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Abstract - A trigeneration system is a unified energy framework that concurrently yields three modes of energy: electricity, 

heating, and cooling. Solar-based Gas Turbine (GT) trigeneration systems, particularly those incorporating intercooling and 

reheating, are attracting significant attention due to their enhanced performance. In the present study, solar-based GT 

trigeneration cycle incorporating intercooling and reheating (SBIRGT) is investigated. The SBIRGT comprises a parabolic 

trough collector (PTC) field, pneumatic compressor, ignition chamber, gas turbine, and a single-effect LiBr absorption cooling 

system. Two critical productivity indicators—power output and energy efficiency—have been analyzed. Artificial Neural 

Networks (ANNs) were employed to develop predictive models for these outputs. To determine the optimal values for both 

responses, widely recognized nature-inspired optimization techniques were applied, including Rao’s sequential optimization 

methods and Differential Evolution (DE). Among the four strategies explored, the most effective approach has been identified 

and recommended under the purview of this study. 
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1. Introduction  
A trigeneration system concurrently yields three modes of 

energy, such as electricity, heat, and cooling from a one 

energy source, typically a gas turbine or engine. It produces 

electrical power, while the residual heat from the formulation 

process is recovered for heating applications such as space and 

water heating. This recovered heat is also used to operate an 

absorption chiller, which provides cooling for air conditioning 

or industrial needs. By integrating these three functions, 

trigeneration systems achieve greater efficiency than separate 

systems for power, heating, and cooling. They are widely 

implemented in commercial buildings, industrial facilities, 

and district energy networks. Key advantages include energy 

saving, reduced greenhouse gas emissions, and sustained cost 

reduction, making it a sustainable and advanced energy 

solution across multiple sectors [1]. 

The Solar-Based Gas Turbine (GT) Trigeneration Cycle 

(SBGTT) and the sun-driven interstate cooling and Reheated 

GT Trigeneration (SBIRGT) cycle are thermodynamic 

systems that utilize solar energy to simultaneously generate 

electricity, heating, and cooling. The basic GT trigeneration 

cycle uses a simple gas turbine powered by solar thermal 

energy, with waste heat used for heating and cooling. It is 

simpler and cost-effective, but offers lower efficiency.  

The intercooled and reheated GT trigeneration cycle 

improves efficiency by incorporating intercooling (between 

compression stages) and reheating (between numerous 

stages), by using numerous solar heat inputs. This 

configuration is more complex, but provides higher thermal 

efficiency and better performance. The main difference lies in 

the advanced thermodynamic enhancements of the latter, 

which lead to improved energy utilization. 

Author previously presented a thermal performance 

analysis of a solar-dependent interstate cooling and reheating 

Gas Turbine (GT) trigeneration system using a trough solar 

concentrator and MATLAB 2018. The study was conducted 

in three phases: validation of the SBGTT, investigations and 

optimization of an SBGTT and comparison of an SBIRGT.  

Results show increasing power output and efficiency across 

the stages, with the final configuration producing 41.0  MW 

power at 0.527 kg/s NG flow, and achieving thermodynamic 

https://doi.org/10.14445/23488360/IJME-V12I9P105
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performances in terms of energy and exergy of 39.7 % and 

40.9 %. This study claims uniqueness and novelty in its 

approach. 

 

Singh et al. [2] explored a heliostat-driven CSP system 

using a triple combined cycle that integrates three different 

thermodynamic cycles. It investigated performance 

improvements through interstate cooling and heating in the 

GT cycle, with exhaust heat recovery via two different 

arrangements: a waste heat vapor generator (HRVG) and a 

waste heat steam generator (HRSG). Thermodynamic analysis 

(using the first and second laws) showed that the HRVG setup 

achieves a highest energy performance of 63.54% and 

exergetic performance of 38.37%, while the HRSG setup 

performs slightly better, reaching 64.15% and 39.72%, 

respectively. Dabwan et al. [3] introduced an innovative 

hybrid SBIRGT system using a linear Fresnel solar field to 

pre-combustion air heating before combustion. Compared to 

the conventional Solar Preheating GT (SPGT), the SBIRGT 

showed significantly better performance, with a 19.5% 

increase in fuel-based efficiency (vs. 0.26% for SPGT) and 

reduced SFC (7017 kJ/kWh vs. 10358 kJ/kWh). It was also 

more economical, achieving a lower levelized electricity cost 

(4.34 US¢/kWh vs. 5.15 US¢/kWh). Additionally, it reduces 

fuel use and CO₂ emissions by about 19.3%. Abubaker et al. 

