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Abstract - Heat Exchangers (HEs) are essential for facilitating heat transfer between fluids at different temperatures. HEs use 

passive, active, or mixed heat transfer enhancement strategies to increase efficiency, reduce surface area, and reduce pumping 

power. Heat exchangers are proposed for energy savings. Among these, passive techniques are more cost-effective as they do 

not require external power input. These methods primarily aim to enhance the surface area, fluid residence time, and thermal 

conductivity, often through the use of nanofluids. Better heat transmission and turbulence are provided by Corrugated Plate 

Heat Exchangers (CPHEs) when compared with flat plate heat exchangers at low Reynolds numbers because of their 

corrugationsand occupy less space because of their high surface area to volume ratio. The Wavy Corrugated Plate Heat 

Exchangers (WCPHEs) that are the subject of this study provide increased turbulence and surface area. Zinc oxide nanofluids 

(ZnONF) at volumetric concentrations of 0.01%, 0.03%, 0.05%, 0.07%, and 0.09% were used in experiments to assess the heat 

transfer capability, with water serving as the base fluid. Three corrugation angles—10°, 30°, and 50°—as well as 0.5,1,1.5 lpm 

nanofluid flow rates were used for the studies. The findings demonstrated that, in contrast to H2O as the test fluid, the 

transmission of heat rate rose to all volume fractions and flow rates of the nanofluid. A 30° corrugation angle, a 1.5 lpm flow 

rate, and a 0.01% volume fraction of ZnO nanoparticles produced the greatest heat transfer of 2430.55W. Additionally, it was 

shown that heat transfer rose from 10° to 30° as the corrugation angle increased but reduced at 50°. 

Keywords - Augmentation of heat transfer, Corrugation plates, Heat exchanger, Nanofluids, Reynolds number, Turbulence.

1. Introduction  
With the global shortage of energy and fossil fuels, 

optimizing energy consumption has become increasingly 

important. One of the most effective strategies for reducing 

energy losses and improving heat exchangers' thermal 

efficiency is efficient energy utilization. HEs are mostly used 

in different industries because of their durability, compact 

size, and efficient heat exchange rates. Consequently, 

enhancing the performance of heat exchangers is a key 

challenge. Significant efforts have recently focused on 

increasing heat transfer rates using nanofluids. Among HEs, 

PHEs are very efficient due to their enormous surface area, 

enabling faster heat transfer than other designs. Corrugated 

Plate Heat Exchangers (CPHEs) represent a recent 

advancement, offering an impressive surface area-to-volume 

ratio of over 700 m²/m³.  

 

The design of corrugated plate channels induces turbulent 

flow at low Reynolds numbers (generally between 50 and 

200), resulting in a convective coefficient of heat transfer that 

is three to five times greater than that of traditional tube and 

shell heat exchangers. A WCPHE is illustrated in Figure 1. 

 
Fig. 1 Corrugated plate with corrugation angle 

 

2. Literature Review 
CPHEs offer a higher heat transfer coefficient than other 

types of heat exchangers due to the increased contact area 
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between the fluids. They are easy to repair, maintain, and 

service because of their small size and low maintenance space 

requirements. Additionally, these heat exchangers are self-

cleaning due to their corrugations, which reduce fouling and 

lead to better performance and longevity. Various studies have 

explored different approaches to optimize HEs performance. 

Grekova et al. [1] optimized the geometry of the adsorbent 

heat exchanger for adsorption chilling application by using 

methanol-LiCl/SiO2 as a working fluid by considering several 

fins and channels. They found that the best geometry balances 

adsorbent granule volume, plate channels, and fins with 

optimal condensing, evaporating, and regeneration 

temperatures of 100°C, 350°C, and 800°C. A numerical study 

by Montazerifar et al. [2] examined a unique fractal fin design 

in Oil/MWCNT nanofluid multi-stream plate-fin heat 

exchangers at various angles of attack and Reynolds number 

and realized higher fluid mixing and deflection with the rise 

in attack angle of fractal fins. Jassim et al. [3] showed that 

nanofluids improved heat transfer more than base fluids. Illan-

Gomez et al. [4] tested evaporator-type PHEs with various 

refrigerants under transient settings and found robust and 

accurate heat transfer coefficient correlations. 

