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Abstract - Optimizing ambient factors and machine operating parameters in 3D printing remains challenging due to the lack of 

real-time datasets for Machine Learning (ML). To address this, this research introduces the novel SQ-3DP dataset, aimed at 

predicting product surface quality using ML techniques. The dataset includes machine operating parameters such as nozzle 

temperature, bed temperature, and nozzle speed, alongside environmental factors like room temperature, humidity, and 

vibration. Experiments are conducted at three nozzle speeds (30, 50, 70 mm/sec) to analyze the impact of these factors on surface 

quality. Ambient parameters are collected using sensors and stored on an Arduino, with PCA and scaling applied for 

preprocessing. Exploratory and correlation studies validated the dataset’s suitability, with PCA preserving critical variance. 

The SQ-3DP dataset shows significant promise for ML-driven advancements in 3D printing, with models such as KNN, SVM, 

and Naive Bayes achieving high performance, particularly SVM, for accurate surface quality prediction. 
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1. Introduction 
The concept of 3D printing has become a transformative 

force in the manufacturing sector by producing unmatchable 

flexibility and precision in fabricating the parts for various 

applications [1, 2]. This ground-breaking technique is now 

used for rapid fabrications of customized components, 

pushing innovations in industries such as automobile, 

aerospace and biomedical fields. It plays a significant role in 

the production of medical equipment, such as prosthetics and 

orthopaedic implants [3]. Despite all these advantages, 

challenges persist due to inconsistencies in material 

properties, environmental conditions, and printer calibrations 

[4].  

Further to address the limitations, Artificial Intelligence 

(AI) and ML are being extensively used to drive the 

innovation in Additive Manufacturing (AM), particularly in 

3D printing systems [5, 6].  

The proposed technology aims to enhance efficiency by 

considering real-time environmental parameters, such as 

temperature, humidity, and vibrations, in the printing process. 

However, the lack of ample datasets continues to impede the 

seamless integration of ML in real-time applications [7]. 

ML employs statistical methods to identify trends and 

forecast outcomes in various multimodal datasets [8]. 

Predictive modelling is a key function of 3D printing, which 

aids in the optimisation of crucial factors, including print 

speed, temperature, and material utilisation [9]. This leads to 

increased manufacturing efficiency, quality, dependability, 

and print accuracy [10].  

Additionally, feedback loops driven by AI and ML may 

make design recommendations and help select the best 

materials, which will accelerate innovation and the 

implementation of 3D printing in various industries [11]. 

Through real-time adjustments to factors like print speed and 

material composition, ML also tackles important issues 

associated with environmental unpredictability, lowering 

errors and enhancing output quality [12]. 

The machine availability and downtime can be predicted 

greatly through the adoption of through the analysis of sensor 

data, machine learning [13].  ML-driven defect identification 

helps indicate the precise specifications of the printed 

components, which greatly improves the product quality [14]. 

This type of development demonstrates the application of ML 

concepts in the AM environment by enhancing scalability and 

operational efficiency. 

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Despite these successes, the majority of current research 

tends to ignore the influence of dynamic environmental factors 

and mostly uses static, machine-centric datasets. Studies that 

integrate real-time environmental data, such as temperature, 

vibration, and humidity, into prediction models for evaluating 

surface quality in Fused Deposition Modelling (FDM) are 

notably lacking. This disparity underscores the need for 

sensor-integrated datasets that capture the nuances of actual 

print environments. 
 

For example, Goh et al. [4] and Ciccone et al. [10] study 

AI-based process optimisation without taking environmental 

effects into consideration, whereas Liu et al. [14] and Jiang et 

al. [15] concentrate on optimising process parameters and 

defect detection using machine log data. Peter et al. [16] 

provided insights into process forecasting by evaluating 

machine learning models, such as gradient boosting regression 

and polynomial regression, to predict Overall Equipment 

Effectiveness (OEE) in batch production. Additionally, [17, 

18] demonstrated that ML can enhance industrial efficiency 

by forecasting OEE changes with 99.9% accuracy using 

Decision Tree algorithms, as evaluated with actual 

manufacturing data. 
 

Okpala et al. [18] highlighted the importance of TPM in 

increasing OEE in the pharmaceutical sector, demonstrating 

that quality is the most significant aspect. In contrast, Sahoo 

et al. [19] focused on real-time predictive maintenance as an 

approach to addressing the inefficiencies of conventional 

maintenance in the semiconductor sector.  
 

