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Abstract - Creating innovative products within stringent timeframes presents a significant hurdle for small-scale manufacturers, 

highlighting the necessity for innovative solutions. To develop products effectively, it is essential to have a deep understanding 

of the complex interplay between product features, manufacturing processes, and market requirements. In this context, a 

technique known as Rapid Prototyping (RP) has emerged as a promising solution, but its successful implementation relies on 

specialized expertise and the ability to navigate intricate variables. For example, the design and optimization of water sprinklers 

offer opportunities for innovation in both commercial and agricultural contexts, with key factors such as water pressure and 

coverage playing a crucial role. Regular testing of prototypes ensures the efficacy of these systems, making RP the preferred 

method for prototyping. However, the implementation of RP is often hindered by a lack of skilled expertise and the complexity 

of process parameters. This research conducts a comparative evaluation of RP methods, using a decision-making approach that 

considers multiple criteria to assess product attributes such as surface finish, production duration, accuracy, strength, and cost. 

This MCDM approach enables ranking of available methods. The fundamental objective of the mentioned study is to calculate 

the most suitable RP method for manufacturing prototypes of sprinkler system components, enabling small scale manufacturers 

to develop innovative products efficiently and effectively. 
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1. Introduction 
  In today's business landscape, companies believe in 

product development and modification to stay ahead of the 

competition. These modifications can be minor, such as 

tweaking the design or enhancing the aesthetics, or major, 

involving a complete overhaul of the product. To successfully 

implement these changes, organizations must conduct a 

thorough assessment of their internal capabilities and vendor 

partnerships to ensure they can accommodate the 

modifications. Effective planning requires careful 

consideration of several key factors, including the 

manufacturing requirements for specialized equipment, the 

need for additional inspection tools, and the adaptability of 

machinery to accommodate product changes. Creating 

physical prototypes allows companies to visualize and address 

potential issues, ensuring a smooth transition. When choosing 

the best method from a range of options, designers must 

carefully evaluate each alternative's unique characteristics, 

applications, benefits, and drawbacks. A deep knowledge of 

the functional needs for individual components, as well as the 

specific design scheme, is essential. Selecting the wrong 

method can result in significant costs and premature 

component failure, making it a critical challenge for designers 

to identify the optimal approach for diverse engineering 

applications. To overcome these challenges, designers must: 

1. Select materials and methods with specific functionalities. 

2. Balance desired outcomes with minimal costs. 

3. Adopt a systematic approach to process selection. 

 

  RPT does not need special tooling like injection molding; 

instead, it uses support structures. Availability of methods and 

capabilities, like material suitability—as different materials 

like polymers and metals can be used—is considered. Product 

design changes are possible at any stage of manufacturing. 

Any design change or product stage is observed at the time of 

manufacturing [1]. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1 Process selection parameters  
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1.1. Rapid Prototyping and Its Industrial Relevance 

  Rapid prototyping refers to a collection of methods that 

enable the fast creation of physical models or components 

directly from 3D Computer-Aided Design (CAD) files. These 

techniques allow designers and engineers to quickly produce 

scaled-down versions of parts or assemblies, helping in the 

visualization and evaluation of design concepts before full-

scale production. The current era of Industrie 4.0 demands 

rapid development and rapid response to customers. RPTs are 

used mostly for rapid response with higher accuracy. Various 

technologies in RPT, like Selective Laser Sintering (SLS), 

Stereolithography (SLS), 3D printing (3DP), and Fused 

deposition method (FDM), are available in the market. Every 

method has its own characteristics and development time, with 

the desired attributes of the product. The widespread adoption 

of rapid prototyping (RP) technologies presents educational 

institutions and manufacturing organizations with a complex 

challenge: selecting the optimal system from numerous 

options. To make informed decisions, they must carefully 

evaluate each system's capabilities, features, and applications. 

RP technologies leverage additive manufacturing techniques, 

enabling the creation of intricate physical prototypes through 

layer-by-layer deposition. This transformative process 

revolutionizes traditional manufacturing methodologies, 

offering unparalleled design flexibility and efficiency [2, 3].  

Due to a number of rapid prototyping technologies available 

in the market, appropriate technology selection is difficult.  

