

Original Article

# Dimensional Stability of Novel Artifact and its Error Mapping with Measuring Volume of Bridge Type CMM

Achyut D. Khare<sup>1</sup>, Anand K. Bewoor<sup>2</sup>, Vinay A. Kulkarni<sup>3</sup>

<sup>1</sup>Department of Technology, Savitribai Phule Pune University, Pune & Department of Mechanical Engineering, PCCOER, Pune, Maharashtra, India.

<sup>2</sup>Department of Mechanical Engineering, Cummins College of Engineering for Women, Pune, Maharashtra, India.

<sup>3</sup>Department of Mechanical Engineering, D Y Patil College of Engineering, Akurdi, Pune, Maharashtra, India.

<sup>1</sup>Corresponding author : ad\_khare@yahoo.co.in

Received: 06 November 2025

Revised: 08 December 2025

Accepted: 06 January 2026

Published: 14 January 2026

**Abstract** - To meet the continuous need for precision and accurate measurement, it is necessary to improve regularly the performance of three-dimensional and more flexible measuring systems (i.e., CMM). An interim check of CMM by the operator using the artifacts offers the best economical solution to verify CMM on a daily basis. There exist some limitations of the existing artifacts, especially long-term stability, the capability to detect abrupt changes in the CMM performance, and allowing different functions to share data and interact with each other. This necessitates proposing a novel artifact that will combine all the needs of the inspection process with features of uncertainty evaluation. A ball plate artifact (Novel Artifact) is designed with Dolerite as base plate material and 48 Zirconia balls to determine Geometric and Volumetric errors in different positions. The statistical performance of the artifact is verified by measuring the distance of the balls from a reference ball in the first, twelfth, and twenty-second weeks, and then by plotting the results using statistical tools. Cross-correlation is used for depicting the stability of the ball plate before dimensional stability reverification. Interim checking of the CMMs used in the production area is carried out by using this artifact, and errors such as linear, horizontal, and vertical straightness, pitch, yaw along X, Y, Z axes, and roll along Z-axis have been determined. It is evident that the estimation of error using improved novel artifact maps for measuring the volume of Bridge type CMM is more accurate and effective.

**Keywords** - Novel artifact, Coordinate measuring machines, Error mapping, Interim check, Geometric errors, Volumetric errors, etc.

## 1. Introduction

In an industrial environment, CMM is the most versatile and powerful measuring equipment as well as a reliable source of the quality system, which monitors manufacturing processes according to the specifications of the quality requirements [1]. Between two verifications, the performance of a Coordinate Measuring Machine may change. Undocumented changes in the conditions of the CMM may affect the validity of all future measurements. To avoid this, CMM is periodically calibrated to verify its traceability, accuracy, compatibility between the calibrations, compatibility with existing standards, etc. Daily verification of CMM is required to check the effects on the precision of measurement. However, it is not feasible to calibrate /verify the CMM every day due to its cost [2]. Calibration is required to confirm the CMM's good performance and to validate its operative and metrological competence with high accuracy. ISO10360-2:2009 recommends interim checking as an alternate method to calibration. This method compares the part to a well-calibrated artifact, which may be identical to

the actual part. This method can give good estimates of measurement uncertainty. As the artifacts are well calibrated, the results of the measurement are treated as errors.

The optimized position of the workpiece on the CMM table can be identified by an interim check using the artifacts, which gives the best economical solution. Designing and developing an artifact is a more feasible and faster approach to verify the metrological stability of CMM, which will show its operational and metrological adequacy.

Dimensional stability and accuracy of an artifact are the most important factors for the interim check of CMM, which affects uncertainty and repeatability. The work reported here discusses research carried out with an improved design of the artifact and estimated error mapping by measuring the volume of a Bridge-type CMM. The improved ball plate artifact (Novel Artifact) uses an optimally possible minimum-sized Dolerite base plate and minimum number of



Zirconia balls to determine the errors (Patent for the design of the artifact has been filed vide application no. 65459-001).

## 2. Research Review

Measurement productivity can be improved by finding measurement errors as a vital factor to enhance the quality and reliability of CMM measurements. To minimize the cost of measurement and to improve the accuracy, it is necessary to determine the relationship between the measured parameter and the uncertainty of measurement [3]. This section reviews research related to the need for interim checks, problems associated with calibration, processes of interim checks and monitoring, emerging approaches of interim checking, designs of ball plate artifact, types of measured errors and related standards used, and types of artifacts that have been carried out.

Measurements of the artifact or workpiece are carried out for performance verification of the CMM. The results of the interim check can be used as the basis to determine the reliability of CMM in inspecting workpieces. This reduced performance verification can be applied to examine the CMM capability. It is necessary to determine the degree of verification for the re-verification and acceptance tests [4].

In industries, the reliability of interim checks can be improved by pooled error mapping of CMM using artifact [5]. These works show the importance of the interim check of CMM. The relevant published research is synthesized for the need of interim checks, problems related to calibration, processes related to interim checks, as well as monitoring and emerging approaches, etc., are summarized in Tables 1 to 4.

Table 1. Research review related to the need for an Interim check

| Key Findings                                                                          | Reference Cited |
|---------------------------------------------------------------------------------------|-----------------|
| Extensive adoption by the industry of interim checking of CMM                         | [1, 3-5]        |
| Application-specific calibration needs and their relation to interim checking         | [17]            |
| Issues related to the use of Standards and their traceability during interim checking | [3]             |

Table 2. Problems related to calibration

| Type of Calibration & verification problem   | Reference Cited |
|----------------------------------------------|-----------------|
| Dominance of geometric and volumetric errors | [6-9]           |
| Artifact-based approaches                    | [9, 10, 15]     |
| Uncertainty quantification and compensation  | [11, 18]        |
| Newer data-driven approaches                 | [12]            |

Earlier researchers have reported different aspects of problems related to calibration of CMM (refer to Table 2), viz. Dominance of types of errors, uncertainty quantification and compensation, use of artifact-based approaches for calibration, different processes used for interim checks and monitoring (refer to Table 3), viz., the approach of day-to-day reliability estimation and identification of dynamic error for interim checking, etc.