A major factor in sustaining highly capital-intensive 

industrial facilities is e-maintenance, which combines ICT 

with proactive tactics like e-diagnostics and e-prognostics 

[20]. Faria et al. [20] demonstrated how TPM, when examined 

using Minitab 21 and Design Expert 13, significantly 

enhanced vegetable oil production performance by focusing 

on quality, availability, and performance standards. 
 

Qin et al. [21] identified the significant potential in the 

applications of ML concepts in the AM process control and 

defect identification. Conev et al. [22] adopted gradient 

boosting models to reduce the pre-print with an intuitive user 

interface, enabling comparison of CAD drawings with 3D 

printed components. Ale et al. [23] adapted Response Surface 

Methodology (RSM) to optimise OEE by concentrating on 

quality metrics. Anish et al. [24] investigated machine 

learning regressors to forecast tensile strength, surface 

roughness, and elongation, observing that additive and radial 

basis regressors were efficient in their respective fields. 

Lukas Pelzer et al. [25] made another noteworthy attempt 

to overcome nonlinear process interdependencies by using 

Invertible Neural Networks (INNs) to calculate FDM settings 

automatically. With a prediction accuracy of up to 99.96%, 

their model, which was trained on combined process 

parameters and output quality, improved decision-making and 

decreased the need for expert input. For parameter 

optimisation in 3D printing, Dabbagh et al. [26] presented a 

unique GUI-integrated ML model; nonetheless, issues like 

data scarcity and processing costs continue to be obstacles. 

Developing and evaluating a sensor-integrated, real-time 

dataset to enhance surface quality prediction in FDM 3D 

printing represents a novel approach that addresses the 

highlighted research gaps. The main contribution is the 

development of the SQ-3DP dataset, which integrates real-

time environmental data like temperature, humidity, and 

vibration recorded by sensors and recorded using Arduino, 

with machine operating parameters, including bed and nozzle 

temperatures, in a novel way. To ensure that this combined 

dataset was appropriate for machine learning applications, it 

was meticulously cleaned and pre-processed. 

Classification methods such as K-Nearest Neighbours 

(KNN), Support Vector Machines (SVM), and Naïve Bayes 

were used to assess its prediction performance. SVM emerged 

among these as the most precise and predictable model for 

forecasting and enhancing surface quality in components that 

are 3D printed. This research is novel because it incorporates 

real-time environmental variability into the predictive 

modelling process, departing from traditional, static datasets. 

This approach improves the practical application of machine 

learning in additive manufacturing and addresses important 

real-world problems. 

A variety of operating settings were captured by the 

dataset, which was compiled employing three distinct print 

speeds: 30 mm/s, 50 mm/s, and 70 mm/s. To comprehend 

feature distributions, identify outliers, and investigate inter-

variable connections, exploratory data analysis was carried 

out. PCA and feature scaling were two preprocessing methods 

used to lower dimensionality and enhance data quality. An 

important step towards developing intelligent, adaptable, and 

highly precise additive manufacturing systems is the 

application of machine learning algorithms to this modified 

dataset. 

2. Materials and Methods 
To investigate the influence of environmental conditions 

and machine operating parameters, such as nozzle 

temperature, bed temperature, and print speed, on surface 

quality in AM, this study integrates multiple sensors into an 

FDM 3D printer. The goal is to generate a comprehensive 

dataset that can be used to train AI models for predictive 

analysis. The setup incorporates key sensors, including the 

DHT11 temperature and humidity sensor, NTC Thermistor 

100k for nozzle temperature monitoring, a dedicated humidity 

sensor, and the SW-420 vibration sensor. These sensors 

continuously collect real-time data during the printing 

process, enabling a dynamic understanding of how various 
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parameters affect the final print quality. As illustrated in 

Figure 1, the sensor-integrated 3D printer forms the basis for 

the generation of the SQ-3DP dataset. This dataset is 

subsequently used to evaluate the printer’s performance. 

Finally, the surface quality of the printed objects is assessed 

using standardized measurement techniques to ensure that the 

final products meet high precision and quality standards.  