Baris Gurel et al. [5] studied plate heat exchangers with latent 

heat energy storage (LHTES) and several phase transition 

materials to determine optimal geometry for various plate 

geometries numerically.  

 

Mikhaeil et al. [6] discovered that evaporation heat 

transfer coefficients in an asymmetric plate heat exchanger 

varied from 1330 to 160 W/m²K, depending on the wetted 

surface and operating circumstances. Water and PCM were 

used to test plate-type heat exchangers by Rami Saeed et al. 

[7], and PCMs saved costs. Nitesh K. Panday and Shailendra 

N. Singh [8] examined multi-pass plate heat exchanger 

thermo-hydraulic performance and proposed Nusselt number, 

effectiveness, and friction factor correlations for various 

configurations. Giraud et al. [9] studied water vaporisation in 

small plate-type evaporators at different working pressure, 

fluid temperatures, and filling ratios. Using an ANN model, 

Longo et al. [10] predicted refrigerant condensation heat 

transfer coefficients in herringbone-type Brazed PHEs. Wang 

et al. [11] computationally compared plate-type heat 

exchangers to a chevron-type plate HE using H2O as the 

working fluid.  

 

Depth pitch and corrugated angle were important. Li et al. 

[12] tested bubble flow in a dimple-type plate heat exchanger 

using an air/H2O combination under different inlet and output 

circumstances. Infrared thermography was used by Berce et 

al. [13] to study carbonate crystallisation fouling in corrugated 

plate heat exchangers. Lee et al. [14] applied an aqueous 

Lithium Chloride (LiCl) solution to a plate-type heat 

exchanger to study heat and mass transfer during 

dehumidification. Taghavi et al. [15] studied Plate-Type 

Thermal Energy Storage Systems' (PTESs') effectiveness and 

performance when charging and discharging. Sopian et al. 

[16] examined the forced convective turbulent flow of SiO₂-

water nanofluid in various corrugated channel designs, such 

as straight, semicircular, and trapezoidal. L. Syam Sunder et 

al. [17] tested nickel-water nanofluids in a corrugated plate 

HE, focussing on heat transfer, friction factor, entropy, energy 

efficiency, performance index ratio and pumping power. 

Nanofluids and phase transition materials improve HE thermal 

performance. M.A. Khairul et al. [18] found that CuO/water 

nanofluids improved corrugated plate HE heat transfer 

coefficients by 27.2%.V.K. Nema et al. [19] found that Al2O3-

water nanofluids demonstrated improved heat transmission 

with increased Reynolds and Peclet numbers.  

 

Nanofluids affected pressure drop and heat transfer in 

double-dimpled pipe surfaces, according to Ehsan et al. [20]. 

Sunden et al. [21] tested a corrugated plate HE in solar energy 

systems with varying nanofluid concentrations of Al₂O₃, SiC, 

CuO, and Fe₃O₄. A computational investigation by Hasnan et 

al. [22] found that using SiO₂-water nanofluid in a 

symmetrical semicircle-corrugated channel improved heat 

transmission and flow. Vafajoo et al. [23] constructed a 

mathematical model for a plate recuperative HE that recovers 

energy from refinery flue gases and preheats input air under 2-

dimensional, compressible, and turbulent flow compared to 

flat plate heat exchanger, increasing the Chevron angle 

increased output air temperature by 18% and flue gas pressure 

decrease by 63%. Jiang et al. [24] developed a symmetrical 

capsule-type plate HE(SCPHE) with counter-rotating vortices 

to reduce flow resistance and increase performance. Lee et al. 

[25] investigated fluid flow in chevron-type PHEs by unstable 

numerical analysis with Large-Eddy Simulation (LES). The 

literature shows that corrugated structures, fractal fins, and 

nanofluids can improve heat transfer coefficients and thermal 

efficiency in industrial applications, improving energy 

efficiency.  