To measure volumetric errors, a hole plate artifact is designed to measure the volumetric accuracy and 21 parametric error components of CMM [9]. A calibration method for the artefact is presented to minimize the effect of geometric errors on the CMM. This method estimates the uncertainty of scale and orthogonal error. While calculating errors, the orientation of the artifact in measuring the volume of the CMM is a vital factor [10]. A cost-effective and faster method has been developed for testing the coordinate measuring machine. It needs one one-time measurement to correct the squareness error [11]. By application of neural networks and quantile regression, the errors of the CMM can be predicted. This method improved accuracy and is better than least squares regression. This reflects the trend towards hybrid data-driven models [12].

Table 3. Processes related to interim checks and monitoring

| Interim Checks and Monitoring Details      | Reference Cited |
|--------------------------------------------|-----------------|
| Day-to-day reliability by Interim checks   | [2, 13, 14, 19] |
| Material selection & dimensional stability | [19]            |
| Identification of dynamic error            | [10, 15, 16]    |

Different methods for the measurement of geometrical errors of a machine are discussed [6]. Geometric errors on CNC machines can be measured by using a 1D artifact [7]. Error compensation technique is used to reduce geometric error, which is the main source of inaccuracy. Its research review in measuring, modeling, and compensation of geometric errors has been reported, which is inferred as an additional process [8].

Results of CMM measurement are compared with the calibration values, which will make available information on measurement deviations and uncertainty of the measured features [13]. An experimental interim check technique is suggested for scale and orthogonal error uncertainty evaluation. Of CMM. [14]. A master artifact is developed to identify and check the dynamic properties of the CMM. This artifact takes measurements at high speed, guaranteeing the required accuracy [15].

A pitch artifact to calibrate pitch positions of the balls in radial and height positions on a circular ball plate is developed [16]. Spherical lenses are used as a reference surface to check the quality of the ophthalmic lenses [17]. In the decision-making process, consistent and reliable measurement of uncertainty is a crucial factor. For uncertainty evaluation, standard step gauges are used for verification, which is used as a workpiece [18].

From the reviewed literature, a distinct trend of CMM performance valuation using geometric and volumetric error assessment is observed. An interim check/ calibration method with the importance of orientation of the artifact within the CMM measuring volume can be devised to estimate the uncertainty of measurement. This approach can significantly reduce dependence on standards and human intervention. The use of artifacts gives real-time performance evaluation and interim checks for errors. This method also contributes to enhanced process reliability.

Different types of approaches are used for interim checking of CMM (refer to Table 4), including hybrid, self-calibration, approaches focusing on uncertainty, the material sensitivity approach, and the application-oriented diversity approach. However, the work presented herewith uses an error-finding approach by taking measurements of ball distances from the reference ball on the Novel artifact.

### 2.1. Use of Ball Plate as Artifact

For estimating the pooled errors and statistical performance of CMM, the Ball Plate artifact is widely used as a reference standard due to its geometric simplicity and dimensional stability. It also helps to find measurement uncertainty. Some of the research contribution from various authors detailing the number of balls used, measurement cycles performed, materials used for the plate and balls, size of the artifact, and accuracy achieved is presented in Table 5. This provides a good perspective on the effectiveness and constraints of the ball plate artifacts.

Table 4. Emerging approaches for interim checking

| Emerging Approaches                             | Details                                                                           |
|-------------------------------------------------|-----------------------------------------------------------------------------------|
| Hybrid Approaches [11, 12]                      | Integration of physical learning Models and machine learning methods              |
| Self-Calibration Approaches [10, 16]            | Decreased reliance on external standards                                          |
| Approaches Focused on Uncertainty [8, 18]       | Quantification and propagation of uncertainty into decision-making                |
| Material Sensitivity Analysis approaches [19]   | Recognition of thermal stability and long-term creep issues in artefact materials |
| Application-Oriented diversity Approach [4, 17] | Ophthalmic optics<br>Multi-axis machining                                         |

Table 5. Ball plate artifact designs

| Material                                           | No of Balls | Size (mm)              | Measurement Cycles   | Accuracy Achieved (µm) | Limitation *                                                                          |
|----------------------------------------------------|-------------|------------------------|----------------------|------------------------|---------------------------------------------------------------------------------------|
| Dolerite for base plate and Zirconia for balls [5] | 52          | 450 × 450 × 40 thk     | Not explicitly fixed | 10                     | More balls, heavier, less accuracy                                                    |
| Ceramic balls glued on a cylindrical plate [16]    | 12          | Ball circle radius 119 | 30                   | 0.74                   | Difficulty in taking measurements, more measurement cycles,                           |
| Not mentioned [10]                                 | 36          | 100 x 100              | Not explicitly fixed | 2.1                    | Kinematic coupling between the base plate and ball plate may create geometric errors. |
| Steel for balls and Aluminum for plate [11]        | 25          | Not mentioned          | 04                   | 7.0                    | Less dimensional stability                                                            |

**Explanation of Limitations:** As Ball Plate Artifacts are Mentioned in Table 5, the Results are Expressed with Respect to the (Redesigned) Novel Artifact. It is observed that, earlier Dolerite-Zirconite ball plate type artifact uses a larger number of balls and the size of the ball plate is larger, which makes it costly and heavier [5] and comparatively less accurate (10  $\mu\text{m}$ ). A ball plate with a cylindrical plate is difficult to manufacture and may face difficulty while taking measurements. Further, it needs more measurement cycles and is also difficult while positioning during volumetric error estimations as per ISO 10360-2 [16]. The ball plate artifact, with a spacer [10] separating the ball plate and base plate, may introduce some structural errors. Artifact with metallic balls and plate [11] will need temperature Compensation. Even after using temperature compensation, the thermal effect is a major contributor affecting accuracy and repeatability. Such experiences demand more research to improve accuracy (for

correct estimation error during interim check), reduce weight, and inspection cycle time.