 

The experiments were conducted using the Ender 3 V2, a 

versatile and widely adopted FDM 3D printer known for its 

reliability and precision. The printer offers a build volume of 

220 × 220 × 250 mm and has overall dimensions of 475 × 470 

× 620 mm, with a total weight of approximately 7.8 kg. It 

supports a layer resolution range of 0.1–0.4 mm and a maximum 

printing speed of up to 180 mm/s. The standard nozzle diameter 

is 0.4 mm (interchangeable), and it accommodates a 1.75 mm 

filament diameter. The printer is capable of reaching a 

maximum nozzle temperature of 255°C and a bed temperature 

of up to 100°C, making it compatible with commonly used 

thermoplastics such as PLA and ABS. 

 

 
Fig. 1 Integration of sensors for 3D printers 

 

For the purpose of this study, PLA filament was used 

under consistent operating conditions. Figure 1 depicts the 

detailed information about the sensor integration. The printing 

parameters were set as follows: layer height of 0.3 mm, wall 

thickness of 1.2 mm, infill density of 20% with a line pattern, 

nozzle temperature maintained at 205°C, and bed temperature 

set at 50°C. To assess the impact of print speed on surface 

quality, three different material deposition speeds, 30 mm/s, 

50 mm/s, and 70 mm/s, were employed. These settings were 

chosen to simulate typical FDM printing scenarios and 

introduce controlled variations in surface finish outcomes. 
  

Fig. 2 Proposed framework for the generation of the SQ-3DP dataset 

 

2.1. Sensor Integration and Roles 

To collect environmental and process data, four types of 

sensors were integrated with the printer. The details of the 

sensors are shown in Table 1. 

 DHT11 was used to monitor ambient and bed temperature 

as well as humidity. 

 NTC Thermistor 100k measured the real-time nozzle 

temperature to prevent overheating. 

 A dedicated humidity sensor monitored environmental 

moisture levels, which can adversely affect hygroscopic 

filaments like PLA. 

 SW-420 vibration sensor captured mechanical 

disturbances that could impact layer adhesion and surface 

smoothness. 
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Table 1. Details of the sensors used to capture the data 

Sensor Principle Measurement range Least count 

DHT11 Temperature Polymer film’s electrical response. 0 to 50 °C 0.1 °C 

NTC thermistor 100k Sintered semiconductor temperature sensing -40 to 150 °C 0.1 °C 

Humidity Air thermal conductivity sensing 10 to 90 % 1 % 

SW-420 vibration sensors Vibration detection via a switch 0 to 420 mm/s 0.01 mm/s 

Figure 2 shows the hardware integration setup. The 

dataset required for training machine learning models to 

predict surface quality was collected from all integrated 

sensors during the printing process at various nozzle speeds. 

These sensors were interfaced with an Arduino 

microcontroller, which served as the central data acquisition 

unit. Real-time data comprising environmental and machine 

parameters was recorded continuously and stored on an SD 

card connected to the Arduino. This setup allowed efficient 

logging of high-volume data for subsequent analysis. 

 

2.2. Surface Quality Measurement 

To accurately label the surface quality of the printed parts, 

physical measurement techniques were employed. 

Specifically, surface texture was evaluated using the Rubert 

surface roughness comparator (as shown in Figure 3), which 

enables a tactile and visual comparison against standardized 

roughness samples. Based on the surface roughness (Ra) 

values, printed samples were categorized into three classes as 

outlined in Table 2. 

 
Table 2. Surface roughness categorization 

Surface Roughness (µm) Categorization 

3.2 to 6.3 Good 

6.3 to 12.5 Moderate 

Greater than 12.5 Bad 

 

This categorization was used to define the target labels for 

machine learning classification tasks. It ensured that the 

models were trained with data grounded in real-world physical 

measurements, thereby enhancing prediction accuracy and 

reliability. 

 

Following data collection and labelling, the SQ-3DP 

dataset was structured to include seven features: bed 

temperature, nozzle temperature, room temperature, humidity, 

vibration, nozzle speed, and surface quality. 

 

 
Fig. 3 Rubert surface roughness comparator  

The first six features were derived from the sensors and 

printer settings, while the surface quality column served as the 

categorical target variable with three distinct classes: Good, 

Moderate, and Bad. The final dataset consisted of 12,177 

samples, with the distribution of these categories presented in 

Figure 4. This comprehensive dataset provides a solid 

foundation for developing machine learning models capable 

of predicting surface finish based on real-time sensor and 

process data. 