 

Furthermore, studying these systems' thermal 

performance under different operational situations provides a 

solid foundation for optimising heat exchange processes in 

conventional and renewable energy systems. The findings 

emphasize the need for continuing study in this area to fully 

utilise sophisticated heat exchanger designs, which improve 

energy utilisation, operational costs, and environmental 

effects in engineering applications. This research adds to heat 

exchanger technological knowledge and offers useful advice 

for future advancements. Water is a suitable solvent and 

available adequately, so it is used as base fluid. Various 

nanoparticles with different dimensions and effects of base 

fluid other than water need to be studied 

3. Materials and Methodology 
Zinc Oxide Nanoparticles (ZnONF) were used as the 

primary material in the study, with base fluid as water. Figure 

2 shows an image of nanoparticles. The density of ZnONF is 

5600 g/m3, its thermal conductivity is 13 W/mK, and its 

specific heat is 494 J/KgK. 
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Figure 3 shows WCPHE. The measurements of the 

WCPHE are taken as the length of the plate is taken as 30 cm, 

the width of the plate is 10 cm, the plate spacing for nanofluid 

is 0.5 cm, the plate spacing for hot fluid is 1.5 cm, and the 

corrugation angles were taken as 30o, 40o and 50o. 

 
Fig. 2 Zinc oxide nanoparticles 

 
Fig. 3 Photographic view of WCPHE 

 

The study was conducted using 0.01%, 0.03%, 0.05%, 

0.07%, and 0.09% volumes of zinc nanoparticles in water. Hot 

water was used as hot fluid. Table 1 shows the Thermo-

Physical properties of ZnONF. An experimental setup and its 

schematic representation are shown in Figure 4.  

 

Flow rates of both nano and hot fluids were measured by 

rotameters, rotameters calibrated to measure flow rates 

between 0.5 to 5lpm with an uncertainity of ±1% and flow 

regulation was achieved through the use of valves. Two 

motors, each with a capacity of 0.25 HP and 1500 rpm, are 

employed to pump the test fluids.  

 

The dimensions of the cold and hot fluid tanks are both 

300 mm × 300 mm × 600 mm. A collection tank was provided 

for collecting the cold fluids, and a 3000 W heater was used 

for heating the hot fluid. The test section consisted of three 

identical corrugated channels with corrugation angles of 30° 

and 50°.  

The top channel contained zinc nanoparticles in water at 

concentrations ranging from 0.01% to 0.09% and hot water 

flowed through the bottom channel. The volume flow rate of 

hot water was kept constant at 3 litres per minute, and the cold 

nanofluid's flow rate was varied. Other auxiliary components 

included the storage tanks for both fluids. 

 

Table 1. Thermo-Physical properties of nanofluid 

Zno % 

in 

water 

Density 

(Kg/m3) 

Viscosity 

* 10-6 

(Pa.s) 

Specific 

Heat 

(kJ/Kg .K) 

Thermal 

Conductivity 

(W/m.K) 

Prandtl 

number 

0 1000 1006 4.174 0.62 4.8 

0.01 1046 1090 4.137 0.64 7.05 

0.03 1138 1140 4.063 0.67 6.91 

0.05 1230 1190 3.989 0.70 6.78 

0.07 1322 1250 3.916 0.74 6.62 

0.09 1414 1300 3.842 0.78 6.40 

 
Fig. 4 Experimental setup  

 
Fig. 5 Arrangement of thermocouples on WCPHE 

In all experiments, hot water at 70°C was used to heat the 

test fluids, with an invariant flow rate. For each experimental 

measurement, the inlet and exit temperatures of both 

cold(nano) and hot fluids, along with wall temperatures at 

seven different points on the heat exchanger plate, were 

recorded using thermocouples. These thermocouples were 

welded to the plate and connected to a digital temperature 

indicator which provided accurate temperature readings with 

a precision of ±0.1°C., which provided accurate temperature 
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readings with a precision of 0.1°C. Figure 5 shows the 