## 2.2. Types of Errors Measured

Some of the researchers measured and quantified various types of errors in line with international standards. The type of errors, the parameter used to measure error, and the standard referred to are reviewed as stated in Table 6.

## 2.3. Types of Artifacts and Errors

Various types of artifacts are used by different researchers to find errors. The type of artifact and the measured errors by using it, as well as the standard used, are reviewed (refer to Table 7). The present work follows the International standard ISO 10360-2, which is a general product specification for acceptance and verification of CMM.

**Table 6. Types of errors and standards used**

| Type of Error/Test                                   | Standards Used                     | Parameters Used                                                                                                                                                                                                                                                                                                                      |
|------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Length measurement error [1, 4]                      | NPL guidelines No. 42              | Linear length                                                                                                                                                                                                                                                                                                                        |
| Geometric errors [2, 6, 10, 12, 18] [19, 21, 22, 23] | NPL guidelines No. 42, ISO 10360-2 | Measurement uncertainty, Measurement repeatability, Local Kinematic Model, Errors due to tool wear and fixture, Measurement range, Artefact material selection, Design of Artifact, Standards for acceptance and verification of CMM, Linear, Horizontal, and vertical straightness, Pitch, roll, and Yaw errors, Multi-feature bar. |
| Probe form error [1, 4]                              | ISO 10360-2                        | Scanning speed, probe force                                                                                                                                                                                                                                                                                                          |
| Volumetric error [3, 7, 13, 17, 21, 22, 23]          | ISO 230, ISO 10360-2               | Measurement of straightness and squareness errors, Self-calibration, probe positions, Self-calibration, probe positions, Deflection analysis of hole plate, measurement uncertainty                                                                                                                                                  |
| Thermo-mechanical errors [3]                         | ISO 230                            | Measurement of straightness and squareness errors                                                                                                                                                                                                                                                                                    |
| Linear error [5, 9]                                  | ISO 10360-2, ANSI/ASME B89         | Linear displacement, axis alignment                                                                                                                                                                                                                                                                                                  |
| Dynamic error [8, 11]                                | ISO 10360-2                        | Regression analysis, measuring speed, Pitch, and scanning measurement of the master artefact                                                                                                                                                                                                                                         |
| Angular errors [9, 14]                               | ISO 10360-2                        | Error characterization and compensation, Self-Calibration of ball plate                                                                                                                                                                                                                                                              |
| Squareness errors [9, 15, 16, 23]                    | Statistical standards              | Error characterization and compensation, non-zero out of spherocity, stylus tip offset, Calibration uncertainty, and use of a telescoping ball-bar                                                                                                                                                                                   |
| Normality test [19, 20]                              | NPL guidelines No. 42, ISO 10360-2 | Anderson Darling Coefficient, Univariate Normality test procedure.                                                                                                                                                                                                                                                                   |

**Table 7. Types of artifact and error measured**

| Type of Artifact                                                      | Type of Error                                                                                                         | Standards Used        | Limitations*                                                                                                                                                                                                                                                        |
|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Metallic ball plate, Ball bar, Fabricated purpose-made test piece [1] | Geometric error, Volumetric error, Squareness errors                                                                  | NPL guidelines No. 42 | Possible thermal expansion, High weight, Corrosion affects Long-term dimensional stability. The ball bar provides only one-D measurement, unable to measure Volumetric error. Purpose-made test piece is non-standardised, Difficult to trace to national standards |
| 1D and 2D artefacts [3, 5, 6]                                         | Thermo-mechanical errors, Volumetric error, Dynamic error, Vertical Straightness error along X, Y, Z, Geometric error | ISO 230, ISO 10360-2  | A 1D artifact can measure errors in one direction, unable to detect squareness and volumetric errors.                                                                                                                                                               |
| 3-D grid artifact of steel balls [7]                                  | Volumetric error                                                                                                      | ISO 10360-2           | Difficult to manufacture and Calibrate precisely. High cost of calibration                                                                                                                                                                                          |
| Hole plate artifact [13]                                              | Volumetric error, Length error                                                                                        | ISO 10360-2           | Limited for volumetric error detection                                                                                                                                                                                                                              |
| Ball plate (Metallic) with spacer [10]                                | Geometric error                                                                                                       | ISO 10360-2           | Accuracy gets affected by mismatch of thermal expansion between plate and spacer, Increased setup complexity                                                                                                                                                        |

\*Limitations of the Artifacts, as Mentioned in Table 7, are Discussed with Respect to the (Redesigned) Novel Artifact. It is evident that metallic ball plates are higher in weight and good conductors of heat, hence thermal expansion exists. Even after thermal compensation, accuracy and repeatability are affected. Also, Corrosion affects long - term dimensional stability. A fabricated purpose - made test piece is a standardized artifact, and it is difficult to trace to national standards [1]. Ball bar or other 1D and 2D artifacts can detect the errors in one or two directions only and are unable to detect volumetric errors. Hole plate artifacts have limited volumetric error detection capabilities [3, 5, 6]. A 3-D grid artifact of steel balls is difficult to manufacture and calibrate precisely. It also requires a higher cost of manufacturing and calibration [7]. And in case of an artifact with a spacer, the accuracy of measurement gets affected by the mismatch of thermal expansion between the plate and spacer, in case of a metallic ball plate with a spacer. Such a type of artifact will increase the complexity of setup [10]. After understanding the limitations of the reported research agenda, further research is discussed next.