 

 
Fig. 4 Distribution of the dataset based on surface quality 

 

These sensors were connected to an Arduino Mega 2560 

microcontroller, with data logged every second via an SD 

card. Calibration of all sensors was performed prior to 

deployment using laboratory-grade equipment and 

standardized methods (e.g., saturated salt solutions for 

humidity calibration, vibration calibrators for SW-420). This 

ensured reliable, time-synchronized data collection. 

 

2.3. Data Preprocessing and Rationale for PCA  

To ensure high model performance, a structured 

preprocessing pipeline was implemented. The steps and their 

justifications are as follows: 

 

2.3.1. Normalization 

All numerical features were scaled to a 0–1 range using 

Min-Max normalization. This step is crucial, particularly for 

algorithms like KNN and SVM, to avoid features with higher 

magnitudes (e.g., vibration amplitude) from dominating 

model learning. 

2.3.2. Handling Missing Values: 

Sporadic sensor dropouts were observed (mostly in 

vibration readings). These were corrected using forward-fill 

interpolation, which preserves time continuity without 

artificially inflating variance. 

0

1000

2000

3000

4000

5000

6000

Good Moderate Bad

N
u
m

b
er

 o
f 

sa
m

p
le

s

Surface quality categories



Aruna Mokhamatam et al. / IJME, 12(7), 25-34, 2025 

 

29 

2.4. Principal Component Analysis (PCA) 

PCA was employed for dimensionality reduction, 

retaining at least 95% of the variance. This was motivated by 

several reasons: 

 To remove multicollinearity, especially between nozzle 

and bed temperatures, and between humidity and room 

temperature, which showed a strong inverse correlation 

of -0.96. 

 To enhance generalization by reducing overfitting caused 

by redundant features. 

 To improve computational efficiency, particularly in 

model training and cross-validation stages. 

 
Fig. 5 PCA Plot 

PCA transformed the correlated input space into a new 

orthogonal space of principal components, each explaining a 

significant portion of the dataset's variance. This allowed the 

dataset to retain its informational richness while being simpler 

to model. As demonstrated in the PCA plot (Figure 5), 

reducing from six to four components retained over 95% of 

the variance. 

3. Machine Learning 
Three supervised machine learning algorithms, K-Nearest 

Neighbours, Support Vector Machines, and Naïve Bayes, 

were trained and assessed using the SQ-3DP dataset in order 

to forecast and optimise surface quality in FDM-based 

additive manufacturing. The efficacy of each model in 

dividing surface quality into "Good," "Moderate," and "Bad" 

categories was evaluated using accuracy, precision, recall, and 

F1-score. 

3.1. K-Nearest Neighbours (KNN) 

A popular non-parametric and user-friendly machine 

learning technique for classification and regression 

applications is KNN. It classifies an input according to the 

majority label of its "k" nearest neighbours in the feature 

space, using the proximity principle. Given its robustness in 

handling complex, non-linear data distributions, KNN has 

proven suitable for applications in 3D printing, such as pattern 

recognition and defect classification. 

In this study, a cross-validated accuracy plot (Figure 6) 

was of K. The x-axis represents different values of K, while 

the y-axis, used to evaluate model performance across various 

values, indicates accuracy, ranging from 99.72% to 99.90%. 

The plot demonstrates a general improvement in accuracy 

with higher K values, highlighting that a larger neighbourhood 

reduces noise sensitivity. However, excessive values of K can 

over-smooth the decision boundary, potentially reducing 

model precision. 

The testing results for KNN are illustrated in Figure 7, 

showing high values for accuracy, precision, and recall, 

demonstrating KNN’s capability to effectively generalize on 

unseen surface quality data. 

 

 
Fig. 6 Cross validated accuracy of a KNN classifier 

 

3.2. Support Vector Machine (SVM) 

SVM is a powerful classification algorithm that identifies 

the optimal hyperplane for separating classes in high 

dimensional space. It is particularly effective for nonlinear 

classification when combined with kernel functions such as 

the Radial Basis Function (RBF). 

Model tuning was performed using hyperparameters C 

and gamma, with cross-validated accuracy plotted in Figure 8. 

The model achieved a peak accuracy of 99.89%, indicating its 

superior classification capabilities for this dataset. SVM’s 

high performance stems from its ability to manage high-

dimensional, multivariate inputs effectively, especially when 

features are correlated or overlapping. 