[4] addressed numerous important challenges of GT power 

plants—high fuel consumption, heat loss, and sensitivity to 

ambient temperature—by integrating sun-driven preheating 

and cooling systems. Using parabolic trough collectors, air 

was preheated before combustion and cooled before 

compression via an absorption cooling cycle.  

 

The proposed system improves power output by 6.87%, 

reduces fuel consumption by 10.53%, and increases thermal 

efficiency by 19.45%. It also lowers combustion emissions. 

Web diagrams were used to analyze the influence of system 

condition on performance and environmental impact. Rovira 

et al. [5] explored unified solar hybrid cycles employing GT 

with fractional recuperation and solar integration at varying 

pressure states. The study compared different configurations 

to enhance solar-to-electricity conversion efficiency. 

Javaherian et al. [6] explored a biomass-based cogeneration 

system combining a GT with a Rankine and a gas absorption 

cycle, evaluated from thermal performance perspectives. 

Biomass gasification (using wood) provided fuel for the gas 

turbine, while solar energy preheats the Rankine cycle fluid to 

enhance efficiency. Waste heat is recovered via an absorption 

cooling cycle. A multi-objective optimization targeted 

maximum thermal performance and minimum CO₂ emissions. 

The gasification reactor and combustor were the main sources 

of thermal performance destruction (46.7% and 22.9%). 

Parametric analysis showed optimal performance at a Pressure 

Ratio (PR) of 10, and a 1% drop in compression ratio could be 

offset by a 9.30 % enhancement in solar contribution. Munoz 

et al. [7] reviewed the main components of solar heat-based 

power plants, specifically the solar array and energy block and 

emphasized how the choice of thermodynamic cycle and 

working fluid impacts performance. While the steam Rankine 

cycle, commonly paired with parabolic trough collectors, is 

the most widely used, other configurations like integrated 

solar combined cycles are also implemented. The study 

discussed conventional cycles, their benefits, and challenges, 

particularly in hybrid solar-fossil fuel systems. It also 

analyzed advanced configurations that offer performance 

advantages under specific conditions. Lastly, it briefly 

examined the integration/hybridization of solar thermal with 

alternative energy sources.  

 

Rovira et al. [8] demonstrated a modern integrated solar 

power cycle configuration featuring a reclaiming GT and a 

recently developed Dual Reclaiming Double Expansion 

(DRDE) cycle using propane. Replacing the conventional 

Rankine cycle, this setup reduced fuel consumption while 

maintaining sufficient exhaust temperatures for the DRDE 

cycle. Solar energy was supplied by a solar trough collector 

with liquid as the energy-transferring medium, and optimal 

solar integration is analyzed. Performance assessments at two 

locations showed that the proposed ISCC-R-DRDE system 

achieves lower heat rates and a reduced Levelized Cost Of 

Energy (LCOE) compared to conventional ISCC systems, 

highlighting its potential as an efficient future technology. 

Khan et al. [9] analyzed an interstate cooled reheat gas/steam 

mixed cycle integrated with CO₂ retention and methanation. 

Captured CO2 was converted into methane for reuse as fuel, 

reducing emissions. An ORC system was added between 

compressors to utilize intercooling heat, with working fluids 

selected based on favorable thermophysical properties. 

Thermodynamic and parametric analyses showed that lower 

cycle pressure ratios enhance steam generation and work 

output. The integration of the carbon capture unit increases 

overall system performance from 220.90  MW to 370.00  MW 

at a Turbine Input Temperature (TIT) of 1480.0  K, 

demonstrating significant performance gains. Shukla et al. 

[10] presented a thermal performance evaluation of a sun 

energy-driven three-stage hybrid GT cycle designed to give 

zero-emission electricity. The system included a Brayton 

cycle with intercooling as the topping cycle, and a steam 

Rankine and ORC system as bottoming cycles. Heat rejected 

during intercooling is utilized in the ORC, while turbine 

exhaust energy is used in the SRC. The performance was 

analyzed using three different ORC fluids, with R245fa 

yielding the best results—achieving a peak performance 

efficiency of 21.89% and a power output of 218.98 kJ/kg air 

at a PR of 31.  Dupuy et al. [11] reviewed the current state of 

trigeneration (CCHP) systems as a sustainable alternative to 

fossil fuels for meeting rising energy demands, particularly in 

cooling applications. They presented their applications, 

performance indicators, comparisons with conventional 

systems, and reported improvements and emerging concepts. 