#### 2.4. Research Challenges Identified and Agenda for Research

Based on published research review and field visits research gaps been identified as: (i) Interim check

standardization is weak (ii) Artifact material and stability tradeoffs needs improvements, (iii) Existing artifact designs consumes more time for interim checking of CMM, (iv) Further, practically low-cost methods to use refined artifact designs for interim check purpose are needed, which needs optimization. These research gaps help us to set the research agenda as: (i) To select of appropriate material and refine the artifact design, (ii) To resolve errors issues with appropriate measurement sequences and analysis, (iii) Reduced the dependency on external standards, (iv) To improve accuracy and reduce the inspection time per calibration which can result in improved the efficiency. The next sections discuss the refined design of the Ball-Plate type artifact, testing the novel artifact, and mapping the estimations of errors to measuring the volume of Bridge type CMM with more accuracy and effectiveness.

#### 3. Novel Artifact Design Steps

High accuracy and repeatability are some of the important considerations in CMM performance. To verify these performance characteristics of the CMM, the artifact being used for the interim check of CMM should be well calibrated with good surface finish, high-quality geometry, and dimensional stability as recommended by ISO-10360-2. The methodology adopted for the design, manufacturing, and testing of the Novel Artifact is shown in a flow chart in Figure 1.

Table 8. Data for material selection

| Material       | $A (10^{-6}/^{\circ}\text{C})$ | $\Sigma t (\text{MPa})$ | $\rho(\text{kg/m}^3)$ | Hardness (BHN) | Cost (Rs) | Machinability Rating (%) |
|----------------|--------------------------------|-------------------------|-----------------------|----------------|-----------|--------------------------|
| Titanium alloy | 9.01                           | 1025                    | 4400                  | 140            | 160916    | 45                       |
| Invar          | 2                              | 445                     | 8200                  | 350            | 83731     | 50                       |
| SiC            | 4.01                           | 336                     | 2700                  | 425            | 132555    | 256                      |
| Granite        | 6.5                            | 60                      | 2600                  | 60             | 111854    | 37.5                     |
| Dolerite       | 2.4                            | 399.56                  | 3135                  | 709            | 111895    | 443                      |
| Carbon steel   | 13.5                           | 475                     | 7850                  | 183            | 121898    | 57                       |
| Al alloy       | 23.5                           | 175                     | 2689                  | 50             | 107335    | 270                      |

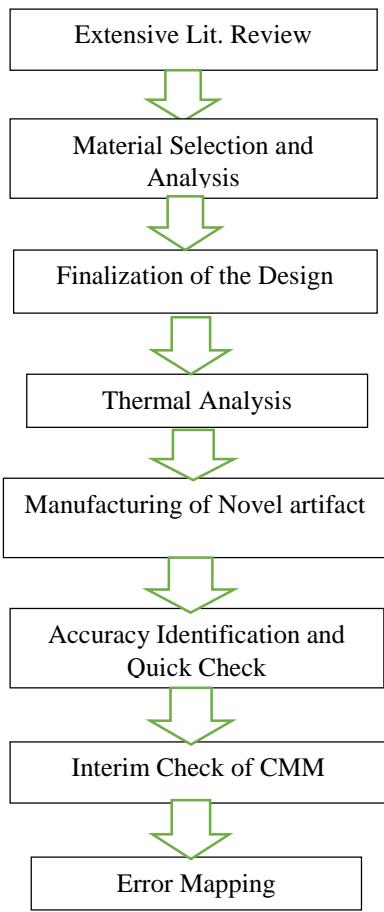



Fig. 1 Flow chart of methodology

### 3.1. Material Selection and Analysis

After review of the published literature, Patents, and the interactions with domain experts, the next immediate step was to finalize the material for the artifact. The main motivation for the selection of the material is to improve the accuracy of the Novel artifact. Materials among the pool of alternatives described by various attributes such as coefficient of thermal expansion ( $\alpha$ ), strength, hardness, density, machinability, and cost are considered. Multi-Aspect Decision Making (MADM)

techniques, viz. Preferential Indexing and TOPSIS are utilized to finalize the material for the base plate. Dolerite is proven as a preferred material for the base plate of the artefact used for interim checks of CMM [19]. Zirconia is also a type of ceramic that depicts excellent thermal stability, chemically non-reactive to Dolerite, good resistance to corrosion and abrasion, high strength and hardness with excellent surface finish on machining. When Zirconia is subjected to impact loading, it shows transformation toughening and stops crack propagation. Hence, the material selected for the balls of the Novel artifact is Zirconia. Refer to Table 8 for the data for material selection.

### 3.2. Finalization of the Design

To finalize the design of the Novel artifact, four different conceptual designs are verified on the basis of measured volume, accuracy, ease of manufacturing, cost, and thermal diffusion, leading to the stability of the artifact. After studying these design concepts, a design covering 70 % of the measuring volume of the CMM table (*in line with ISO 10360-2*), easier to manufacture, easier to handle, with good dimensional stability, and less cost has been finalized for further development. A ball plate with a Dolerite base plate and Zirconia balls is shown in Figure 2.

