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Abstract - This work presents an analytical solution for the radial cracks emanating from three circular holes in an infinite 

orthotropic plate under in-plane combined biaxial and shear loading. A closed-form solution that takes into account the 

interaction effects between cracks is obtained by combining Schwarz's alternating method with the complex variable approach. 

MATLAB is used to assess the normalized Stress Intensity Factors (SIFs) at the crack tips under combined loading conditions. 

The impact of important factors on the normalized SIFs is methodically examined, including fiber orientation, crack angle, 

material orthotropy, crack length, and center-to-center hole spacing. The findings show that longer cracks have higher SIF 

ratios, with the inner crack tip experiencing greater intensity than the outer one, while an increase in hole spacing results in a 

decrease in the normalized SIF ratio, which approaches unity. The analytical results demonstrate good agreement with 

deviations of less than 6% when compared to ANSYS finite element simulations. The suggested analytical framework can be 

successfully applied to real-world fracture mechanics issues involving composite and orthotropic materials and offers a 

dependable and effective method for evaluating crack interaction effects in orthotropic plates. 

Keyword - Analytical method, Crack angle, Crack interaction, Orthotropic plate, Stress Intensity Factor (SIF).

1. Introduction 
In many critical engineering structures, such as aircraft 

bodies, rocket casings, ship hulls, and pressure vessels, holes 

are intentionally created to accommodate fasteners and joints. 

During service, these holes are subjected to complex loading, 

which gives rise to high stress concentrations in the 

surrounding material, particularly in orthotropic composite 

systems. Under such operating conditions, cracks tend to 

initiate at the edges of the holes beneath fastener heads and 

then propagate along paths influenced by both the applied 

loads and the directional properties of the material. In modern 

lightweight structural designs, where safety margins are 

intentionally reduced to satisfy weight and cost requirements, 

even limited crack growth can quickly endanger structural 

integrity. For this reason, dependable fracture assessment 

methods that can realistically account for crack interaction 

effects are essential for structural designers and integrity 

engineers. 

Although existing fracture mechanics models offer useful 

insight for isolated holes or single-crack cases, real 

engineering structures often contain multiple fastener holes 

located close to one another. In these situations, the stress 

fields associated with neighboring holes and cracks interact, 

resulting in stress intensity factors that can differ significantly 

from those predicted using single-hole assumptions. This 

Effect is especially notable in orthotropic composite materials, 

where directional stiffness further alters the stress distribution. 

As a consequence, simplified models that ignore interaction 

effects may lead to inaccurate life predictions and potentially 

unsafe designs. Despite its clear practical relevance, the 

problem of interacting cracks in multi-hole configurations has 

received limited analytical attention. 

As the use of composite and anisotropic materials in 

engineering applications increased, research focus gradually 

shifted toward the analysis of orthotropic and laminated 

plates. Moussavian and Jafari [1] and Hajimohamadi and 

Ghajar [2], who examined the impact of material anisotropy 

on Stress Intensity Factors (SIFs), reported analytical 

solutions for cracks originating from a single circular hole in 

orthotropic or quasi-orthotropic plates. Catalanotti and 

Salgado [3] further analysed the crack originating from a 

single hole in orthotropic plates, emphasizing the function of 

directional stiffness. While Goleij et al. [5] used continuously 

distributed dislocation arrays to assess SIFs at crack tips, 

Beam and Cui [4] used the complex variable method in 

conjunction with linear transformation techniques to derive 
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SIFs for cracks originating from a circular hole in orthotropic 

materials. Kushch and Sevostianov [6] and Huang et al. [7] 

proposed alternative analytical methods, including orthotropy 

rescaling and elliptical hole modelling, extending the 

applicability of these solutions to more general geometries and 

loading conditions.  

 

Ukadgaonker and Sharma [8] advanced the study and 

gave SIF solutions for cracks subjected to internal pressure in 

laminated composite plates, by accounting for the coupling 

effects between layers. While Zhao [9] proposed an analytical 

method for evaluating SIFs in infinite plates containing 

multiple hole-edge cracks, the application was largely 

restricted to isotropic materials. Yan [10] gave SIF 

expressions for cracks emanating from circular holes in finite 

rectangular plates under tensile loading, while Liu and Duan 

[11] provided analytical solutions for cracks emanating from 

elliptic holes in infinite plates. 

 

Beyond analytical methods, numerical and experimental 

paradigms have been widely used to study crack behaviour in 

plates with openings. Harilal et al. [12] utilized digital image 

correlation to calculate SIFs for various crack configurations, 

offering valuable experimental validation. Kim and Paulino 

[13] applied the numerical displacement correlation technique 

to assess SIFs in orthotropic plates.  

 

Cheong and Hong [14] studied mixed-mode crack 

behaviour emanating from circular holes in orthotropic 

materials, highlighting the Effect of material anisotropy on 

mode coupling. Fu and Zhang [15] also presented an 

analytical–variational approach to determine SIFs for cracks 

emanating from holes in both isotropic and anisotropic plates, 

offering a link between purely analytical solutions and 

numerical methods. Studies reported in [16-25] provided 

stress distributions around multiple holes in isotropic and 

orthotropic plates under different loading conditions. 

Despite significant advances in the study of cracks 

originating from single holes and, to some extent, from 

multiple holes, strong analytical solutions that completely 

capture interaction effects among multiple cracked holes in 

orthotropic plates are still lacking. A review of available 

studies shows that no closed-form solution has yet been 

presented for an orthotropic plate with three circular holes, 

each containing two cracks, subjected to combined biaxial and 

shear loading while accounting for interaction effects. This 

unresolved problem restricts the applicability of present 

models to practical engineering applications. 