 

  The selection of proper processes is a multitasking and 

complex process. It's sensitive for users by RP experience to 

consider an appropriate process reason, as there are numerous 

RP systems all over the world, and the formal selection varies 

according to numerous concepts. Similar products with slight 

changes in them may be most liable to the change in molds / 

conventional manufacturing methods, which proves to be 

costly to the manufacturer. Small-scale industries may not 

sustain these variations at a rapid pace, and hence a new 

technique is desirable that is easy to identify, select, 

implement and cost-effective. The applications of RPT 

involve providing design, function, end use or manufacturing 

prototypes. These prototypes help in decreasing the 

development lead time in many of the applications. Process 

selection complexity creates doubts in its implementation. 

Product quality and its costing are the main focus of this 

product development work.  
 

  

 

 

 

 

 

 

 

 
 

Fig. 2 Process selection complexity  

1.2. Rapid Prototyping Methods and their Selection 

 Rao and Padmanabhan [2] pioneered a groundbreaking 

methodology for selecting optimal rapid prototyping (RP) 

methods tailored to specific part applications. By integrating 

graph theory and matrix analysis, their approach 

systematically evaluates RP process selection criteria and their 

accurate importance within the context of the intended 

application. Bahnini et al. [4] performed a comparative 

assessment of traditional (RP) manufacturing processes. Their 

study systematically examined various aspects of additive 

manufacturing, including its prospects, current status, and 

applications. Mançanares et al. [5] developed a decision-

making model for optimizing the sequence and ranking of 

rapid prototyping (RP) methods. They leverage the 

“Analytical Hierarchy Process (AHP) to estimate and 

prioritize the most capable technologies & machines”, which 

means these methods provide appropriate weights to 

individual attributes. Many important Machine parameters are 

considered in the AHP-based selection process, ultimately 

yielding a ranked assessment of manufactured parts. Lan [6] 

introduced a collaborative framework enabling users and rapid 

prototyping (RP) manufacturers to interact remotely. This 

approach facilitates the sharing of manufacturing facilities and 

enhances their availability. Lan proposed an integrated 

manufacturing system combining RP and traditional 

manufacturing. The web-based Rapid Prototyping 

Technology (RPT) model supports remote services and 

manufacturing for rapid prototyping products.  

 

1.3. Multi-Criteria Decision-Making Techniques 

        Wang et al. proposed an innovative hybrid MCDM 

approach, combining design of experiments (DOE) and grey 

relational analysis (GRA) to form a robust decision-making 

framework, referred to as the DOE-GRA model. This 

methodology addresses process selection challenges in multi-

criteria scenarios. To validate its effectiveness, three case 

studies were analyzed: fast prototyping procedure selection, 

lenient manufacturing system evaluation, and automated 

inspection system choice. Comparative results reveal that the 

DOE-GRA method exhibits minimal sensitivity to weight 

fluctuations, offers straightforward and rapid calculations, and 

demonstrates robustness and practicality, making it well-

suited for MCDM applications [7, 24, 25]. Karande and 

Chakraborty [9] investigated the app of the “MOORA” 

method in material selection, focusing on multi-objective 

optimization. Their research assessed the “reference point 

strategy & full multiplicative MOORA” method, providing 

insights into their problem-solving capabilities. Chatterjee and 

Chakraborty [10] explored the potential of the ORESTE 

method in addressing complex AMS selection challenges. 

Five diverse case studies demonstrated its effectiveness in 

evaluating industrial robots, flexible manufacturing systems, 

rapid prototyping processes, manufacturing cell machines, 

and non-traditional machining processes. Saaty's [11] 

groundbreaking work introduced a pairwise comparison 

theory, harnessing expert judgments to quantify intangible 
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factors. The scale of absolute judgments assesses relative 

dominance, enabling decision-makers to evaluate complex 

attributes. Dweiri et al. [12] presented an AHP-based decision 

support model for supplier selection, focusing on four pivotal 

criteria: “price, quality, delivery, and service”. By 

incorporating expert judgments through AHP, the model 

provides a structured approach to evaluating and ranking 

potential suppliers. Mohammad Kazem Sayadi et al. [13] 

advanced the VIKOR method by incorporating interval 

numbers and decision-maker optimism levels. This 

enhancement enables effective multi-criteria optimization and 

conflict resolution. By calculating a ranking index based on 

closeness to the best idea, the VIKOR method gives a robust 

framework for evaluating complex alternatives [26].   