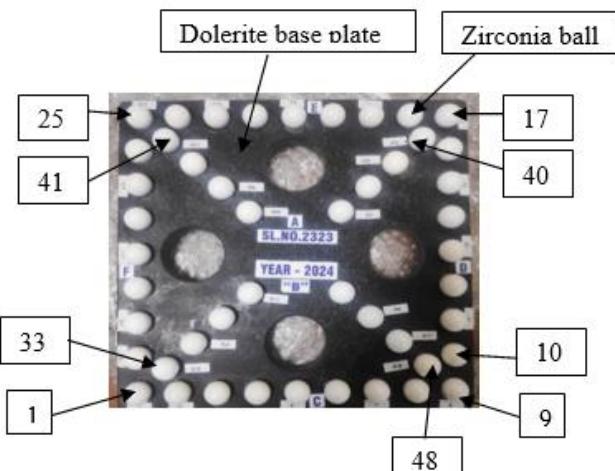



Fig. 2 Dolerite-Zirconia ball plate

### 3.3. Thermal Analysis

Good repeatability and accuracy are some of the important considerations in CMM performance. The thermal effect is the largest source of apparent non-repeatability and inaccuracy in most of the CMMs. Even though thermal compensation is used, the uncertainty of the measurement process is affected by the temperature stability of the artifact. Dolerite is a natural rock with very low  $\alpha$  ( $2.4 \times 10^{-6}/^{\circ}\text{C}$ ) that maintains its dimensional stability. This is confirmed by carrying out thermal analysis by using ANSYS V5R21.

As the uncertainty of length measurement is lowest at  $20^{\circ}\text{C}$ , the base plate is analyzed for thermal distortion from  $20^{\circ}\text{C}$  to  $24^{\circ}\text{C}$  in steps of  $0.5^{\circ}\text{C}$ , i.e., for analysis at  $20.5^{\circ}\text{C}$ , the temperature is increased gradually to  $20.5^{\circ}\text{C}$  in 43200 seconds and kept constant for 86400 seconds.

Thus, the maximum total directional deformation observed at a temperature of  $20.5^{\circ}\text{C}$  is  $0.12248 \mu\text{m}$ , and at  $24^{\circ}\text{C}$ , it is  $0.97986 \mu\text{m}$ , which is less than  $2 \mu\text{m}$  [19]. The results of the total Directional Deformation at  $24^{\circ}\text{C}$  are shown in Figure 3.

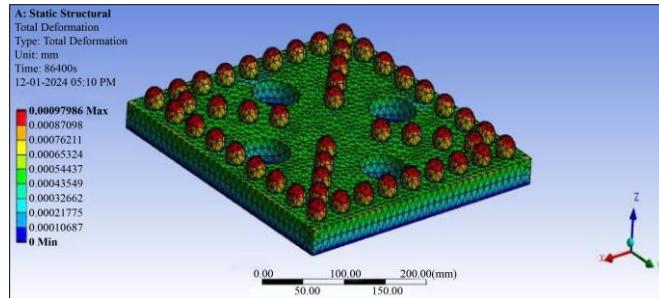



Fig. 3 Total deformation at  $24^{\circ}\text{C}$

### 3.4. Manufacturing of the Novel Artifact

Dolerite base plate of size  $350 \text{ mm} \times 350 \text{ mm} \times 25 \text{ mm}$  thick for Novel Artifact is manufactured at GMT Hosur with flatness, squareness, and perpendicularity within  $3 \mu\text{m}$ . 48 numbers of Zirconia balls with spherocity within  $3 \mu\text{m}$  are fixed to the base plate by using structural adhesives, Resin AW 106 with Hardener HV 953 (Araldite) mixing in a 1:1 ratio as per Huntsman specification.

This Novel artifact can be handled by one person and has no moving parts. This also demonstrates its dimensional stability, computing capability in terms of geometric errors, and measuring volume for Bridge type CMM.

### 3.5. Accuracy Identification and Quality Check

Accuracy of the Novel Artifact is verified by checking the dimensions at NABL certified CMM using DIMS software according to the specification ISO 10360-2. Make: Accurate Engineering, Model: Spectra, LC =  $0.0001 \text{ mm}$ , Reference Sphere (Ceramic), dia.  $30.00 \text{ mm}$ .

Traceability: Traceable to National and International Standards through NABL Lab CC-2802 vide certificate No P/97/2419, calibrated on 06/11/2024 and valid up to 05/11/2025.

Environmental conditions:  $20 \pm 0.5^{\circ}\text{C}$ , RH = 45%

For estimation of the various errors, the Novel artifact was checked for its ball distances in a certified IEPL (Inspatech Engineering Pvt Ltd) situated in the western region of India, Bhosari Industrial area, Pune, India, in different orientations of the artifact on the CMM table. Ball distances were recorded in the first week and subsequently in the twelfth week and twenty-second week (refer to Table 9).