 

For the structure shown in Figure 1, this work provides a 

closed-form analytical solution for an orthotropic plate with 

three circular holes, each of which has two cracks, subjected 

to combined biaxial and shear loads at infinity. The 

formulation uses Schwarz’s alternating method in conjunction 

with the Kolosov–Muskhelishvili complex variable approach 

to accurately capture multi-hole interaction effects and to 

evaluate stress intensity factors directly, without the need for 

repeated finite-element re-meshing. The Effect of hole 

spacing, crack length and orientation, fiber angle, and material 

orthotropy on normalized mode-I and mode-II stress intensity 

factors is highlighted by a parametric analysis. The findings 

show that crack orientation and fiber angle are critical factors 

in fracture severity; closely spaced holes greatly enhance 

interaction effects, especially at inner crack tips. 

 

By addressing the limitations of previous studies, this 

work proposes a novel analytical closed-form solution of a 

three-hole, multi-crack problem in an orthotropic plate, and by 

considering the interaction effects under combined loading. 

These contributions greatly advance our knowledge of 

fracture behavior in fastener-dense orthotropic composite 

structures and offer a useful analytical framework for damage-

tolerant design. 

 
Fig. 1 Infinite orthotropic plate with three holes and a cracks system subjected to Bi-Axial+Shear loading at infinity 
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Fig. 2 Steps in determining SIFs at crack tips by complex variable method 

 

2. Methodology 
The aim of the present work is to obtain the complex 

stress functions, Stress Intensity Factors (SIFs), and to analyze 

the interaction effects in an orthotropic plate featuring three 

holes, each with two arbitrarily oriented radial cracks, under 

combined biaxial and shear loading at infinity. The following 

analytical methods can be employed to calculate SIF in an 

orthotropic plate. 

1. Complex Variable Method (CVM) 

2. The method of dislocation arrays 

3. CVM combined with integral equations 

4. Orthotropy rescaling method 

 

In this paper, the CVM is utilized to obtain an analytical 

solution to the aforementioned problem. This method allows 

for the straightforward resolution of complex geometries with 

arbitrary loading through the principles of complex variables. 

The steps involved in determining the SIFs at the crack tip are 

illustrated in Figure 2. The procedure for obtaining a solution 

for a plate with three holes, each with two cracks, under 

combined loading is divided into several stages. These stages 

include mapping the complex shape to a simple shape through 

a mapping procedure [1, 14], developing stress functions for 

the combined loading, and providing solutions in stages: the 

first stage solution, the second stage solution, and the final 

stage solution [8]. This process also involves determining the 

first and second approximate solutions, followed by 

calculating the SIF equations at the crack tips. 

 
 The following assumptions are made in the derivation: 

1. Material is linearly  

 
2.1. Complex Variable Formulation for Combined Loading 

The CVM is employed to derive the analytical solution for 

the current problem, with the loading conditions specified as 

follows. 

𝜎𝑥 = 𝜆𝑃; 𝜎𝑦 =  𝑃; 𝜏𝑥𝑦 =  𝑃; at infinity   (1) 

 

Taking into account the generalized plane stress condition 

for a thin orthotropic plate, Airy’s stress functions are introduced 

and substituted into the compatibility equation to derive the 

characteristic equation for in-plane loading [1]. 

𝑎11
𝑠4 − 2𝑎16

𝑠3 + (2𝑎12
+ 𝑎66

)𝑠2 − 2𝑎26
𝑠 + 𝑎22

= 0

 (2) 

The roots of the above bi-harmonic equation are, 

𝑠1 = 𝛼1 + 𝑖𝛾1 

 
𝑠2 = 𝛼2 + 𝑖𝛾2 

 
𝑠3 = 𝛼1 − 𝑖𝛾1 

 
𝑠4 = 𝛼2 − 𝑖𝛾2

 

 

2.2. Mapping Procedure 

The initial phase of mathematical formulation involves 

mapping, utilizing the conformal mapping technique to 

transform complex shapes, such as a circular hole with a 

cracked opening in the z-plane, into a known simple shape, 

like the unit circle in the ζ-plane, through the application of 

the conformal mapping function [1, 8, 14]. 

𝑧𝑗 = 𝑤𝑗(𝜁) = (𝑀) ∗ [(𝑎𝑗 + 𝑏𝑗) (
1

𝜁
+ 𝜁)] + 𝑁           

(3) 

Where, for a circular hole   𝑎𝑗 = 1 + 𝑖𝑠𝑗 𝑏𝑗 = 1 − 𝑖𝑠𝑗, 

j=1,2. Hole size constants [1] given as, 

 

𝑀 =
1

8
(2 + 𝑙𝑟 + 𝑙𝑙 +

1

1 + 𝑙𝑟

+
1

1 + 𝑙𝑙

) 

 

𝑁 =
1

4
((𝑙𝑟 − 𝑙𝑙) +

1

1 + 𝑙𝑟
−

1

1 + 𝑙𝑙
) 

 
Where lr and ll represent the lengths of the right and left 

crack, respectively. 

Conformal mapping 

(mapping complex 

shape into simple 

shape) 

First stage 

solution (stress 

functions for hole 

free plate) 

Second stage solution 

(Plate with hole 

applied negative 

boundary conditions) 

Final stage 

(combining first 

and second stage 

solutions) 

 

First approximate 

solution (stress 

function in ζ terms) 

 

Second approximate 

solution (interaction 

effect considered) 

Final Stress 

functions at holes 
SIFs at crack 

tips in terms of 

stress functions 
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Fig. 3 Stages in determining stress functions at the hole 

 

2.3. Determining Stress Functions for Holes 

After transforming the complex shape into a unit circle, 

stress functions for the combined loading case [8] were 

derived in the stages shown in Figure 3. 

 

2.3.1. First Stage 

In the first stage, the stress functions ϕ1 (z1), φ1 (z2) [23] 

are derived for a hole-free plate subjected to remote in-plane 

loading at infinity. 