Chandra et al. [29] formulated a hybrid MCDM integrating 

AHP-TOPSIS framework. It evaluated AM technologies on 

economic, social, and environmental criteria. This study 

ranked the SLS, FDM, and SLA methods on the above-

mentioned criteria. Exper surveys and sensitivity analysis 

were carried out to validate the results. Similarly, Vimal et al. 

[30] utilised FAHP to compare RP alternatives. The author 

developed a decision support system for a sustainable 

manufacturing scenario. A researcher introduced an integrated 

MCDM approach using multiple tools to support more 

balanced and consistent decision-making across technical, 

financial, and operational aspects. Algunaid et al. [31] 

presented a methodological framework based on DEMATEL, 

AHP, and TOPSIS. The framework is specially designed to 

select RP. The study evaluated multiple options across 

multiple criteria. Sensitivity analysis and a survey were 

implemented to validate it with real-world RP 

implementation. D. Ren et al [32] structured an MCDM 

framework for selecting additive manufacturing (AM) 

methods. It utilised the AHP-TOPSIS analytical method to 

rank the available alternatives. Built, Cost, and mechanical 

properties were the main criteria considered for the study. The 

model was validated with the case study, proving its 

applicability in a decision-making scenario in AM. Menekşe, 

A et al [33] employed hybrid Fuzzy MCDM techniques 

CRITIC + EDAS with Pythagorean fuzzy logic. It managed 

the uncertain and subjective judgments. This makes the 

methodology more robust. 

1.4. Process Parameters  

 Sharanjit Singh et al. [14] conducted a parametric analysis 

of the laser-sintered polyamide component, concentrating on 

laser power, scan distance, bed temperature, hatch length, and 

scan count. The results highlighted the critical role of scan 

spacing in influencing density and hardness, surpassing the 

impact of other significant factors. K. Chockalingam et al. [14] 

conducted an in-depth analysis of process parameters 

impacting part strength in additive manufacturing. Their study 

focused on layer thickness, post-curing time, and orientation, 

utilizing the design of experiments to derive empirical 

relationships and optimize part strength. L. Hitzler et al [16] 

studied characteristics of Invar 36 components. Components 

were manufactured by laser powder-bed fusion (LPBF). The 

study focused on the thermal expansion of material and elastic 

stiffness. The study considers various temperature ranges. 

Relationship between processing parameters and temperature-

dependent Young’s modulus. It focused on retention of ultra-

low thermal expansion up to ~100 °C - key for precision 

engineering applications. Mohamed et al. [17] applied the 

design of experiment and the Taguchi design study. The 

author experimented with PC/ABS instead of using pure ABS 

alone. This study optimises FDM process parameters. An 

integrated material study is carried out in this work. 

 

1.5. Inferences from Literature  

 The rapid prototyping sector faces technological 

saturation, complicating the selection process [17]. 

Historically, research has prioritized high-volume 

manufacturing, neglecting the unique demands of small-scale 

producers with restricted production runs [18]. The constant 

influx of innovative materials and processes renders 

traditional selection frameworks obsolete, underscoring the 

necessity for adaptable, knowledge-driven approaches to rapid 

prototyping method selection [20]. 

 
 

 

 

 

 

 

 
Fig. 3 Steps for prototype manufacturing  

 

 Decreased development time and reduction in flaws in 

design and manufacturing are the main outcomes of RPT. 