The review also emphasized renewable energy-based low-

temperature CCHP technologies, serving as a foundation for 

future exergo-economic optimization studies. 

https://www.tandfonline.com/author/Shukla%2C+Anoop+Kumar


Pankaj Kumar Shrivastava et al. / IJME, 12(9), 46-55, 2025 

48 

The existing research on SBIRGT indicates that the 

process still requires significant development, especially in 

light of the current advancements in artificial intelligence. In 

this study, two key performance metrics—efficiency and 

power output—have been examined using PR, TIT, and air 

Mass Flow Rate (MFR) as design parameters. Artificial 

Neural Network (ANN) models were employed for both 

efficiency and power output, with Mean Squared Error (MSE) 

used as the performance criterion. These ANN models were 

then employed as objective functions to identify optimal 

solutions for both outputs using Rao’s sequential optimization 

techniques and the Differential Evolution (DE) method. 

Among the four resulting solutions, the most effective one has 

been recommended within the scope of this research. 

 

2. Method 
2.1. Artificial Neural Network 

An ANN is a relatively recent mathematical modeling 

tool, particularly useful for predicting Multifaceted, 

unpredictable, and complex process patterns. Similar to the 

Mental faculties, it consists of a matrix of interconnected 

neurons that work together to route data efficiently. The 

popular back-propagation ANN algorithm (FFBANN) is an 

easy and well-accepted ANN model. In a fully linked 

FFBANN, each neuron in a given layer gets signals from all 

the neurons in the antecedent layer. The commonly used 

composition of this ANN algorithm is shown in Figure 1.  

 

A typical network is made up of multiple layers, each 

embedding neurons, which are categorized as the input, 

intermediate, and prediction layers. Connection weights and 

offset parameters are essential components of a network as 

well. The primary signal, based on the control parameters, is 

fed into the first layer (the input layer) and processed by an 

appropriate Transfer Function (TF). The counteraction 

associated with each neuron is then passed to the next layer, 

and this process continues until a specified criterion is met. 

Each neuron typically consists of a weight, bias, and an 

activation function. The neuron’s inputs are initially 

aggregated, as shown in Equation (1) [12, 13]:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Fig. 1 ANN mathematical model structure 
 

              𝑛𝑒𝑡𝑟 = ∑ 𝑤𝑘𝑟𝑋𝑘 + 𝑏𝑟
𝑁
𝑖=1                 (1) 

 

Here, 𝑤𝑘𝑟  depicts the connection weights supplied to 𝑟𝑡ℎ 
neuron in a defined layer from the prior stage, and br is the 

offset parameter. The response developed by a suitable apt TF 

during the aggregation of the supply required target 𝑌𝑟  from 

the neuron as mentioned below: 

   

                      𝑌𝑟 = Ғ(𝑛𝑒𝑡𝑟)  (2)                                                          

2.2. RAOs Method  
Rao’s Optimization Method is a simple, parameter-free 

metaheuristic algorithm based on mathematical principles 

rather than natural processes. It maintains a collection of trial 

solutions and randomization to explore the solution space. The 

method is easy to implement, requires no tuning, and is 

effective for continuous, nonlinear, and multimodal 

optimization problems. It is applied in fields like engineering 

design, power systems, and machine learning optimization. In 

the present study, Artificial Neural Network (ANN) models 

were initially developed to predict efficiency and power 

output. These models were then maximized by adopting Rao's 

sequential optimization approaches and the Differential 

Evolution (DE) algorithm [14, 15]. The implementation of 

these techniques to solve the defined Objective Functions 

(OF) is detailed below: 
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Roa-1: 𝑈𝑖
(𝑘)
= 𝑈𝑖
(𝑘−1)
+ 𝑟[𝑈𝑏𝑒𝑠𝑡

(𝑘−1) − 𝑈𝑤𝑜𝑟𝑠𝑡
(𝑘−1)]                       (3) 

or 

Roa-2: 𝑈𝑖
(𝑘) = 𝑈𝑖

(𝑘−1) + 𝑟1[𝑈𝑏𝑒𝑠𝑡
(𝑘−1) − 𝑈𝑤𝑜𝑟𝑠𝑡

(𝑘−1)] 