𝜙1(𝑧1) =  B1𝑧1   (4) 

 

𝜑1(𝑧2) =  (𝐵2 + iC2) z2                            (5) 

Where, 

                         𝐵1 =
𝜎𝑥+(𝛼2

2+𝛾2
2)𝜎𝑦+2𝛼2𝜏𝑥𝑦

2[(𝛼2−𝛼1)2+(𝛾2
2−𝛾1

2)]
                           (6) 

𝐵2 =
−𝜎𝑥+(𝛼1

2−𝛾1
2−2𝛾1𝛾2)𝜎𝑦−2𝛼2𝜏𝑥𝑦

2[(𝛼2−𝛼1)2+(𝛾2
2−𝛾1

2)]
                           (7) 

𝐶2 =
𝜎𝑥(𝛼1−𝛼2)+(𝛼2(𝛼1

2−𝛾1
2)−𝛼1(𝛼2

2−𝛾2
2))𝜎𝑦+((𝛼1

2−𝛾1
2)−(𝛼2

2−𝛾2
2))𝜏𝑥𝑦

2𝛾2[(𝛼2−𝛼1)2+(𝛾2
2−𝛾1

2)]

 (8) 

The boundary conditions [1] f1 and f2for the imaginary 

hole are subsequently derived from the stress functions. 

𝑓1 = 2𝑅𝑒 [(𝐺1 + 𝐺2) (𝜁 +
1

𝜁
) + 𝑁]                                   (9) 

𝑓2 = 2𝑅𝑒 [(𝐺3 + 𝐺4) (𝜁 +
1

𝜁
) + 𝑁] (10)  

Where, 

𝐺1 = 𝑀[𝐵1𝑎1 + (𝐵2 + 𝑖𝐶2)𝑎2]                                   (11) 

 𝐺2 = 𝑀[𝐵1𝑏1 + (𝐵2 + 𝑖𝐶2)𝑏2]                                   (12) 

𝐺3 = 𝑀[𝑠1𝐵1𝑎1 + 𝑠2(𝐵2 + 𝑖𝐶2)𝑎2]𝑠 (13) 

𝐺4 = 𝑀[𝑠1𝐵1𝑏1 + 𝑠2(𝐵2 + 𝑖𝐶2)𝑏2] (14) 

 

2.3.2. Second Stage 

At the second stage, the solution considers a plate with a 

hole, on which boundary conditions equal in magnitude and 

opposite sign (f1
0= - f1 and f2

0= - f2) are imposed on its hole 

boundary, without any remote loading. The stress functions of 

the second stage solution ϕ0 (z1), φ0(z2) are derived from these 

boundary conditions by substituting into the Schwarz formula 

[17]. After evaluating the Schwarz formula and evaluating the 

integral, the stress functions are obtained as [1, 23] 

 

𝜙0(𝜁) =
1

𝑠1−𝑠2
{(

1

𝜁
(𝑠2(𝐺1 + 𝐺2) − (𝐺3 + 𝐺4)) +

1

𝜁2 (𝑠2(𝐺2 + 𝐺1) − (𝐺4 + 𝐺3)) + 𝑁)} (15) 

𝜑0(𝜁) =
−1

𝑠1−𝑠2
{(

1

𝜁
(𝑠1(𝐺1 + 𝐺2) − (𝐺3 + 𝐺4)) +

1

𝜁2 (𝑠1(𝐺2 +

𝐺1) − (𝐺4 + 𝐺3)) + 𝑁)} (16) 

2.3.3. Final Stage 

 In the final stage, the final stress functions ϕ (z1),φ(z2) for 

a hole are obtained through superposition of the solution from 

the first and second stages [1, 23]. 

 

𝜙(𝑧1) = 𝜙1(𝑧1) + 𝜙0(𝑧1)
  

(17) 

 

𝜑(𝑧2) = 𝜑1(𝑧2) + 𝜑0(𝑧2)
             

 (18) 

 

2.3.4. First Approximate Solution 

In the first approximate solution, stress functions for all 

three holes are expressed as a function of ζ. The stress 

functions corresponding to the first, second, and third holes 

are denoted as ϕ1(ζ1), φ1 (ζ1); ϕ2(ζ2), φ2 (ζ2); ϕ3(ζ3), φ3 (ζ3); 

these functions do not account for interaction effects from 

neighboring holes. For a plate with three holes and two radial 

cracks emanating from each hole, the hole size constants for 

the first, second, and third holes are represented by M1, M2, 

and M3, respectively. 1

1 1 1
2

8 1 1
a b

a b

M l l
l l

 
= + + + + 

+ + 

𝑀2 =
1

8
(2 + 𝑙𝑐 + 𝑙𝑑 +

1

1+𝑙𝑐
+

1

1+𝑙𝑑
)                  𝑀3 =

1

8
(2 +

𝑙𝑒 + 𝑙𝑓 +
1

1+𝑙𝑒
+

1

1+𝑙𝑓
) 

 

 Where R1, R2, and R3 represent the radii of the holes, and 

la or a, lb or b, lcor c, ld or d, le or e, and lf or f denote the crack 
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lengths at 1st,2nd, and 3rd holes respectively, β1 indicates the 

crack angle at the second hole. The stress functions for the first 

hole, 

𝜙1(𝜁1) =
1

𝑠1−𝑠2
{

1

𝜁1
(𝑠2(𝐺1 + 𝐺2) − (𝐺3 + 𝐺4)) +

1

𝜁1
2 (𝑠2(𝐺2 + 𝐺1) − (𝐺4 + 𝐺3)) + 𝑁1} + 𝐵1𝑧11             (19) 

 

𝜑1(𝜁1) =
−1

𝑠1−𝑠2
{

1

𝜁1
(𝑠1(𝐺1 + 𝐺2) − (𝐺3 + 𝐺4)) +

1

𝜁1
2 (𝑠1(𝐺2 + 𝐺1) − (𝐺4 + 𝐺3)) + 𝑁1} + (𝐵2 + 𝑖𝐶2)𝑧21   (20) 

 