Table 9. Ball distance

| Ball Distance (mm) | Nominal distance (mm) | 1 <sup>st</sup> week (23.11.24) | 12 <sup>th</sup> week (08.02.25) | 22 <sup>nd</sup> week (19.04.25) | D (1-12) | D (1-22) |
|--------------------|-----------------------|---------------------------------|----------------------------------|----------------------------------|----------|----------|
| 1-2                | 38                    | 38.0740                         | 38.0781                          | 38.0784                          | -0.0041  | -0.0044  |
| 1-3                | 76                    | 76.0932                         | 76.0972                          | 76.0974                          | -0.0040  | -0.0042  |
| 1-4                | 114                   | 114.0350                        | 114.0395                         | 114.0398                         | -0.0045  | -0.0048  |
| 1-5                | 152                   | 152.0570                        | 152.0610                         | 152.0612                         | -0.0040  | -0.0042  |
| 1-6                | 190                   | 190.0450                        | 190.0489                         | 190.0491                         | -0.0039  | -0.0041  |
| 1-7                | 228                   | 228.0520                        | 228.0558                         | 228.0560                         | -0.0038  | -0.0040  |
| 1-8                | 266                   | 266.0480                        | 266.0520                         | 266.0520                         | -0.0040  | -0.0040  |
| 1-9                | 304                   | 303.9750                        | 303.9794                         | 303.9796                         | -0.0044  | -0.0046  |
| 1-25               | 304                   | 304.0778                        | 304.0812                         | 304.0814                         | -0.0034  | -0.0036  |
| 1-26               | 266                   | 266.0010                        | 266.0042                         | 266.0043                         | -0.0032  | -0.0033  |
| 1-27               | 228                   | 228.0148                        | 228.0176                         | 228.0178                         | -0.0028  | -0.0030  |

|       |     |          |          |          |         |         |
|-------|-----|----------|----------|----------|---------|---------|
| 1-28  | 190 | 190.0475 | 190.0500 | 190.0502 | -0.0025 | -0.0027 |
| 1-29  | 152 | 151.9385 | 151.9358 | 151.9359 | 0.0027  | 0.0026  |
| 1-30  | 114 | 114.0248 | 114.0222 | 114.0223 | 0.0026  | 0.0025  |
| 1-31  | 76  | 76.0052  | 76.0028  | 76.0029  | 0.0024  | 0.0023  |
| 1-32  | 38  | 38.0672  | 38.0647  | 38.0647  | 0.0025  | 0.0025  |
| 1-33  | 38  | 37.9870  | 37.9857  | 37.9857  | 0.0013  | 0.0013  |
| 1-34  | 76  | 76.0040  | 76.0020  | 76.0020  | 0.0020  | 0.0020  |
| 1-35  | 114 | 113.9201 | 113.9216 | 113.9203 | -0.0015 | -0.0002 |
| 1-36  | 152 | 151.9520 | 151.9532 | 151.9521 | -0.0012 | -0.0001 |
| 1-37  | 228 | 227.9520 | 227.9534 | 227.9522 | -0.0014 | -0.0002 |
| 1-38  | 266 | 266.0070 | 266.0082 | 266.0071 | -0.0012 | -0.0001 |
| 1-39  | 304 | 303.9980 | 303.9977 | 303.9983 | 0.0003  | -0.0003 |
| 1-40  | 342 | 342.0390 | 342.0402 | 342.0404 | -0.0012 | -0.0014 |
| 1-17  | 380 | 379.9820 | 379.9829 | 379.9830 | -0.0009 | -0.0010 |
| 9-10  | 38  | 38.0924  | 38.0934  | 38.0934  | -0.0010 | -0.0010 |
| 9-11  | 76  | 76.0065  | 76.0073  | 76.0074  | -0.0008 | -0.0009 |
| 9-12  | 114 | 114.0592 | 114.0583 | 114.0602 | 0.0009  | -0.0010 |
| 9-13  | 152 | 151.9428 | 151.9427 | 151.9431 | 0.0001  | -0.0003 |
| 9-14  | 190 | 189.9860 | 189.9867 | 189.9868 | -0.0007 | -0.0008 |
| 9-15  | 228 | 228.0026 | 228.0024 | 228.0028 | 0.0002  | -0.0002 |
| 9-16  | 266 | 266.0144 | 266.0141 | 266.0147 | 0.0003  | -0.0003 |
| 9-17  | 304 | 304.0640 | 304.0636 | 304.0641 | 0.0004  | -0.0001 |
| 9-25  | 380 | 379.9076 | 379.9077 | 379.9078 | -0.0001 | -0.0002 |
| 9-41  | 342 | 341.8756 | 341.8757 | 341.8757 | -0.0001 | -0.0001 |
| 9-42  | 304 | 303.9200 | 303.9196 | 303.9202 | 0.0004  | -0.0002 |
| 9-43  | 266 | 265.8790 | 265.8792 | 265.8794 | -0.0002 | -0.0004 |
| 9-44  | 228 | 227.8680 | 227.8683 | 227.8684 | -0.0003 | -0.0004 |
| 9-45  | 152 | 151.8680 | 151.8686 | 151.8688 | -0.0006 | -0.0008 |
| 9-46  | 114 | 113.8702 | 113.8698 | 113.8701 | 0.0004  | 0.0001  |
| 9-47  | 76  | 76.0540  | 76.0535  | 76.0536  | 0.0005  | 0.0004  |
| 9-48  | 38  | 38.0380  | 38.0386  | 38.0386  | -0.0006 | -0.0006 |
| 17-18 | 38  | 38.0125  | 38.0117  | 38.0120  | 0.0008  | 0.0005  |
| 17-19 | 76  | 75.9685  | 75.9690  | 75.9692  | -0.0005 | -0.0007 |
| 17-20 | 114 | 114.0037 | 114.0047 | 114.0049 | -0.0010 | -0.0012 |
| 17-21 | 152 | 152.0280 | 152.0289 | 152.0290 | -0.0009 | -0.0010 |
| 17-22 | 190 | 189.9969 | 189.9979 | 189.9981 | -0.0010 | -0.0012 |
| 17-23 | 228 | 227.9775 | 227.9787 | 227.9789 | -0.0012 | -0.0014 |
| 17-24 | 266 | 265.9845 | 265.9853 | 265.9855 | -0.0008 | -0.0010 |
| 17-25 | 304 | 303.9657 | 303.9671 | 303.9673 | -0.0014 | -0.0016 |

### 3.5.1. Summary for the Range of Differences (1-22 weeks)

Summarization of the differences in readings in the first to twelfth and twenty-second week is done graphically, indicating an overlaid normal curve, box plot, 95% confidence intervals of population, and median in Figure 4.