Figure 9 shows the testing results of the optimized SVM 

model, highlighting excellent precision (99.86%), recall 

(99.90%), and F1-score (99.88%), making it the most effective 

classifier among the models evaluated. 
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Fig. 7 Testing results for KNN 

 

3.3. Naïve Bayes 

 As shown in Figure 10, the testing results for Naïve Bayes 

reflect solid but relatively lower performance compared to 

KNN and SVM, with an accuracy of 95.63%, precision of 

94.40%, and recall of 97.03%. Its performance, though 

commendable, suggests that it is less suited for datasets with 

complex dependencies such as SQ-3DP.  

Table 3. Model Performance 

Model 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 Score 

(%) 

KNN 99.61 99.64 99.53 99.59 

SVM 99.89 99.86 99.90 99.88 

Naïve 

Bayes 
95.63 94.40 97.03 95.54 

 

3.4. Comparative Analysis 

A summary of all model performances is presented in  

From this comparative analysis, SVM emerged as the most 

accurate and balanced model, followed closely by KNN. 

Naïve Bayes, while efficient, lagged in performance due to its 

assumption of feature independence in a correlated sensor-

based dataset. 

3.4.1. Exploratory Data Analysis 

Additional exploratory data analysis provided valuable 

insights: 

 Pair Plots (Figure 11): Highlighted separable patterns 

between surface quality classes and revealed no 

significant outliers. 

 Correlation Heatmap (Figure 12): Demonstrated strong 

relationships, such as a positive correlation (0.94) 

between nozzle and bed temperatures and a negative 

correlation (-0.96) between humidity and room 

temperature. These interactions validate the need for 

models that integrate both machine and environmental 

data for accurate predictions. 

 
Fig. 8 Parameters C, gamma for SVM 

 
Fig. 9 Parameters C, gamma for SVM Vs cross-validated accuracy for 

the mean test score 

 
Fig. 10 Testing results for Naïve Bayes 
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3.5. Limitations 

While the results are promising, several limitations of this 

study are acknowledged: 

 Limited Generalizability: The dataset is specific to one 

printer model (Ender 3 V2) and one filament type (PLA). 

Applying the models to different printers or materials 

may require retraining or transfer learning. 

 Sensor Calibration Drift: Over time, sensor accuracy can 

drift, which may affect data reliability unless recalibrated 

frequently. 

Model Scope: Only three classification algorithms were 

tested. More sophisticated models such as Random 

Forest, XGBoost, or neural networks could offer 

improved performance.  

 Surface Quality Validation: Surface classification relied 

on visual assessment via a comparator. 

 Advanced techniques like profilometry or 3D scanning 

could enhance objectivity. 

 Controlled Environment: The experiments were 

conducted in a lab. Industrial conditions with fluctuating 

temperatures, dust, and machine vibrations may influence 

results differently. 

 

4. Future Research Directions and Real-World 

Applications 
The development of the SQ-3DP dataset lays the 

groundwork for a wide range of future research opportunities 

and practical implementations across multiple industries. Its 

integration of machine and environmental parameters in a real-

time sensor-rich environment presents unique avenues for 

expanding the scope and impact of Additive Manufacturing 

(AM). 

 

4.1. Advanced Machine Learning and AI Integration 

To further improve the accuracy and robustness of surface 

quality prediction, future studies can explore the deployment 

of advanced machine learning models. Deep learning 

architectures such as Convolutional Neural Networks (CNNs) 

and Long Short-Term Memory Networks (LSTMs) are 

particularly suited to learning spatial and temporal patterns 

from sensor data, allowing for finer-grained prediction and 

anomaly detection. 

Additionally, online learning and reinforcement learning 

approaches can be introduced to facilitate real-time feedback 

and defect correction during the printing process. This would 

transform the static quality prediction model into a dynamic, 

adaptive system that optimizes print parameters on the fly. 

4.1.1. Sensor Ecosystem Expansion 

The inclusion of acoustic, thermal, optical, or laser-based 

sensors could further enrich the dataset, enabling a more 

comprehensive view of print quality and environmental 

influences. These sensors can capture subtle defects such as 

delamination, porosity, or thermal inconsistencies that 

traditional sensors may miss. 