Where, 

𝑧11 = 𝑀1(𝑎1 + 𝑏1) (𝜁1 +
1

𝜁1
) + 𝑁1  (21) 

 

𝑧21 = 𝑀1(𝑎2 + 𝑏2) (𝜁1 +
1

𝜁1
) + 𝑁1   (22) 

 

Similarly, the stress functions for the second hole are, 

𝜙2(𝜁2) =
1

𝑠1−𝑠2
{

1

𝜁2
(𝑠2(𝐺1 + 𝐺2) − (𝐺3 + 𝐺4)) +

1

𝜁2
2 (𝑠2(𝐺2 + 𝐺1) − (𝐺4 + 𝐺3)) + 𝑁2} + 𝐵1𝑧12 (23) 

 

𝜑3(𝜁3) =
−1

𝑠1−𝑠2
{

1

𝜁3
(𝑠1(𝐺1 + 𝐺2) − (𝐺3 + 𝐺4)) +

1

𝜁3
2 (𝑠1(𝐺2 + 𝐺1) − (𝐺4 + 𝐺3)) + 𝑁3} + ((𝐵2 + 𝑖𝐶2)𝑧23) 

(24) 

2.3.5. Second Approximate Solution 

 In the second approximate solution, the first hole stress 

functions are transformed to the second hole center through 

transformation and rotation. This transformation introduces 

additional loading at the second hole, resulting in a new 

problem with negative boundary conditions. This problem is 

solved to obtain corrected stress functions. By superimposing 

the transformed and corrected stress functions, the final 

resultant stress functions for the holes are determined, thereby 

accounting for the interaction effects. 

 
 The first hole stress functions are transferred to the second 

hole center by translation by distance C12 in the mapped plane 

and rotation through the crack angle β1. The C12 is obtained 

from 

𝐶12 =
1

2
[

𝐷12

𝑀1
+ √(

𝐷12
2

𝑀1
2 − 4)]   (25) 

 

 By transferring the stress function to the second hole 

center, we derive transformed stress functions at the second 

hole as ϕ12
1(ζ2) and φ12

1(ζ2). The corrected stress functions are 

obtained by solving with negative boundary conditions, and 

the corrected stress functions for the second hole are 

represented as ϕ22
1(ζ2) and φ22

1(ζ2).  

 

 The final stress functions for the second hole, which 

accounts for the interaction effect due to the first hole, are 

obtained by, 

𝜙2
1(𝜁2) = 𝜙12

1(𝜁2) + 𝜙22
1(𝜁2)  (26) 

 

𝜑2
1(𝜁2) = 𝜑12

1(𝜁2) + 𝜑22
1(𝜁2)  (27) 

 

 Likewise, the stress functions𝜙2
3(𝜁2), 𝜑2

3(𝜁2)For the 

second hole, which accounts for interaction effects from the 

third hole, the results are obtained by the superposition of 

transformed stress functions. 𝜙32
3(𝜁2), 𝜑32

3(𝜁2) and 

corrected stress functions 𝜙22
3(𝜁2), 𝜑22

3(𝜁2). 
 

𝜙2
3(𝜁2) = 𝜙32

3(𝜁2) + 𝜙22
3(𝜁2)  (28) 

 

𝜑2
3(𝜁2) = 𝜑32

3(𝜁2) + 𝜑22
3(𝜁2)               (29) 

  

 Final resultant stress functions 𝜙2(𝜁2), 𝜑2(𝜁2)for the 

second hole, accounting for interaction effects of both the first 

and third holes, are obtained by superposition of 

Equation(26,27) and Equations (28,29)are as follows 

 

𝜙2(𝜁2) = 𝜙2
1(𝜁2) + 𝜙2

3(𝜁2)          (30) 

 

𝜑2(𝜁2) = 𝜑2
1(𝜁2) + 𝜑2

3(𝜁2)          (31) 

 

The derivatives of the stress function at second hole are 

 

𝜙2
1’(𝜁2) =

1

𝑠1−𝑠2
[𝐻𝜙1

𝑇1
’ + 𝐻𝜙2

𝑇1
’ + 𝐻𝜙3

𝑇1
’ + 𝐻𝜙4

𝑇1
’ +

𝐻𝜙5
𝑇2
’ + 𝐻𝜙6

𝑇2
’ + 𝐻𝜙7

’ + 𝐻𝜙8

’ + 𝑁1] + 𝐻𝜙9

’ + 𝐻𝜙10

’  (32) 

 

𝜑2
1′(𝜁2) =

1

𝑠2−𝑠1
[𝐻𝜑1

𝑇1
′ + 𝐻𝜑2

𝑇1
′ + 𝐻𝜑3

𝑇1
′ + 𝐻𝜑4

𝑇1
′ +

𝐻𝜑5
𝑇2
′ + 𝐻𝜑6

𝑇2
′ + 𝐻𝜑7

′ + 𝐻𝜑8
′ + 𝑁1] + 𝐻𝜑9

′ + 𝐻𝜑10
′  (33) 

 

Where, 

( ) ( )1

1

2
1 2 1 1 ;

i
H s s B M e


 = − 𝐻𝜙2

= (𝑠1 − 𝑠2)(𝑎3 +

𝑏3)𝑒2𝑖(𝛽1); 

 

( )( )
3 2 2 2 2 1;H s s B iC M = − − 𝐻𝜙2

= (𝑠1 − 𝑠2)(𝑎3 +

𝑏3)𝑒2𝑖(𝛽1); ( ) ( )1

5

2
2 2 1 1 12 ;

i
H s s B M C e


 = − − 𝐻𝜙6

=

−(𝑠2 − 𝑠2)(𝑎3 + 𝑏3)𝐶12𝑒2𝑖(𝛽1); 

 

( ) ( )1

1

2
1 1 1 1 ;

i
H s s B M e


 = − 𝐻𝜑2

= (𝑠1 − 𝑠1)(𝑎3 + 𝑏3)𝑒2𝑖(𝛽1); 

