSM, is 

constrained in the current body of literature. Reinforcement 

learning state machines RSM provide a methodical and 

effective examination of the range of possible designs to 

identify the most favourable parameter configurations. The 

lack of these approaches indicates a research gap regarding 

a systematic and quantitative optimisation strategy. 

4. Computational modelling for optimisation is neglected: 

The broad exploration of integrating computational 

modelling and simulation approaches for optimisation 

purposes is lacking. Computational methods can assist in 

forecasting the impact of different parameters on the 

welding process. Integrating empirical data with 

computational models can potentially enhance the 

optimisation approach's effectiveness for SS 316L 

resistance spot welding. 

5. Insufficient attention given to quality measures: The 

existing literature does not have a universally accepted set 

of quality criteria that thoroughly assess the effectiveness 

of SS 316L welds. While some studies focus on mechanical 

properties, incorporating additional criteria, such as 

microstructural characteristics, corrosion resistance, and 

fatigue behavior, would provide a more holistic assessment 

of weld quality. 

6. Limited industry-ready solutions: The current research 

often fails to effectively convert their findings into practical 

solutions ready to be implemented in the industry. A 

research gap exists in terms of providing clear guidelines or 

recommendations for manufacturers and practitioners to 

implement optimized process parameters for SS 316L 

resistance spot welding in real-world applications. 

Addressing these areas of research that have not yet been 

explored would greatly contribute to the advancement of 

RSW. This would result in more efficient and dependable 

procedures and enhanced weld quality and performance. 

Future research should prioritise the adoption of a 

methodical optimization approach, the integration of modern 

statistical approaches, and the development of realistic 

solutions for industrial deployment. 

 

4. Future Scope of Research 
Due to several crucial elements, there is a need to 

research the microstructural and strength analyses in RSW for 

different materials utilized in contemporary applications. 

Comprehending and enhancing the microscopic arrangement 

and robustness of spot-welded connections are crucial for 

guaranteeing the dependability, longevity, and effectiveness 

of welded frameworks in various industries.            

1. Material diversity in modern applications: Metallurgical 

Compatibility - Contemporary applications frequently 

need the utilization of diverse materials, such as 

sophisticated alloys, high-strength steels, and 

combinations of different elements. Examining the 

microstructure and strength of RSW in these materials 

guarantees that welding procedures can meet a wide range 

of material needs. 

2. Lightweight materials in automotive and aerospace: 

Metallurgical compatibility refers to the ability of 

different materials, including advanced alloys, high-

strength steels, and combinations of other elements, to be 

used together in modern applications. An analysis of the 

microstructure and strength of RSW in these materials 

ensures that welding processes can fulfil a diverse range 

of material requirements. 

3. Hybrid material structures: The demand for hybrid 

structures, such as the process of joining steel and 

aluminum by welding, is increasing. Examining the 

microstructure and strength of dissimilar material joints is 

crucial for comprehending the difficulties and possibilities 

linked to these combinations. 

4. Performance and durability requirements: Industries that 

prioritize safety, such as the automotive industry, 

necessitate welded joints that possess exceptional strength 

and longevity. Microstructural analyses aid in forecasting 

the mechanical characteristics of connections, 

guaranteeing their compliance with rigorous safety criteria 

and reliability prerequisites. 

5. Optimization of welding parameters: Parameter 

Sensitivity: The microstructure and strength of RSW 

joints are greatly influenced by welding parameters, 

including current, time, and pressure. The research seeks 

to optimize these characteristics to attain the desired 

attributes, hence preventing concerns such as weld failure 

or diminished structural integrity. 

6. Quality control and assurance: Real-Time Monitoring: 

Ongoing research enables the creation of sophisticated 

monitoring methods to evaluate the microstructure and 

strength of spot-welded joints in real time. This allows for 

instant feedback and ensures high-quality control 

standards throughout the welding process. 

7. Microstructural alterations: Influence on Mechanical 

Properties - The mechanical properties of spot-welded 

joints are directly affected by microstructural changes, 

such as variations in grain size and phase distribution. 

Comprehending these modifications is essential for 

forecasting and managing the joint's overall functionality. 

8. Innovations in welding technologies: Advanced Welding 

Techniques: Ongoing research is being conducted to 

support the development of advanced welding techniques, 

such as micro- and nano-scale welding, in order to tackle 

the special issues that arise when welding modern 

materials. Investigations into microstructural and strength 

factors guide the development of these advanced 

procedures. 
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9. Sustainability and environmental considerations: Material 

Efficiency: Given the increasing importance of 

sustainability, it is crucial to optimize welding operations 

in order to minimize material waste and energy usage. 

Conducting research on microstructural and strength 

investigations helps improve the efficiency and 

sustainability of welding operations. 

10. Advancements in manufacturing technologies: Industry 

4.0 Integration: Incorporating RSW into Industry 4.0 

procedures, specifically emphasizing data-driven 

decision-making, necessitates comprehensively 

comprehending the microstructural and strength 

components. Acquiring this knowledge is crucial for 

advancing intelligent manufacturing techniques that offer 

improved efficiency and quality. 

 

Given the aforementioned factors, conducting a study on 

microstructural and strength studies of RSW is crucial to 

fulfill the changing requirements of contemporary 

applications. Ongoing research is being conducted to improve 

welding procedures and ensure the strength and performance 

of welded structures in various sectors. This research focuses 

on areas such as lightweight materials, combining different 

materials, and using new welding technologies. 

5. Conclusion 
The landscape of RSW has undergone substantial 

transformation, driven by the evolving demands of modern 

manufacturing, especially in the automotive sector. This 

review has highlighted the pivotal advancements that have 

shaped the current state of RSW technology. Key 

developments include the integration of advanced High-

Strength Steel (HSS) and lightweight alloys, pushing the 

boundaries of conventional welding processes.  

The successful joining of dissimilar materials and the 

optimization of process parameters have emerged as critical 

areas of focus, significantly enhancing weld quality and 

performance. Additionally, the application of machine 

learning algorithms and real-time monitoring systems has 

introduced a new paradigm in quality assurance, enabling 

more precise control over welding outcomes. These 

advancements reflect a broader trend toward more intelligent 

and adaptive manufacturing processes.  

Despite these strides, challenges remain, particularly in 

understanding the complex microstructural changes that 

occur during welding and their impact on long-term joint 

performance. Future research must continue to address these 

gaps, with an emphasis on further refining process 

parameters, improving the reliability of hybrid joints, and 

expanding the application of predictive models. In 

conclusion, the sustained evolution of RSW technology not 

only reaffirms its critical role in manufacturing but also 

highlights the need for ongoing research to meet the 

increasingly stringent requirements of modern industry. 
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