+𝑟2[|𝑈𝑖
(𝑘−1)
 𝑜𝑟 𝑈𝑙

(𝑘−1)
| − |𝑈𝑙

(𝑘−1)
 𝑜𝑟 𝑈𝑖

(𝑘−1)
|]  

   (4) 

or 

Roa-3: 𝑈𝑖
(𝑘) = 𝑈𝑖

(𝑘−1) + 𝑟1[𝑈𝑏𝑒𝑠𝑡
(𝑘−1) − |𝑈𝑤𝑜𝑟𝑠𝑡

(𝑘−1)|] 

+𝑟2[|𝑈𝑖
(𝑘−1)
 𝑜𝑟 𝑈𝑙

(𝑘−1)
| − |𝑈𝑙

(𝑘−1)
 𝑜𝑟 𝑈𝑖

(𝑘−1)
|]  

    (5) 

The three algorithms above vary depending on the vector 

𝑈𝑖
(𝑘)

 

r,  r1 and r2  denoted a random value within the range of 

0 to 1. 

𝑈𝑖
(𝑘−1)
 𝑜𝑟 𝑈𝑙

(𝑘−1)
 allude   

=  𝑈𝑖
(𝑘−1)
,    if  𝑈𝑖

(𝑘−1)
 is an upgraded result 

vector in comparison with  𝑈𝑙
(𝑘−1)

 

=  𝑈𝑙
(𝑘−1)
,   else 

𝑈𝑙
(𝑘−1)
 𝑜𝑟 𝑈𝑖

(𝑘−1)
 implies   

=  𝑈𝑙
(𝑘−1)
 ,   if  𝑈𝑙

(𝑘−1)
 is an upgraded result 

vector in comparison with  𝑈𝑖
(𝑘−1)

 

=  𝑈𝑖
(𝑘−1)
,   else 

The equations above are suggested to refresh current 

results using the above-discussed algorithms. 

Step-1: Create the population of dimension ‘𝑚’, in the 

range of  [Uij
min ≤ Uij ≤ Uij

max] 

[Uij
min ≤ Uij ≤ Uij

max], j = 1,2,3, … . , D 

Ui
(0)

= [u1i
(0), u2i

(0), ………… , uki
(0)]
T
,                         

Step-2: Run the program for each 𝑈𝑖
𝑚 . 

Step-3: Is the population set viable? if yes, then go to 

step-4, or else enhance the bus quantity 𝑘 =
𝑘 + 1,  and repeat to step-1.  

Step-4: Get 𝑈𝑏𝑒𝑠𝑡
(0)

  and  𝑈𝑤𝑜𝑟𝑠𝑡
(0)
  depending upon the 

desirable (OF) (𝐽). i.e. 𝐽 (𝑈𝑖
(0)). 

Step-5: Fix trek number, 𝑘 = 1. 
Step-5: Get improved solutions using relations (1), (2) 

and (3), respectively and individually for all 

three Rao’s algorithms. i.e. 𝑈𝑖
(𝑘)
,            𝑖 =

1,2,3, ……… ,𝑚 

Step-6: For every improved solution Ui
(k)
, check the 

value of OF, i.e. Effi (Ui
(k)) and Power (Ui

(k))  
by executing the program.   

Step-7: Categorize every improved candidate solution 

Ui
(k)

 as viable (F) or Not viable (NF), 
depending upon the results in step-6. i.e.             

Ui
(k)

 - is ‘F’ if all boundaries are under the 

threshold. 

Ui
(k)

 - is ‘NF’ if any of the constraints are 

transgressed beyond the limit. 

Step-8: Modify the population in the following way: 

  𝑈𝑖
(𝑘) = 𝑈𝑖,

(𝑘−1),         𝑖𝑓   𝑈𝑖
(𝑘)
 𝑖𝑠 𝑁𝐹 

                             = 𝑈𝑖,
(𝑘),            𝑖𝑓   𝑈𝑖

(𝑘)
 𝑖𝑠  ′𝐹′  and 

                          𝐽(𝑈𝑖
(𝑘)) < 𝐽(𝑈𝑖

(𝑘−1)
) 

Step-9: Hence, the step-8 promise in the modified 

population, all vectors are ‘F’.  