 

( )( )
3 2 1 2 2 1;H s s B iC M = − − 𝐻𝜑4

= (𝑠2 − 𝑠1)(𝑎4 + 𝑏4)𝑀1; 

( ) ( )12
5 2 1 1 1 12 ;

i
H s s B M C e


 = − − 𝐻𝜑6 = −(𝑠2 − 𝑠1)(𝑎3 +

𝑏3)𝐶12𝑒2𝑖(𝛽1); 

( )' 1 1
7 1 2 2

2

;
B M

H s s


= − − 𝐻𝜙8
′ = −(𝑠1 −

𝑠2)
(𝐵2−𝑖𝐶2)𝑀1

𝜁2
2 𝑒−2𝑖(𝛽1); 
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( ) ( )1

' 3 3
9 2 2

2 12

;
i

a b
H

C e
 



 +
 = −
 + 

𝐻𝜙10
′ = 𝐵1

𝑀1

2
(𝑎1 + 𝑏1) [1 −

𝑒−2𝑖(𝛽1)

(𝜁2+𝐶12)2] ; 

( )' 1 1
7 1 1 2

2

;
B M

H s s


= − − 𝐻𝜑8
′ = −(𝑠1 −

𝑠1)
(𝐵2−𝑖𝐶2)𝑀1

𝜁2
2 𝑒−2𝑖(𝛽1); 

( ) ( )1

1

2
1 2 1 1 ;

i
H s s B M e


 = − 𝐻𝜙2

= (𝑠1 − 𝑠2)(𝑎3 +

𝑏3)𝑒2𝑖(𝛽1); 

( )( )
3 2 2 2 2 1;H s s B iC M = − − 𝐻𝜙2

= (𝑠1 − 𝑠2)(𝑎3 +

𝑏3)𝑒2𝑖(𝛽1); 

( ) ( )1

5

2
2 2 1 1 12 ;

i
H s s B M C e


 = − − 𝐻𝜙6

= −(𝑠2 − 𝑠2)(𝑎3 +

𝑏3)𝐶12𝑒2𝑖(𝛽1); 

( ) ( )1

1

2
1 1 1 1 ;

i
H s s B M e


 = − 𝐻𝜑2

= (𝑠1 − 𝑠1)(𝑎3 + 𝑏3)𝑒2𝑖(𝛽1); 

 

( )( )
3 2 1 2 2 1;H s s B iC M = − − 𝐻𝜑4

= (𝑠2 − 𝑠1)(𝑎4 + 𝑏4)𝑀1; 

( ) ( )12
5 2 1 1 1 12 ;

i
H s s B M C e


 = − − 𝐻𝜑6 = −(𝑠2 − 𝑠1)(𝑎3 +

𝑏3)𝐶12𝑒2𝑖(𝛽1); 

( )' 1 1
7 1 2 2

2

;
B M

H s s


= − − 𝐻𝜙8
′ = −(𝑠1 −

𝑠2)
(𝐵2−𝑖𝐶2)𝑀1

𝜁2
2 𝑒−2𝑖(𝛽1);

 

( ) ( )1

' 3 3
9 2 2

2 12

;
i

a b
H

C e
 



 +
 = −
 + 

𝐻𝜙10
′ = 𝐵1

𝑀1

2
(𝑎1 + 𝑏1) [1 −

𝑒−2𝑖(𝛽1)

(𝜁2+𝐶12)2] ; 

𝐻𝜑9
′ = [[

𝑎4+𝑏4

(𝜁2+𝐶12)2] + (𝐵2 + 𝑖𝐶2)
𝑀1

2
(𝑎1 + 𝑏1) (𝑒2𝑖(𝛽1) −

1

(𝜁2+𝐶12)2)] ; 

( ) ( )
( )

( )

( )

1

1

2
' 3 3 1
10 12 1 1 32 2

2 122 12

2
2

i

i

a b M e
H C a b

CC e



 


−     +    = + + 
    ++      

𝑇1
′ =

1

(1+𝜁2𝐶12)
2, 𝑇2

′ =
2𝜁2

(1+𝜁2𝐶12)
3  

  

 Similarly, the derivatives of the stress functions 

associated with the second hole, considering the interaction 

effect from the third hole, are obtained by considering the 

respective center distance.  

 

 By applying superposition, the derivatives of the final 

stress functions 𝜙2
′(𝜁2), and𝜑2

1(𝜁2)At the second hole, the 

results are obtained. Following a similar process, the 

derivatives of the final stress functions 𝜙1
′(𝜁1), 𝜑1

1(𝜁1) at the 

first hole, as well as derivatives of the final stress functions 

𝜙3
′(𝜁3), 𝜑3

1(𝜁3)At the third hole, the following are also 

derived. 

2.4. Stress Intensity Factors (SIFs) 

 The SIFs for mode-I(KI) and mode-II (KII) at crack tips of 

the second hole are obtained by the following relation given 

by Cheong and Hong [14]. 

 

𝐾𝐼 +
𝐾𝐼𝐼

𝑠2
= 2√

𝜋

𝐿
(

𝑠2−𝑠1

𝑠2
)𝜙2

′(𝜁2)  (34) 

 

𝐾𝐼 +
𝐾𝐼𝐼

𝑠1
= 2√

𝜋

𝐿
(

𝑠1−𝑠2

𝑠1
)𝜑2

′(𝜁2)  (35) 

 

3. Results and Discussions 
 The general solution for determining the SIF in an infinite 

orthotropic plate featuring three holes and two cracks 

extending from each hole is derived using CVM and the 

Schwarz alternating method. The analytical results of the 

fundamental formulation are computed with MATLAB 

R2020a. 

 
Assumptions adopted in the derivation: 

1. The plate material is assumed to be homogeneous, 

orthotropic, and to exhibit linear elastic behavior. 