Several challenges in process selection, like expertise, 

materials, cost, service conditions, and availability, make 

implementation difficult. This motivates further study in RPT 

and its effective use in small-scale industries. None of the 

researchers provided a concrete platform to optimize the RP 

process selection complexity. Very little emphasis has been 

given to analytical support for RP process selection. Rapid 

prototyping methods offer diverse options for product 

development and modification. However, selecting the correct 

method is complex and time-consuming due to interconnected 

factors: quality, part properties, cost, build envelope, and build 

time. As per the review, very little importance has been given 

to implementing RP in small-scale industries due to 

limitations in expertise. Proper process selection criteria have 

not yet been developed for a particular product. Components 

with slight variations in specifications were not considered. In 

adherence to the literature on manufacturing using available 

RPT methods, no concrete database or predictive model has 

been presented in research by any of the researchers. For any 

specific component, available studies have limitations. No 

broad study or mathematical modeling has been presented 

previously. 
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1.6. Real-World Challenges  

 RP implementation in small-scale industries is facing 

material limitations, cost overruns, equipment reliability 

issues, and skill gaps. For developing a functional prototype 

in the medical device process, the selection becomes too 

tough. In certain applications of aerospace components, 

regulatory and certification hurdles make RP implementation 

very slow.      

 

2. Analytical Methodology 
 MCDM Techniques play an important role in process 

selection for specific products with desired attributes. The 

number of variables with production uncertainty makes it 

mandatory to implement the analytical study of the different 

processes and their parameters with the desired attributes of 

the product. MCDM offers various advantages over actual 

experimentation, as experimentation involves a loss of 

resources. Actual experimentation is carried out to find out the 

considered attributes using direct measurement techniques. 

These product measurements are placed in a measurement 

matrix. This methodology helps rank the available RPT 

methods without complex calculations.  

 

 This approach provides concrete analytical support to the 

ranking procedure between available RPT methods. 

“Duraform, SLResin, ABSM40, and PC ABS are considered 

for the manufacturing of the prototype on SLS, SLA, FDM, 

and 3DP, respectively. The part manufactured with the help of 

this available RPT method can be used in the sprinkler system 

head. This system comprises several other parts and 

assemblies to ensure an effective sprinkling system. The 

producing part must have the highest tensile strength, surface 

finishing, geometrical accuracy, and lowest build time, along 

with cost.  

 

The equipment and instruments used for measuring key 

product attributes, including surface roughness and tensile 

strength. The testing procedures followed included the use of 

a contact-type surface profilometer for surface finish and a 

universal testing machine (UTM) for tensile testing. The 

standard protocols referenced during evaluations include ISO 

4287 for surface roughness and ASTM D638 for tensile 

testing of polymer-based samples. 

 

2.1. MCDM Method Selection 

 The Simple Additive Weighting method was chosen 

because it is straightforward, easy to apply, and works well 

when dealing with numerical data. It allows for quick 

comparison across different alternatives by simply adding up 

weighted scores, which makes it both practical and efficient. 

The Weighted Product Method was also included, as it offers 

a different approach by using multiplication instead of 

addition. This makes it especially useful when the criteria are 

expressed as ratios or percentages, such as cost efficiency or 

build speed. Lastly, we selected VIKOR because it is designed 

to find a compromise solution in situations where trade-offs 

exist between conflicting criteria. This is particularly relevant 

for rapid prototyping, where choosing the best method often 

involves balancing performance, cost, and material properties. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Fig. 4 Methodology for analytical calculation  

 

2.2. Simple Additive Weightage (SAW) [1] 

 The terms Surface roughness, Geometrical accuracy, 

Tensile strength, build time, and Cost will be mentioned as 

SA, GA, TS, BT, and C, respectively, henceforth in the 

document. A measurement matrix is formed using available 

measured values from components. Different components 

were manufactured using stereolithography, specific laser 3D 

Printing, Sintering, and Fused deposition modelling methods. 

Surface roughness is measured using a talysurf roughness 

tester, and values are measured in microns. Geometrical 

accuracy is considered in mm, tensile strength in MPa, build 

time in minutes, and cost in rupees. Table 1 shows 

measurement values obtained from the product.    
 

Table 1. Measurement matrix 

 SF GA TS BT C 

SLA 10 0.168 41 185 1100 

SLS 21 0.219 42 175 900 

3 DP 30 0.41 37 170 930 

FDM 31 0.326 33 190 950 

 

 After the formulation of the measurement matrix, it is 

normalized using Equation (1) [23]. 