Obtain   Ubest
(k)

  and  Uworst
(k)

. 

Step10: Increment the iteration count 𝑘 = 𝑘 + 1,  if 

𝑘 > 𝑘𝑚𝑎𝑥 ,  
 Stop.  

 Else, start again using step number 5. 

 

3. Experimental Details 
        The layout of the SBICRGT trigeneration system 

discussed in this study is given below in Figure 2.  

 

 
Fig. 2 Schematic of SBIRGT trigeneration system [16] 

 

The system comprises a Parabolic Trough Collector 

(PTC) field, Low and High Pressure Compressors 

(LPC/HPC), Intermediate Cooler (IC), ignition chamber (CC), 

High and Low Pressure Turbines (HPT/ LPT), reheat 

exchanger (RH), and a single-effect LiBr absorption 

refrigeration cycle (ARC). Ambient air enters the LPC and is 

pressurized from state 1 to stage 2. It then passes through the 

interstate cooler, where it releases heat to the environment, 
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exiting at state 3 before entering the HPC. The air is further 

compressed to state 4 and routed through the solar collector 

field. At state 5, the air gains heat at a constant pressure and 

then flows into the Combustion Chamber (CC). In the CC, fuel 

is added, increasing the temperature and pressure of the air to 

state 6. 

 

The high-energy gas expands through the HPT from state 

6 to state 7 and is subsequently reheated in the RH to reach 

state 8. It then enters the LPT, where it expands further from 

state 8.0 to 9.0, producing effective mechanical work that is 

transformed to electricity via a generator. The exhaust gases 

at state 9 are directed to a heat recovery unit, which provides 

thermal energy to drive the single-effect LiBr ARC for cooling 

applications.  

 

The input data for SBICRGT were obtained from Bellos 

and Tzivanidis [16] and Anvari et al. [17]. The PR, TIT, and 

MFR of air, as listed in Table 1, were used as input control 

factors, while energy efficiency and power output served as 

target control factors. The design matrix for the input and 

target control factors is presented in the Tables below. 

 
Table 1. Description of input variables 

Parameters 
Pressure 

Ratio (X1
) 

TIT  

(X2) 

MFR(X3) 

 

Low (1) 4 800 10 

Central (2) 6 1000 20 

High (3) 8 1200 30 

 

Table 2.  Data for SBIRGT 

Exp. 

No 

Pres-

sure 

Ratio 

(X1
) 

TIT  

(X2) 

MFR

(X3) 

Effici-

ency 

Power 

Output 

(KW) 

1 2 2 2 43.5 170.5 

2 1 1 2 38.5 132.44 

3 2 2 2 43.5 170.5 

4 1 3 2 43 169.15 

5 2 3 1 42.5 93.5 

6 2 3 3 46.0 280.5 

7 3 3 2 48.0 211.2 

8 3 1 2 44.0 176.0 

9 3 2 1 44.0 96.8 

10 2 2 2 43.5 170.8 

11 1 2 3 43 226.05 

12 2 1 1 39.5 77.2 

13 1 2 1 40.0 75.25 

14 3 2 3 48.0 290.4 

15 2 1 3 42.5 231.66 
 

4. Parametric Exploration, Model Development 

and Optimization (PEMDO) 
4.1. PEMDO for Efficiency 

4.1.1. Parametric Explorations for Efficiency 

The test frequently used for comparing group means, 

identified as variance analysis (ANOVA) [18], to assess the 

influential input parameters is portrayed in Table 3.  

Table 3. Efficiency evaluation through ANOVA 

Component DOF Adj SS Adj MS F Impact (%) 

 
Pressure Ratio 2 122.6 122.6 1142.52 48.80 

 TIT 2 77.45 77.45 721.55 28.52 

 Mass Flow Rate 2 61.42 61.42 572.02 22.48 

 Error 8 1.825 2.0   

Total 14 263.5    
 

 
Fig. 3 Pressure ratio versus TIT for efficiency during SBIRGT 

 
Fig. 4 Pressure ratio versus MFR for efficiency during SBIRGT 
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Containing the F-statistics of 1142.5, the pressure ratio is 

recognized as the primary contributing factor (with a 

contribution of 48.80%) variable during SBICRGT for 

efficiency. With an F-value of 721.55, the TIT turns out to be 

the second most influential variable (with a contribution of 

28.22%), followed by MFR.  Figure 3 presents a three-

dimensional plot illustrating the variation of efficiency with 

PR and TIT.  