2. The Plate is considered sufficiently large in comparison 

with the hole and crack dimensions, so boundary effects 

are neglected. 

3. A two-dimensional stress state is assumed, and thickness 

effects are ignored. 

4. The applied loading is uniform and acts at infinity. 

5. Residual stresses, plastic deformation, and material 

nonlinearity are not considered. 

 

3.1. Stepwise Procedure for Analytical Results 

1. Select the geometric parameters such as crack lengths a, 

b, c, d, e, f, radius of holes, and crack orientation angle β1, 

among others. 

2. Choose the material and document its properties along 

with the fiber direction. 

3. Determine the compliance coefficients aij. 

4. The Roots of the bi-harmonic equation are computed 

using MATLAB code. 

5. Constants B1, B2, C2, a1, a2, b1, b2, a3, b3, a4, b4, G1, G2, G 

3, and G 4 are calculated. 

6. The derivatives of the final resultant stress functions for 

all holes are derived. 

7. Calculated the normalized SIF by using the relation 

K0=𝑃√𝜋𝐿 . 

8. The normalized SIF ratios (KI/ K0, KII/K0) are computed, 

and their variations are plotted against different geometric 

parameters. 
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3.2. Effect of Various Parameters on 3 Holes-Crack System 

Subjected to Biaxial+Shear Loading 

 The results obtained with E-Glass/Epoxy material at a 

fiber orientation of 00, P=1, and a loading factor of λ=1 apply 

in all instances. 

 

3.2.1. Effect of Center Distance between Holes on SIF Ratios 

 For analyzing the Effect of center distance between holes, 

the parameters considered are as follows: radii of holes 

R1=R2=R3=2 mm, crack lengths a=b=c=d=e=f=2 mm, crack 

angle β1=0, and the center distance D=D12=D23 varied from 10 

mm to 50 mm with an interval of 5 mm and hole size 

constant𝐿 =
2𝑅2+𝑎+𝑏

2
. 

 

Table 1. Effect of centre distance between holes on SIFs ratios at second 

hole crack tips 

L/D 
crack tip-c crack tip-d 

KI/K0 KII/K0 KI/K0 KII/K0 

0.400 3.0579 1.6639 3.0578 1.6639 

0.267 2.3704 1.1995 2.3715 1.2006 

0.200 2.2369 1.1376 2.2371 1.1356 

0.160 2.2091 1.1258 2.2098 1.1263 

0.133 2.1914 1.1166 2.1904 1.1156 

0.114 2.1799 1.0822 2.1881 1.0829 

0.100 2.1855 1.0495 2.1859 1.0506 

0.089 2.1836 1.0241 2.1839 1.0246 

0.080 2.1823 1.0130 2.1824 1.0139 

   
                                                        (a)                                                                                                  (b) 

Fig. 4 (a) & (b) Effect of center distance between holes on SIF ratio 

 

 As the distance between the centers of the holes increases, 

the interaction between them weakens. This reduction in 

interaction leads to lower maximum stress at the crack tips and 

a gradual decrease in the normalized Stress Intensity Factor 

(SIF) ratios. When the holes are closer together, the 

normalized SIF ratio is noticeably higher, indicating strong 

interaction effects. However, as the center distance increases, 

the normalized SIF ratio continues to decrease, with the KII/K0 

value approaching 1, which suggests that the interaction 

between the holes becomes negligible. Beyond an L/D value 

of about 0.2, the normalized SIF ratios stabilize, a trend that is 

clearly shown in Figure 4. This behavior is consistently 

observed at both crack tip-c and crack tip-d for the Mode-I and 

Mode-II normalized SIF ratio. 

 

3.2.2. Effect of Crack Lengths on SIF Ratios 

 For analyzing the Effect of varying crack lengths, the 

parameters considered are as follows: radii of holes 

R1=R2=R3=R=2 mm, crack lengths a=b=e=f=2 mm, crack 

angles β1=0, the center distance D12=20 mm, and D23=20 mm, 

and the crack lengths (c, d) are varied from    2 mm to 6 mm 

with an interval of 0.5 mm. 

Table 2. Effect of varying crack lengths on SIF ratios at second hole 

crack tips 

c/R 
crack tip-c crack tip-d 

KI/K0 KII/K0 KI/K0 KII/K0 

1 2.2914 1.1348 2.2909 1.1341 

1.25 2.3874 1.2837 2.3869 1.2832 

1.5 2.4834 1.4026 2.4828 1.4019 

1.75 2.5456 1.4566 2.5452 1.4559 

2 2.5854 1.4805 2.5849 1.4798 

2.25 2.6021 1.5251 2.6014 1.5248 

2.5 2.6234 1.5697 2.623 1.5692 

2.75 2.6554 1.5941 2.6548 1.5934 

3 2.7239 1.6184 2.7232 1.6181 
 

 

As the dimensionless parameter c/R increased gradually, 

the interaction effect between the holes intensified, leading to 

higher maximum stress values at the crack tips and, ultimately, 

an increase in both SIFs ratio values at the crack. The Mode-I 

SIF ratio is consistently higher than the Mode-II SIF ratio 

across the entire range of c/R. From Figure 5, as the 

dimensionless ratio c/R increases, the SIF ratios also rise 

gradually, but Mode-I is more significant than Mode-II.
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                                                            (a)                                                                                                                                (b) 

Fig. 5 (a) & (b) Effect of varying crack length on SIF ratio 

   
(a)                                                                                                                       (b) 

Fig. 6 (a) & (b) Effect of varying crack angle on SIF ratio 

 

3.2.3. Effect of Crack Angle on SIF Ratios 

 For analyzing the Effect of crack angle, the parameters 

considered are as follows: radii of holes R1=R2=R3=2 mm, 

crack lengths a=b=c=d=e=f=2 mm, crack angle at the second 

hole ‘β1’ varied from 00 to 900, the center distance D12=20 mm, 

and D23=20 mm. 
 