The null hypothesis of normality is accepted for a smaller sample size and may be rejected even for small violations.

Thus, its assessment with statistical tests is profound to the sample size. Hence, to study normality violation in light of sample size, graphical methods are used [20]. This graphical method shows statistics of Anderson-Darling (AD) Normality tests to define the normal distribution of data, or else [21]. In the present work, the P-value is obtained by Minitab software with the AD test statistic. It is the possibility of gauging evidence against the null hypothesis. The higher the value of

the AD statistic, the less likely the data will follow a normal distribution. Anderson Darling Normality Test (A-Squared 1.70, P-Value <0.05) shows that the data for the twenty-second week follows a normal distribution curve.

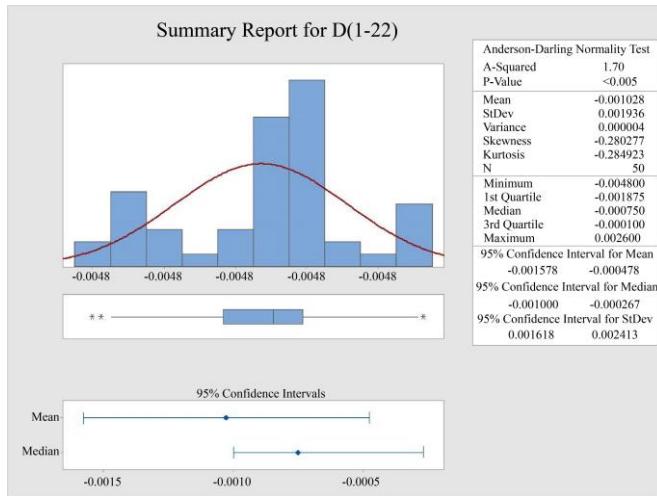



Fig. 4 Graphical summary for the range of difference (1-22 weeks)

### 3.5.2. Coefficient of Pearson Correlation

The correlation coefficient is used to examine the association between the X and Y series. Selective co-variance is obtained by using the following formula:

$$C_{xy} = \frac{1}{n-1} \left[ \sum_{i=1}^n X_i Y_i - n \bar{X} \bar{Y} \right] \quad (1)$$

Where  $Y_i X_i$  - Reading values

$$\bar{X}, \bar{Y}$$

Measured values mean

Between the series correlation exists and grows stronger if  $C_{xy} \neq 0$ . Pearson's Correlation coefficient is used to determine correlation strength,

$$r_{xy} = \frac{C_{xy}}{S_x S_y} \quad (2)$$

Where  $S_x$  and  $S_y$  are selective random variance.

Correlations between first and twelfth D (1-12) and first and twenty-second week D (1-22):

Difference in values of 1st to 12th week and 1st to 22nd week shows a positive relationship as Pearson correlation of D (1-12) and D (1-22) = 0.969,

Correlation: D (1-12), D (1-22)

Pearson correlation of D (1-12) and D (1-22) = 0.969  
P-Value = 0.000

Hence, it is necessary to decide the recalibration period of the Ball Plate.

### 3.5.3. Cross Correlation

Cross-correlation is the generalization of standard linear correlation analysis. When the coefficient of correlation of two variables approaches or is equal to 1, it indicates a strong positive linear correlation where all the readings will be around a line having a positive slope; otherwise, if the coefficient of correlation is near the least attainable value of 1, then the two variables indicate a strong negative linear correlation [22]. Constancy of retaining dimensions by the ball plate is ensured with the help of cross correlation with difference (lag of 6 weeks). This is the standard method for measuring the degree of correlation between two rows.

Cross correlation  $r_{xy}$  with lag  $d$  is obtained by using the formula:

$$r_{xy} = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_{i-d} - \bar{y})}{\sqrt{\sum_{i=1}^n (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^n (y_{i-d} - \bar{y})^2}} \quad (3)$$

Where lag is to  $d = 1, 2, \dots, n$

A cross-correlation plot with differences in readings of 1st to 12<sup>th</sup> and 1<sup>st</sup> to 22<sup>nd</sup> weeks is shown in Figure 5.

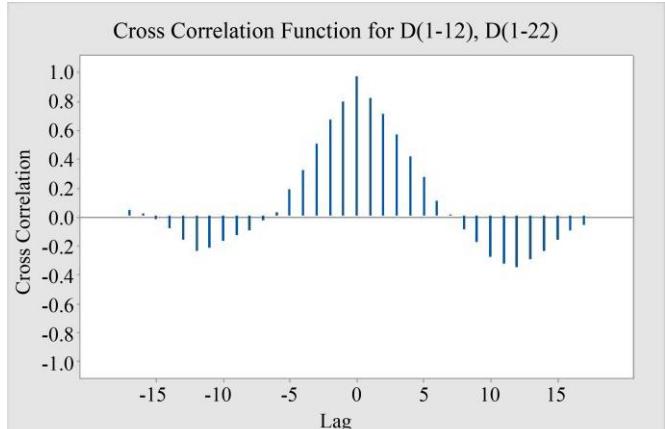



Fig. 5 Cross correlation for difference (1-12 weeks), and (1-22 weeks)

### 3.6. Interim Check of CMM

Different types of geometric errors occurring in CMM are shown graphically in Figure 6, and a detailed description of the same is given in Table 10.