 

𝑋 i, j =
x i,j min

𝑋𝑖,𝑗
                    (1) 
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To ensure consistent results in multi-criteria decision-

making, normalization is a crucial step [28]. By transforming 

all criteria to a common unit, normalization enables the 

comparison of different criteria with varying units [29]. This 

process eliminates the dependency on units, allowing for a 

more accurate and reliable evaluation of the criteria [30]. As 

illustrated in Table 2, the normalized values demonstrate the 

importance of normalization in facilitating a fair and 

consistent comparison of the criteria. 

 
Table 2. Normalization matrix 

 SF GA TS BT C 

SLA 0.9761 1 1 0.91891 0.8181 

SLS 1 0.47 0.7671 0.971428 1 

3 DP 0.8809 0.333 0.4097 1 0.9677 

FDM 0.7857 0.3225 0.5153 0.89473 0.9473 

  

  The overall score of an alternative can be calculated using 

a weighted sum of the normalized scores of each criterion. 

This can be represented mathematically by Equation (2) [23, 

28]. 

 

𝑃𝑖 = ∑ 𝑤𝑗(𝑦𝑖𝑗)
𝑛𝑜𝑟𝑚𝑎𝑙

𝑚
𝑗=1                   (2) 

 
Table 3. Multiplication matrix 

 SF GA TS BT C 

SLA 0.3 0.23 0.18 0.11 0.08 

SLS 0.1 0.17 0.19 0.12 0.1 

3 DP 0.1 0.09 0.16 0.13 0.09 

FDM 0.1 0.1 0.14 0.11 0.09 

 

 Taking into consideration all relevant attributes, the 

overall composite score is calculated as shown in Table 4. It 

provides an overall evaluation of each alternative. Also., It 

facilitates the ranking of available RPT methods with 

improved consistency [28-30].  It is useful to rank the RPT 

methods among varying environments. The effective ranking 

is obtained through this method.     

 
Table 4. Composite score by SAW 

 Pi 

SLA 0.966754 

SLS 0.759391 

3 DP 0.605066 

FDM 0.591769 

 

2.3. Weighted Point Product Method (WPM) [1, 23] 
Using the measurement matrix and normalization matrix, the 

composite or overall performance score (PSI), Pi of an Ai, is 

determined by Equation (3) [23]. 

 

𝑃𝑖 = ∏ [(𝑦𝑖𝑗)
𝑛𝑜𝑟𝑚𝑎𝑙

]
⥂𝑤𝑗𝑚

𝑗=1                     (3) 

Table 5. Overall performance values of individual attributes 

 SF GA TS BT C 

SLA 1 1 0.99 0.98 0.98 

SLS 0.77 0.9 1 0.99 1 

3 DP 0.68 0.81 0.97 1 0.99 

FDM 0.6 0.85 0.95 0.98 0.99 

  

 Table 6 gives composite scores by the WPM method. This 

score is used to find the alternative ranking of the methods. 

 
Table 6. Composite score by WPM 

 Pi 

SLA 0.964989 

SLS 0.722946 

3 DP 0.539517 

FDM 0.541099 

 

2.4. Compromise Ranking Method (VIKOR) [21, 22] 

It concentrates on grading and choosing from a set of 

alternatives in the light of conflicting limits. The compromise 

result is an achievable result that's the nearest to the ideal 

result, and a compromise known as an agreement 

substantiated by collective concession [20]. Using the 

following equation, the expectancy of attributes is calculated. 

All the attributes are scaled down to between 0 and 1. 

𝑥𝑖⥂𝑗 =
𝑀𝑎𝑥{𝑦𝑖⥂𝑗,𝑖 = 1,2, . . . . , 𝑛} − 𝑦𝑖⥂𝑗

𝑀𝑎𝑥{𝑦𝑖⥂𝑗,𝑖 = 1,2, . . . , 𝑛} − 𝑀𝑖𝑛{𝑦𝑖⥂𝑗,𝑖 = 1,2, . . . , 𝑛}
 

 
Table 7. Expectancy of attributes 

 TS SF GA BT C 

SLA 0.111 0 0 0.770 1 

SLS 0 0.7731 0.394 0.271 0 

FDM 0.555 0.9840 1 0 0.177 

3DP 1 1 0.821 1 0.289 

 

Step 1 : Find out the values of Ei & Fi by using the following 

formulae. 