The graph clearly shows that as the PR increases from 4 

to 8, the efficiency exhibits a consistent upward trend, rising 

from 39% to 48%. Similarly, analyzing the influence of TIT, 

it is evident that higher TIT values positively impact 

efficiency. As TIT climbs from 800 K to 1200 K, the 

efficiency improves significantly. Figure 4 displays a three-

dimensional plot of efficiency versus PR and MFR. Consistent 

with the trends observed for other parameters, efficiency also 

increases with rising MFR, indicating a strong positive 

correlation. 

4.1.2. Model Development for Efficiency 

To develop the efficiency model of SBICRGT using 

Artificial Neural Networks (ANN), MATLAB R2023b 

software was employed. The software offers three activation 

(transfer) functions: pure linear, sigmoid (logistic), and tanh 

(hyperbolic tangent). Various combinations of these activation 

functions were tested in both the hidden (intermediate) and 

output layers to determine the configuration that yielded the 

lowest Mean Squared Error (MSE). After extensive 

experimentation, the following MSE values were observed: 

 

 Linear–Linear combination (intermediate and output 

layers): 0.0906 

 Sigmoid–Linear combination: 5.99 × 10⁻⁵ 

 Tanh–Linear combination: 1.25 × 10⁻10 

 

The results clearly indicate that using the tanh activation 

function in the intermediate layer and a linear function in the 

output layer produces the lowest MSE, making it the most 

suitable configuration for modeling efficiency. 

 

Additionally, it was found that the optimal ANN 

architecture for efficiency includes three neurons in the hidden 

layer. The final ANN model was constructed using the 

identified transfer functions, along with the corresponding 

weights and biases, and is presented in mathematical form 

below. 

 

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = 0.5281 ∗ 𝑦1 + 0.866 ∗ 𝑦2 + 0.946 ∗
𝑦3 + 0.899                (8)                

Where, 

𝑦1 = tanh(4.536 ∗ 𝑥1 + 0.9881 ∗ 𝑥2 + 0.8693 ∗ 𝑥3
− 2.0559) 

𝑦2 = tanh(4.5554 ∗ 𝑥1 − 0.7853 ∗ 𝑥2 + 0.6542
∗ 𝑥3 + 3.4141) 

 𝑦3 = tanh(−0.9574 ∗ 𝑥1 − 0.6556 ∗ 𝑥2 − 0.4573 ∗
𝑥3 − 0.9766) 

 

4.1.3. Maximization of Efficiency 

Each of the four optimization algorithms was applied to 

the developed ANN-based efficiency model. The optimization 

routines were implemented using MATLAB R2023b. The 

efficiency maximization problem involved three key decision 

variables-x₁, x₂, and x₃-with the following bounds: 

 

4 ≤ x₁ ≤ 8, 

800 ≤ x₂ ≤ 1200, 

10 ≤ x₃ ≤ 30. 

 

To begin the optimization process, 50 initial candidate 

solutions for each variable were randomly generated in Excel, 

considering the specific distribution characteristics of each 

parameter. Although the iteration bound was set to 1000, the 

optimization was concluded after 800 iterations due to 

efficiency improvement stagnation. 

 

Table 4 presents a comparative summary of the best 

solutions obtained by the four algorithms as discussed. 

 
Table 4. Comparison of different algorithms for optimization of 

efficiency during SBIRGT 

Metho

dology 
U1 U2 U3 

Efficien

cy 

No. of 

iteration

s 

 Rao-3 7.99 1198.99 30.00 50.6% 500 

Rao-2 8.00 1198.99 29.394 49.33% 625 

Rao-1 8.00 1199.98 29.554 46.69%, 650 

DE 7.879 1197.97 29.444 47.38% 550 

 

Table 5 offers a detailed statistical comparison based on 

various statistical parameters as shown in the Table.  

 

Figure 5 illustrates the relationship between efficiency 

and generation count, based on the best-performing design 

variables from the Rao and DE algorithms. 