arrangement of thermocouples on WCPHE. The recorded 

temperatures were used to analyze heat transfer. The hot fluid 

flow rate remained unchanged during the experiments, while 

the cold nano test fluid flow rate varied from 0.5 lpm to 1.5 

lpm. The middle plate was equipped with seven 

thermocouples distributed along its length and width to gauge 

wall temperatures. Four additional thermocouples were used 

to measure both fluids' inlet and outlet temperatures. The 

inside film heat transfer coefficient (h) was calculated for each 

flow rate by performing an energy balance using the Log 

Mean Temperature Difference (LMTD) method. Throughout 

all experiments, hot water flowed through the top corrugated 

channels, ensuring that the channel surfaces remained at a 

nearly constant temperature, which was used to heat the test 

fluids. The mathematical formulas used are as follows. T1 and 

T11 were taken as the hot fluid temperature at the inlet and 

outlet, while T3 and T2 are temperatures of cold nanofluid at 

the inlet and outlet. T4 to T10 are film temperatures. The 

average wall temperature is given by eq1. LMTD and heat 

transfer rate are given by eq 2,3, respectively. 

𝑇𝑎𝑣𝑔 =
𝑇1+𝑇2+𝑇3+𝑇4+𝑇5+𝑇6+𝑇7 

7
                                          (1) 

 

∆𝑇1 = Temperature drop at the inlet = 𝑇𝑎𝑣𝑔 - 𝑇𝑐,𝑖𝑛 

∆𝑇2 = Temperature drop at exit = 𝑇𝑎𝑣𝑔 - 𝑇𝑐,𝑜𝑢𝑡 

 

LMTD= 
(𝑇𝑎𝑣𝑔 − 𝑇𝑐,𝑖𝑛)−(𝑇𝑎𝑣𝑔 − 𝑇𝑐,𝑜𝑢𝑡)

ln(
(𝑇𝑎𝑣𝑔 − 𝑇𝑐,𝑖𝑛)

(𝑇𝑎𝑣𝑔 − 𝑇𝑐,𝑜𝑢𝑡)
)

                                  (2) 

 

Q=MFR.𝐶𝑝. 𝑇𝑐𝑜𝑙𝑑                                                            (3) 

 

Q=h.A.(LMTD)                                                              (4) 

 

Where 𝑇𝑐, and 𝑇𝑐,𝑢𝑡 represent the cold fluid’s (test fluid) 

intake and output temperatures, respectively, where MFR is 

the water’s mass flow rate. 𝐶𝑝 is the water’s specific heat 

capacity. Every temperature is expressed in degrees Celsius. 

The Nusselt number was computed once the heat transfer 

coefficient was determined 53tilizing equation 4. 

 

𝑁𝑢 =
ℎ 𝐷ℎ

𝑘
                                                                      (5) 

 

Here 𝐷ℎ is the channel's hydraulic diameter, which was 

determined using equation (6), and Reynolds number, which 

was determined using equation (7). 

 

𝐷ℎ =
4ℎ

𝑃
=

2Wx

W+x
                                                              (6) 

 

𝑅𝑒 =  
𝜌𝜗𝐷ℎ

𝜇
                                                                     (7) 

 

MFR (kg/s) = mass flow rate of fluid = 
𝜌∗𝑓𝑙𝑜𝑤𝑟𝑎𝑡𝑒

60000
        (8) 

V= Velocity of the nanofluid in (m/s) = Discharge/ Area ---- 

eq(9) 

 

4. Result and Discussions 
Corrugated heat exchanger performance is investigated 

for volume flow rate and the Reynolds number impact on heat 

transfer coefficient. Figures 6 to 10 represent the impact of the 

volume flow rate of nanofluid on heat transfer for 10o, 30o, and 

50o corrugation angles, respectively. From Figure 6, it is 

observed that h is highest for a 30o angle at Ф=0.01at 

2430.55W/m2  K. For a 10o angle, h is the least at 353.89W/m2 

K at Ф=0.05. 
 

 
Fig. 6 Volume flow rate Vs h for Ф=0.01% 

 

From Figure 7, it is observed that h increases as the flow 

rate increases for Ф=0.03%.with % increase of 69% for 30o, 

94% for 50o and 116% for 10o angle. 
 

 
Fig. 7 Volume flow rate Vs h for Ф=0.03% 

 

 
Fig. 8 Volume flow rate Vs h for Ф=0.05% 
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Fig. 9 Volume flow rate Vs h for Ф=0.07% 

 

From Figure 8, it is observed that h increases with an 

increase in flow rate at Ф=0.05%, with h highest for 30o 

corrugation angle at 2428.76W/m2 K and lowest for 100 for all 

values of flow rates at 353.89W/m2 K. 