4.1.2. Cross-Material and Cross-Platform Generalization 

The current study is limited to PLA filament and a single 

printer model. Future work can extend the dataset to include 

diverse materials such as ABS, PETG, or composites, as well 

as different printer architectures. Transfer learning methods 

could be applied to adapt models trained on one material or 

setup to others, improving the generalizability of AI models in 

AM. 

4.2. Explainable and Trustworthy AI 

With increasing deployment in regulated industries such 

as aerospace and biomedical manufacturing, the need for 

explainable AI (XAI) becomes critical. Tools such as SHAP 

(Shapley Additive Explanations) and LIME (Local 

Interpretable Model-Agnostic Explanations) can help interpret 

predictions, build trust, and support certification and 

regulatory approval processes. 

4.3. Integration with Digital Twin and Industry 4.0 

Frameworks 

The SQ-3DP dataset can be embedded into digital twin 

architectures to create real-time virtual replicas of the 3D 

printing environment. This would enable predictive 

maintenance, process simulation, and self-optimizing control, 

advancing the vision of smart factories under the Industry 4.0 

paradigm. 

 

 
Fig. 11 Pair-Plot visualization of SQ-3DP dataset (0-Good,1-Medium,2-

Bad) 
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Fig. 12 Correlation visualization of the SQ-3DP dataset using a heatmap 

4.4. Real-World Industrial Applications 

The practical potential of this research spans several high-

impact domains: 

 In biomedical manufacturing, AI models trained on the 

SQ-3DP dataset can identify micro-defects in 3D-printed 

implants, enhancing safety and performance. 

 In the aerospace industry, accurate surface prediction can 

ensure tight dimensional tolerances in mission-critical 

components like brackets and housings. 

 In automated manufacturing environments, the dataset 

can power adaptive AM systems, enabling real-time 

quality assurance and reducing human intervention. 

By combining these advanced approaches with real-world 

integration, the SQ-3DP framework can serve as a stepping 

stone toward fully autonomous, high-precision, and intelligent 

additive manufacturing ecosystems.  

5. Conclusion 

The study on the SQ-3DP dataset for Predicting Surface 

Quality in 3D Printing using Machine Learning is specifically 

focused on quantifying and optimize the FDM 3D printing 

process using Machine learning concepts. Compared to the 

other approaches, which primarily rely on the static machine 

parameters, the SQ-3DP dataset uniquely captures real-time 

data from both machine (nozzle temperature, bed temperature 

and printing speed) and environmental factors (room 

temperature, humidity and vibration), providing a holistic 

view of the process. 

The Integration of a microcontroller (ARDUINO) system 

for obtaining live data from the sensors makes a significant 

enhancement over traditional datasets. This real-time dataset 

acquisition method allows capturing transient thermal and 

mechanical fluctuations, which are difficult to capture in 

traditional methods, making it a more dynamic dataset for 

modelling purposes.  

Techniques such as Standard scaling and principal 

component analysis were adapted as preprocessing techniques 

for refining the dataset for ML.   Four principal components 

extracted from six variables captured over 95% of the 

variance, ensuring that predictive performance remained the 

same. Adapting these steps improves the training speed and 

model interpretability when compared to earlier studies.  

Further into the study, the correlation and empirical 

validations have shown the critical dependencies, such as the 

strong influence of printing speed on the surface finish, which 

was underrepresented in earlier studies, which was 

emphasizing on the thermal properties alone. The study, in 

combination with both thermal and mechanical factors, has 

provided a new insight to understand the effect of ambient 

conditions on the surface quality, an area seldom addressed 

with such depth in prior literature. 

To analyse the effect of the dataset, three classifiers, viz. 

KNN, SVM and Naive Bayes were trained and evaluated. On 

the observations, SVM has achieved better accuracy 

compared to any other models previously published in 
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outperforming across all the performance parameters, 

including accuracy, precision, recall and F1-score. The high-

resolution sensor-enriched dataset, also with a panned 

preprocessing pipeline, is responsible for achieving better 

performance, which allowed for more reliable pattern 

detections and generalisation.                                                                                                     

The SQ-3DP dataset represents a substantial 

advancement over state-of-the-art methods by offering real-

time, multi-factorial data collection and demonstrating 

improved predictive accuracy through optimized machine 

learning workflows. This positions it as a critical enabler for 

intelligent, closed-loop control systems in additive 

manufacturing, fostering higher reliability, consistency, and 

surface quality in 3D printed parts.
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