 
Fig. 5 Iteration-based convergence plot for efficiency maximization 

during SBIRGT 
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Table 5. Statistical evaluation of efficiency 

 

The optimized efficiency values obtained using DE, Rao-

1, Rao-2, and Rao-3 methods were 47.38%, 46.69%, 49.33%, 

and 50.6%, respectively. These performances clearly 

demonstrate that the Rao-3 optimization strategy 

outperformed the others, delivering the highest global 

optimum efficiency. 

 

4.2. PEMDO for Power 

4.2.1. Parametric Explorations for Power 

ANOVA, a commonly used test for comparing group 

means, was leveraged to evaluate the impact of input 

parameters, with the results summarized in Table 6.  

 
Table 6. Power output evaluation through ANOVA 

Compo

nent 
DOF Adj SS Adj MS F 

Impa

ct 

(%) 

 Pressure 

Ratio 
2 8282 8282 8282 

5.55 

 

TIT 2 5437 5437 6661 
3.84 

 

Mass 

Flow 

Rate 

2 132585 132585 162435 
90.92 

 

Error 8 13 
0.00000

7 
  

Total 14 
133018 

 
   

 

The Mass Flow Rate (MFR) emerged as the most 

significant factor affecting power output in SBICRGT, with 

an F-value of 162435 and a contribution of 90.92%. The 

Pressure Ratio (PR) was identified as the second most 

influential parameter, with an F-value of 10146 and a 

contribution of 5.55%, followed by the Turbine Inlet 

Temperature (TIT). Figure 6 presents a three-dimensional plot 

illustrating power output as a function of PR and MFR. The 

graph clearly shows that as MFR increases from 10 to 30, 

power output consistently rises from 75 kW to 290 kW. In 

contrast, Figure 7  indicates that power output remains 

relatively constant with changes in PR. 

 

 
Fig. 6  Pressure ratio versus TIT  for power output during SBIRGT 

 

 
Fig. 7 Pressure ratio versus MRF  for power output during SBIRGT 

4.2.2. Model Development for Power 

For power output prediction, the Mean Squared Error 

(MSE) was evaluated for different combinations of Transfer 
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Efficiency m d
 
 s

 
 σ

 
 EffiBEST EffiWorstEST f γ

 
 c ε μ L

 

Rao-3 53.761 53.677 3.70E-06 0.25E-03 0.0536 53.8924 53.8484 13 0.95 2.0452 0.0068 
53.761  

53.677 
0.0338 

Rao-2 52.820 52.914 3.25E-06 0.25E-03 0.0358 42.861 14 13 0.95 2.0452 0.0082 
52.820  

2.8208 
0.0385 

Rao-1 52.777 52.870 0.45E-06 0.86E-03 0.0477 42.836 42.756 10 0.95 2.0452 0.0246 
52.777  

2.7945 
0.0526 

DE 52.697 52.789 52.0E-06 4.87E-03 0.052 42.774 42.644 10 0.95 3.0552 0.0168 
52.697  

2.6976 
0.0698 
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Functions (TFs). The combination of linear TF in both the 

intermediate and output layers resulted in an MSE of 0.0899. 

Using the Sigmoid (Logistic) TF in the intermediate level and 

linear TF in the output level yielded an improved MSE of 1.9 

× 10⁻⁷. However, the lowest MSE of 5.55 × 10⁻¹² was achieved 

with the Tanh (Hyperbolic Tangent) TF in the intermediate 

layer and linear TF in the output layer. 

 

Similar to the findings for efficiency modeling, the Tanh–

linear combination proved to be the most effective for 

modeling power output as well. Therefore, this configuration 

was adopted for the power output model. The corresponding 

mathematical representation of the power output using the AI-

based model—incorporating the selected transfer functions, 

connection weights, and bias terms—is presented below: 

 

 𝑃𝑜𝑤𝑒𝑟 = 120.029 ∗ 𝑦1 − 5.65 ∗ 𝑦2 + 0.6990 ∗
𝑦3 + 0.7645                                                     (9)                        

Where, 

𝑦1 = tanh(0.2250 ∗ 𝑥1 + 4.062 ∗ 𝑥2 + 0.4462 ∗ 𝑥3
− 5.503) 

𝑦2 = tanh(−2.455 ∗ 𝑥1 + 4.555 ∗ 𝑥2 + 0.6435 ∗ 𝑥3
+ 0.0665) 

𝑦3 = tanh(−0.3345 ∗ 𝑥1 − 0.4548 ∗ 𝑥2 − 0.5433
∗ 𝑥3 + 3.0555) 

4.2.3. Maximization of Power 

Each of the four optimization algorithms was applied to 

the developed ANN model for power output. The software 

implementation for each algorithm was carried out using 

MATLAB R2023b. The power maximization problem 

involved three key input parameters:  

 

4 ≤ x₁ ≤ 8, 

800 ≤ x₂ ≤ 1200, 

10 ≤ x₃ ≤ 30. 