 

From Figure 9, it is understood that an increase in 

nanoparticle concentration to Ф=0.07% and an increase in 

flow rate enhances h due to enhanced thermal conductivity 

and turbulence, respectively. 
 

From Figure 10, it is understood that higher flow rates 

enhance h, nanoparticle concentration Ф enhances heat 

transfer rate, and 30o angle is effective in heat transfer 

enhancement with a maximum h value of 4106.09W/m2 K. 

 
Fig. 10 Volume flow rate Vs h for Ф=0.09% 

 

Figures 11, 12, and 13 represent the variation of the heat 

transfer coefficient with Reynold’s number. With the increase 

in Reynold’s number, the convective heat transfer coefficient 

increased for all volume fractions of nanofluids. ‘h’ is 

enhanced with an increase in Reynold’s number for 10o, 30o 

and then decreases for  50o angle. 

 
Fig. 11 Reynold’s no Vs h for 10o angle 
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Fig. 12 Reynold’s No Vs h for 30o angle 

 

 
Fig. 13 Reynold’s No Vs h for 50o angle 
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 The impact of the percentage concentration of nanofluids 

on heat transfer rate at 0.5,1, 1.5 lpm flow rates of nanofluids 

is observed from Figures 14, 15 and 16. From Figure 14, it is 

observed that for the volume flow rate of 0.5 litres per minute, 

h is the highest for 300 angles for all nanoparticle 

concentrations. For 10, 50 degrees, there is a drop in h at 
Ф=0.05%. 
 

 
Fig. 14 Percentage concentration of nanofluid on heat transfer rate 

at 0.5lpm flow rate 

Figure 15 represents the effect of Ф on h for 1 lpm flow 

rate. h for 30 degrees is the highest, and h for 10 degrees is the 

lowest. 

 
Fig. 15 Percentage concentration of nanofluid on heat transfer rate 

at 1lpm flow rate 

 
Fig. 16 Percentage concentration of nanofluid on heat transfer rate at 

1.5lpm flow rate 

5. Conclusion 
It can be concluded that with an increase in flow rate, 

there is an increase in heat transfer coefficient. Maximum heat 

transfer coefficient is observed for 30o corrugated angle for all 

flow rates.  

 

With an increase in Reynold’s number, the heat transfer 

coefficient increased for 10, 30, and 50-degree corrugated 

plates. 30° consistently provides the highest heat transfer 

coefficients, regardless of nanofluid concentration and flow 

rate, due to its ability to effectively balance turbulence and 

viscous effects. Higher flow velocities enhance the heat 

transfer coefficient, especially at lower nanofluid 

concentrations.  

 

The improvement is more pronounced at 30°. For 10o 

angle, the heat transfer coefficient decreased as the 

nanoparticle volume fraction (phi) increased due to the 

reduced turbulence and thermal conductivity at smaller angles 

and higher phi. For 30o angle, the Heat Transfer Coefficient is 

consistently higher compared to 10° for all values of phi due 

to better turbulence-enhanced heat transfer efficiency.  

 

For a 50o angle, the Heat Transfer Coefficient is relatively 

high at phi = 0.01 but drops sharply at phi = 0.05, which 

indicates that larger angles might increase viscous effects, 

reducing heat transfer efficiency at higher phi values. The 

maximum heat transfer occurred at a 30o corrugation angle, a 

flow rate of 1.5 liters per minute (lpm), and a 0.09% volume 

fraction of ZnO nanoparticles.  

 

Furthermore, it was observed that heat transfer increased 

as the corrugation angle increased from 10° to 30° but 

decreased when the angle was further increased to 50° with 

maximum heat transfer coefficient 4106.09W/m2 K at 30o, 

1.5lpm, phi=0.01% minimum heat transfer coefficient 

353.89W/m2 K at 10o, 0.5lpm,phi=0.05%. 

 

Future Scope 
        From Figure 16, it is observed that h is highest for 30 

degrees angle for volume flow rate of 1.5 lpm due to balance 

of turbulence and viscous effects 
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