Calculation of Ei, 

𝐸 𝑖 = ∑
𝑊𝑗[(𝑚𝑖𝑗)

𝑚𝑎𝑥
− (𝑚𝑖𝑗)]

(𝑚𝑖𝑗)
𝑚𝑎𝑥

− (𝑚𝑖𝑗)
𝑚𝑖𝑛

𝑀

𝑗=1

                     

 

Calculation of Fi, 

𝐹 𝑖 = 𝑀𝑎𝑥 {
𝑊𝑗 [(𝑚𝑖𝑗)

𝑚𝑎𝑥
−  (𝑚𝑖𝑗)]

(𝑚𝑖𝑗)
𝑚𝑎𝑥

− (𝑚𝑖𝑗)
𝑚𝑖𝑛

} 

 

Table 8 shows calculations for finding Ei and Fi  
 

Table 8. Calculation of Ei and Fi 

 TS SF GA BT C 

SLA 0.0211 0 0 0.1001 0.1 

SLS 0 0.2706 0.0907 0.0352 0 

FDM 0.10554 0.3444 0.23 0 0.0177 

3DP 0.19 0.35 0.18884 0.13 0.0289 



V E Kothawade et al. / IJME, 12(8), 61-69, 2025 

66 

Table 9. Values of Ei & Fi 

RP Process Ei Fi 

SLA 0.22121 0.1001 

SLS 0.39661 0.2706 

FDM 0.69769 0.3444 

3DP 0.88777 0.35 

 

Step 2: Find the value of Pi 

v [(Ei – Ei min) = Pi/ (Ei max – Ei min)] + (1 – v) 

[(Fi – Fi max) / (Fi max – Fi min)] 

Where Ei-max is the max. value of Ei, 

Ei-min termed as min. value of Ei,  

Fi-max termed as the max. value of Fi, 

Fi-min termed as the min. value of Fi 

v=0.5. 

Table 10. Performance index calculations 

Ei   
Ei - Ei 

min 

Ei max - Ei 

min 

(Ei - Ei min) /  

(Ei max - Ei min) V = 0.5 

0.22 Ei Min 0 0.66 0 0 

0.39   0.17 0.66 0.26 0.13 

0.69  0.47 0.66 0.71 0.35 

0.88 Ei Max 0.66 0.66 1.00 0.50 

 

Step 3: Keep the alternatives in increasing sequence, in 

accordance with the values of Pi. Consequently, this process 

yields three distinct ranking lists. 

 
Table 11. Comparison of performance index 

RP 

Process 
Pi Ei Fi 

SLA 0 0.2212098 0.100 

SLS 0.3475454 0.3966123 0.270 

FDM 0.7082042 0.6976859 0.344 

3DP 1.000055954 0.887774586 0.35 

 

Step 5: Propose as a compromise solution the alternative (p′) 

which is ranked as fair enough by the minimum Q  

 
Table 12. Compromise solution of performance index 

RP 

Process 
Pi Ei Fi 

SLA 0 0.221 0.100 

SLS 0.3475 0.396 0.270 

FDM 0.7082 0.697 0.344 

3DP 1.0000 0.887 0.35 

 

3. Results and Discussions  
The novelty of this research lies in providing a concrete 

and analytical framework for rapid prototyping (RP) method 

selection, which is notably lacking in existing literature. While 

several studies discuss RP techniques and their benefits, very 

few offer a quantitative basis for selecting the most suitable 

method for a specific application. This study bridges that gap 

by implementing multi-criteria decision-making (MCDM) 

methods, SAW, WPM, and VIKOR, to evaluate and rank 

available RP methods. 

 

The following results were obtained through the 

application of these methods. For SAW and WPM, the higher 

overall composite score indicates better suitability of the 

method, with descending scores representing less suitable 

alternatives. In contrast, the VIKOR method ranks alternatives 

in ascending order, where the lowest value suggests the most 

suitable method. 

 

Analytical calculations were performed using measured 

data from actual components, and relative performance 

indices were computed. This approach simplifies the process 

of selecting the optimal RP method for a given component. 

Unlike prior studies that rely on qualitative judgment or 

general suitability charts, this research uses real-time data to 

generate rankings based on performance indicators such as 

surface roughness, tensile strength, build time, and cost. 