 

Initially, 50 individuals for each variable were randomly 

generated in Excel, based on the statistical distribution of each 

parameter. Although the iterations bound was set at 900, the 

optimization process was aborted after 600 iterations due to 

stagnation in the power output. 

 
Table 7. Comparison of different algorithms for optimization of power output during SBIRGT 

Methodology  𝑼𝟏  𝑼𝟐  𝑼𝟑 Power No. of iterations 

 
Rao-3 8.00 1199.05 30.00 331.2 600 

Rao-2 7.95 1199.95 29.99 305.2 675 

Rao-1 7.889 1200.00 29.554 267.95 525 

DE 7.879 1197.97 29.444 269.1 575 

Table 7 presents a comparative summary of the best 

solutions obtained by the four algorithms as discussed. Table 

8 provides a detailed comparison of the algorithms using 

statistical metrics.  

 

Figure 8 shows the variation of power output with 

iteration count for the best-performing parameters identified 

by the Rao and DE algorithms. 

 

 
Table 8. Statistical evaluation of power output  in Rao’s metaphor-less and DE algorithms 
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𝐩𝐨𝐰𝐞𝐫 m d s σ 𝐩𝐨𝐰𝐞𝐫BEST 𝐩𝐨𝐰𝐞𝐫WorstEST f γ c ε μ L
 

Rao-3 380.16 380.16 
0.36E-

05 

0.083E-

06 
0.29E-03 0.037 0.0465 14 0.95 4.0652 

0.22E-

03 

0.01432  
0.01430 

0.57E-03 

Rao-2 378.14 378.14 
0.35E-

05 

0.362E-

06 
0.54E-03 0.037 0.0467 11 0.95 4.0652 

0.29E-

03 

0.01679  
0.01647 

0.87E-03 

Rao-1 376.15 376.15 
0.33E-

05 
0.55E-06 0.78E-03 0.0458 0.0297 13 0.95 4.0452 

0.39E-

03 

0.01810  
0.02871 

1.87E-03 

DE 375.20 375.20 
0.30E-

05 

0.887E-

06 
0.80E-03 0.0567 0.0440 10 0.95 4.0462 

0.43E-

03 

0.01985  
0.01915 

2.44E-03 
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Fig. 8 Iteration-based plot for power maximization during SBIRGT 

 

The optimized power values achieved using DE, Rao-1, 

Rao-2, and Rao-3 were 269.1 kW, 267.95 kW, 305.2 kW, and 

331.2 kW, respectively. This clearly indicates that the Rao-3 

algorithm outperforms the others by delivering the most 

optimal global result. ANNs can capture complex nonlinear 

relationships between input and output variables that 

conventional linear/statistical models struggle with. Also, 

ANNs can process multiple input parameters simultaneously 

without simplifying assumptions. Unlike conventional 

optimization methods, which may get stuck in local minima, 

evolutionary algorithms explore the entire search space and 

hence give better results. 

5. Conclusion 
The modeling and optimization of SBIRGT systems have 

been carried out using Artificial Neural Networks (ANN), 

Rao’s sequential optimization methods, and differential 

evolution. The key observations from current work are 

summarized as follows: 

1. The pressure ratio was identified as the most influential 

input control factor affecting efficiency in the SBIRGT 

system, while the mass flow rate of air had the greatest 

impact on power output. 

2. The turbine inlet temperature was found to be the second 

most significant factor influencing both efficiency and 

power output in the SBIRGT system. 

3. Using Mean Squared Error (MSE) as the evaluation 

metric, the ANN models for both efficiency and power 

output demonstrated high accuracy, with minimal MSE 

values for each. 

4. Among the four evolutionary optimization algorithms 

evaluated, Rao-3 exhibited the highest performance in 

this study.  

5. The integrated approach combining ANN with Rao-3 

resulted in significant enhancements, achieving a 5.55% 

increase in efficiency and a 13.75% improvement in 

power output. 
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