Table 3. Effect of varying crack angle on SIF ratios at second hole crack 

tips 

β1 
crack tip-c crack tip-d 

KI/K0 KII/K0 KI/K0 KII/K0 

00 2.2914 1.1348 2.2909 1.1341 

150 1.226 0.9608 1.2857 1.0082 

300 0.4081 0.9006 0.4196 0.837 

450 -0.2193 0.4443 -0.2131 0.4096 

600 -0.8266 -0.4669 -0.8508 -0.4606 

750 -1.3768 -1.461 -1.3761 -1.4588 

900 -1.9209 -2.3581 -1.92 -2.3581 

 As illustrated in Figure 6, variation in the crack angle at 

the second hole changes, mode-I SIF ratio(KI/K0)attains a 

positive maximum at 00 , then decreases gradually, crosses 

zero at approximately 600, becomes negative beyond this 

angle, and reaches a negative maximum at 900.  

 

 Similarly, the mode-II SIF ratio (KII/K0) also shows a 

positive maximum at 00, decreases steadily up to about 500, 

after which it drops sharply, crosses zero near 550, and 

becomes negative, attaining its negative peak at 900.   

 

 The mode-I and mode-II SIF ratio curves intersect at a 

crack angle close to 200, indicating an equal influence from 

both modes at this crack angle. At lower crack angles, the 

mode-I behaviour is dominant; as the crack angle increases, 

mode-II behavior becomes more significant relative to mode-

I.  

 

 Overall, the variation of SIF ratios at both crack tips 

varies with variation in the crack angle, indicating the strong 

sensitivity of fracture behavior to crack orientation. 

1
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3.2.4. Effect of Fiber Angle on SIF Ratios 

 For analyzing the Effect of fiber angle, the parameters 

considered are as follows: radii of holes R1=R2=R3=2 mm, 

crack lengths a=b=c=d=e=f=2 mm, crack angle at second hole 

β1=00, and fiber angle (θ) varied from 00 to 900, and the center 

distances D12=20 mm and D23=20 mm. 
 

Table 4. Effect of varying fiber angle on SIF ratios at second hole crack tips 

θ 
crack tip-c crack tip-d 

KI/K0 KII/K0 KI/K0 KII/K0 

00 2.2914 1.1348 2.2909 1.1341 

100 1.5726 -3.8678 1.6838 -3.9675 

200 64.222 49.9228 63.9431 50.4089 

300 2.7064 -1.149 2.6703 -1.3239 

400 0.9135 -1.3925 0.808 -1.574 

500 29.7545 9.6497 30.4875 9.4186 

600 -11.5798 3.9375 -11.714 4.2859 

700 -2.0541 4.6317 -2.0019 4.8123 

800 1.8637 3.1439 1.9703 3.2319 

900 2.2905 1.1348 2.2915 1.1341 

 

   
                                                          (a)                                                                                                                         (b) 

Fig. 7 (a) & (b) Effect of varying fiber angle on SIF ratio 

 

 As shown in Figure 7, varying fiber angle from 00 to 900, 

has a clear influence on both mode-I (KI/K0) and mode-II 

(KII/K0) SIF ratios. Both modes exhibit a peak at 

approximately 200, along with a secondary peak near 500. The 

SIF ratios drop to zero at several intermediate fiber angles, 

notably around 100,300, and 400, while nearly identical SIF 

ratios are observed for both modes at 00 and 900. The mode-I 

SIF ratio values are predominantly positive, with the 

exception of negative values that appear, namely near 100, 

between 300 and 400, and between 550 and 700. In contrast, the 

mode-II SIF ratio KII/K0 remains largely positive, with 

negative values occurring only near 100 and between 300and 

400. Overall, the variation of SIF ratios at the crack tips with 

changing fiber angle demonstrates that the fiber angle has a 

significant impact on the SIF ratios. 

 

3.2.5. Effect of Material on SIF Ratios 

 For analyzing the Effect of material, the parameters 

considered are as follows: radii of holes R1=R2=R3=2 mm, 

crack lengths a=b=c=d=e=f=2 mm, crack angle at second hole 

β=00, and fiber angle (θ)=00, and the center distances D12=10 

mm and D23=10 mm. 
 

Table 5. Effect of material on SIFs ratios at second hole crack tips 

Material 

crack tip-c crack tip-d 

KI/K0 KII/K0 KI/K0 KII/K0 

Graphite/Epoxy 3.0565 1.6631 3.0578 1.6639 

Boron/Epoxy 3.0146 1.2521 3.0154 1.2528 

E-Glass/Epoxy 2.9602 1.5846 2.9608 1.5854 

Carbon/Epoxy 3.2326 1.2091 3.2333 1.2097 

S-Glass/Epoxy 2.9084 1.2309 2.9092 1.2317 
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Fig. 8 (a) & (b) Effect of material on SIF ratio 

 

 From Figure 8, it is evident that the mode-I SIF 

ratio(KI/K0) is significantly higher than the mode-II ratio 

KII/K0, being approximately twice its magnitude. The KI/K0 

values vary from 2.9084 (for S-Glass/Epoxy) to 3.2326 (for 

Carbon/Epoxy). In contrast, the  KII/K0 values show 

comparatively smaller variation, ranging from 1.2091 (for 

Carbon/Epoxy) to 1.6631 (for Graphite/Epoxy). Notably, no 

single material exhibits the maximum SIF ratio for both mode-

I and mode-II simultaneously. The results demonstrate a 

significant influence of the material properties on the SIF 

ratios. 
 

3.3. Numerical Results with ANSYS 

 An orthotropic plate with three holes and two radial 

cracks emanating from each hole is modelled in ANSYS. The 

procedure involves assigning material properties, creating a 

coordinate system at crack tips, defining nodal sections at 

these crack tips, meshing the geometry, and configuring 

boundary conditions and loads. ANSYS static analysis is then 

performed to obtain crack tip stresses and nearby directional 

displacement values.  
 