 

Among the evaluated methods, stereolithography 

emerged as the most suitable, followed by Selective Laser 

Sintering, a conclusion supported consistently across all three 

MCDM techniques. Although these methods are widely used 

in various industries, their appropriate application to evolving 

product requirements remains a complex decision-making 

challenge. The proposed analytical model offers a novel 

decision-support tool for identifying the most effective RP 

method in context-specific manufacturing scenarios, 

particularly where precise component specifications are 

critical. His study presents a data-driven model using SAW, 

WPM, and VIKOR for selecting the best RP process, offering 

a more objective alternative to past qualitative methods. It 

stands out as one of the few works focused solely on RP 

selection and is especially useful for small-scale industries 

with limited expert input. 

 
Table 13. Compromise solution of performance index 

RP 

Process 
Pi Ei Fi Ranking 

SLA 0 0.2212 0.1001 1 

SLS 0.3475 0.3966 0.2706 2 

FDM 0.7082 0.6976 0.3444 3 

3DP 1.0000 0.8877 0.35 4 
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Fig. 5 Compromise solution of performance index 

 

The results show that SLA (Stereolithography) ranks first, 

with the lowest Fi value of 0.1001. This indicates that SLA is 

closest to the ideal solution among all the evaluated processes. 

Its Pi value of 0 suggests that it performs best on at least one 

of the criteria, while its Ei value of 0.2212 confirms that it 

stays reasonably far from the worst performance. SLS 

(Selective Laser Sintering) ranks second, with an Fi of 0.2706.  

While it is not as optimal as SLA, its performance is balanced 

and significantly better than the lower-ranked methods. It has 

moderate values for both Pi and Ei, suggesting consistent 

results across all criteria. FDM (Fused Deposition Modelling) 

comes in third, with an Fi of 0.3444. Although FDM is a 

commonly used and cost-effective technique, its performance 

in this evaluation is less favourable compared to SLA and 

SLS, especially in critical areas like precision or surface 

quality. Finally, 3DP (Three-Dimensional Printing) ranks 

fourth, with the highest Fi value of 0.35. While its Pi is the 

maximum (1.0000), indicating poor performance in one or 

more criteria, its Ei of 0.8877 also shows it is relatively close 

to the worst-case performance in other aspects. 
 

In summary, SLA emerges as the most suitable RP 

process based on the VIKOR analysis due to its balanced and 

superior performance across multiple evaluation parameters. 

SLS is a viable alternative, while FDM and 3DP may be less 

favorable for applications where precision, quality, and 

performance are critical 
 

Table 14. Ranking by SAW and WPM  

 Pi (SAW) Pi (WPM) Ranking 

SLA 0.9667 0.9649 1 

SLS 0.7593 0.7229 2 

3 DP 0.6050 0.5395 3 

FDM 0.5917 0.5410 4 

 
Fig. 6 Ranking of RP methods by MADM techniques  

 

 The system having the loftiest value of overall 

performance or overall composite score is considered to be a 

stylish, indispensable system. Then SLA has the loftiest 

composite score and hence the elegant indispensable system.  

 

 Whereas it's followed by SLS, 3DP, and FDM while 

considering the over-said product attributes. The following 

ranking results were attained using the Simple Additive 

Method (SAM) and Weighted Point Product Method (WPM), 

and were  

1. The loftiest overall composite score indicates the stylish 

available choice. 

2. Descending order of the overall composite score 

identifies posterior suitable picks. 

  

4. Conclusion 
 The findings from this study have direct implications for 

real-world manufacturing settings, particularly in small and 

medium-sized enterprises (SMEs) where access to expert 

knowledge may be limited. By providing a structured, data-

driven framework for RP process selection, the model helps 

decision-makers choose technologies that best align with their 

production goals—whether it's reducing build time, 

minimizing cost, or improving surface finish. For example, a 

firm focused on precision parts may prioritize SLA based on 

its top ranking, while a cost-sensitive company might still 

consider FDM, despite its lower overall score. 

 

 Future researchers can use multiple digital transformation 

tools, like laser scanning and 3D mapping, to bring more 

transparency and speed in prototype development.  
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