 The deformation values collected from the nodes near the 

crack tip are utilized to determine the SIF values through the 

Displacement Correlation Method (DCT) as described by Kim 

et al. [13]. The problem is modeled in ANSYS using 

approximately 64,000 elements, with a sphere of influence–

based mesh refinement applied near the crack tips. The 

resulting RMSE values remain below 3%. 
 

3.3.1. Comparison of the Effect of Crack Angle on SIFs Ratio 

 For analyzing the Effect of crack angle, the parameters 

considered are as follows: radii of holes R1=R2=R3=2 mm, 

crack lengths a=b=c=d=e=f=2 mm, crack angle at the second 

hole β1 varied from 00 to 900, the center distance D12=20 mm, 

and D23=20 mm. 

 
Fig. 9 Deformed mesh model of plate with crack angle of 300 under Bi-

Axial+Shear loading 

 

 
Fig. 10 Stress distribution with 00 crack angle 

 

 
Fig. 11 Stress distribution with 150 crack angle 

 

 
Fig. 12 Stress distribution with 450 crack angle 
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Fig. 13 Stress distribution with 600 crack angle 

 Figure 9 illustrates the meshing surrounding the cracks 

along with the deformation pattern. The Numerical results 

obtained from ANSYS for the E-Glass/Epoxy plate, as shown in 

Figures (10, 11, 12, & 13), reveal that the interaction effect is 

greater when the angle of the crack is at 450 and a strong shear 

alignment among the neighboring holes. 

 

 

Table 6. Comparison of analytical and numerical results with varying crack angle

 
 

β1 

at crack tip-c at crack tip-c 

Analytical 

Solution-

KI/K0 

ANSYS 

Solution-

KI/K0 

Difference 

(%) 

Analytical 

Solution-  

KII/K0 

ANSYS 

Solution-

KII/K0 

Difference 

(%) 

00 2.2914 2.1823 4.76 1.1348 1.0699 5.72 

150 1.226 1.1885 3.06 0.9608 0.9257 3.65 

300 0.4081 0.4214 -3.25 0.9006 0.8580 4.73 

450 -0.2193 -0.2078 5.24 0.4443 0.4589 -3.29 

600 -0.8266 -0.8614 -4.21 -0.4669 -0.4873 -4.36 

750 -1.3768 -1.3373 2.87 -1.461 -1.3903 4.84 

900 -1.9209 -1.8571 3.32 -2.3581 -2.2668 3.87 

 

 
Fig. 14 Comparison of analytical results with numerical results for crack angle varying case 

 

From Figure 14, it is observed that analytical results and 

numerical results obtained from ANSYS show close 

agreement for both KI/K0 and KII/K0over the entire range of 

crack angles. The difference between analytical and numerical 

results remains within 6%, thereby confirming that ANSYS 

results strongly support the analytical findings. 

 

4. Conclusion 
The analytical solution is developed for an orthotropic 

plate containing three circular holes, each containing two 

cracks, obtained by the complex variable method. The 

interaction effect between neighboring cracked holes is 

analyzed through the Schwartz alternating technique. To the 

author’s knowledge, the problem of three cracked holes with 

interaction effects has not been previously reported in the 

literature.  

 

The results show that, under combined loading, as crack 

length increases, it leads to a higher SIF ratio, whereas an 

increased center distance results in a lower SIF ratio, which 
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stabilizes beyond a certain distance. The crack angle and fiber 

angle significantly influence the SIF ratios.  

 

Additionally, the SIF ratio at the inner crack tips is greater 

than that at the outer crack tips. The analytical method results 

are validated against ANSYS simulation solutions for selected 

cases, showing a difference of less than 6%, demonstrating 

good agreement. The proposed analytical solution is limited to 

orthotropic plates and is not directly applicable to fully 

anisotropic plates.  

In addition, the adopted mapping function is restricted to 

cracks emanating from circular holes and cannot be extended 

to cracks originating from holes of varying shapes. 

Nevertheless, the methodology can be extended to 

multilayered composite plates. The current method's simple 

steps make it easier to apply in real-world fracture analysis of 

composite structures like rockets and airplanes. 

 

Within the constraints of linear elastic behavior and two-

dimensional assumptions, the suggested formulation can be 

applied to orthotropic plates with multiple holes and cracks 

under combined in-plane loading. The method's application is 

limited by idealized geometry, loading applied at infinity, and 

the disregard for finite boundary effects, material nonlinearity, 

and crack growth, even though it systematically and 

analytically captures interaction effects.  

 

Future research could use a combination of analytical and 

numerical methods to address nonlinear material response, 

crack growth, and expand the current model to finite plates. 

 

Nomenclature 
aij        Elastic constants  [ ]  

P     Stress    [MPa] 

a1, a2, b1, b2    complex variables  [ ] 

R1, R2, R3  Radius of holes  [mm] 

a,b,c,d,e,fLengths of cracks  [mm]  

Re     Real part   [  ] 

a3,a4,b3,b4      Simplification terms  [  ]  

si     Complex parameter               [  ] 

B1,B2,C2       Loading constants  [  ]  

SIF    Stress Intensity Factor  [Mpa-√𝑚𝑚] 

C12, C23        Distance in 𝜁-plane  [  ]  

D12, D23        Distance in z-plane  [  ]  

zi     Complex number                        [ ] 

f1, f2        Boundary conditions  [  ]  

β1,β2               Crack angles    [ ] 

I        Imaginary unit  [  ] 

𝜁               Complex number in mapped plane 

Im        Imaginary part  [  ]  

𝑤𝑗(𝜁)     Mapping function                  [ ] 

K0        Normalized SIF  [Mpa-√𝑚𝑚]     

𝜙1(𝑧1), 𝜑1(𝑧2)Stress functions                 [  ] 

KI, KII        Mode-I, Mode-II SIF  [Mpa-√𝑚𝑚] 
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