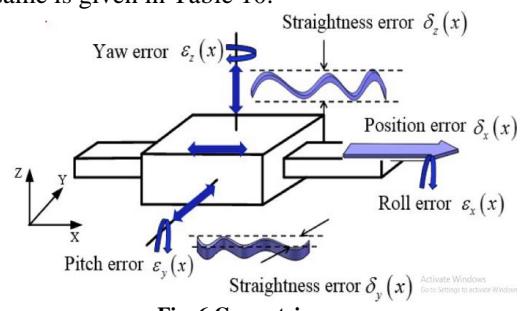
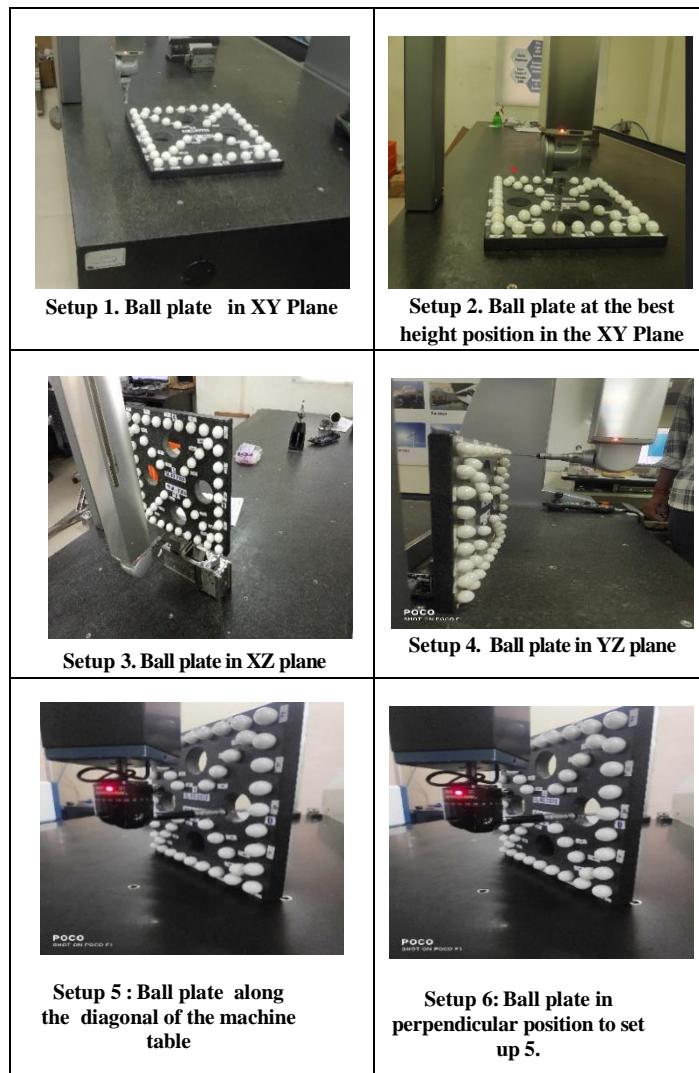




Fig. 6 Geometric errors

**Table 10. Types of errors**

| Sr. No | Type of Errors          | Description                                                                                          |
|--------|-------------------------|------------------------------------------------------------------------------------------------------|
| 1      | Linear Displacement     | CMM Scale error.<br>Resultant of the difference between calibrated value and measured value.         |
| 2      | Horizontal Straightness | Deviation from the true line of travel perpendicular to the direction of travel in horizontal plane. |
| 3      | Vertical Straightness   | Deviation from the true line of travel in vertical plane perpendicular to the direction of travel.   |
| 4      | Roll Angular            | Rotation around an axis parallel to the direction of travel in the horizontal plane.                 |
| 5      | Pitch Angular           | Rotation around an axis perpendicular to direction of travel in the horizontal plane.                |
| 6      | Yaw Angular             | Rotation around an axis perpendicular to direction of travel in the vertical plan.                   |



**Fig. 7** Different orientations of the novel artifact on the CMM table

**Table 11. Ball plate orientation and setup**

| <b>Setup No.<br/>(Ball plate Position)</b>                      | <b>Measurement Strategy: Ball Positions</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>Outcome of Measurement</b>                                                                                        |
|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Setup 1<br>(Ball plate in XY Plane)                             | <p>‘Measure the distance between balls 1-2,1-3,1-4,1-5,1-6,1-7,1-8,1-9 on the straight edge side along X axis’.</p> <p>‘Measure the distance between balls 1-25,1-26,1-27,1-28,1-29,1-30,1-31,1-32 on the straight edge side along the Y axis’.</p> <p>‘Angle between straight edges along Y and X axes’.</p>                                                                                                                                                                                                                                                        | X- Horizontal straightness<br>Y- Horizontal straightness<br>XY squareness                                            |
| Setup 2<br>(Ball plate at best height position in the XY Plane) | ‘Measure distances between balls 9-10, 9-11,9-12,9-13,9-14,9-15,9-16, 9-17’.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Y- linear                                                                                                            |
|                                                                 | <p>‘Find the difference values from right deviations to left deviations’.</p> <p>‘Measure distances between balls 1-2, 1-3, 1-4, 1-5, 1-6, 1-7, 1-8, 1-9’.</p> <p>‘Find the difference values from bottom deviations to top deviations’.</p>                                                                                                                                                                                                                                                                                                                         | Pitch X-Axis<br>X- linear<br>Pitch Y-Axis.                                                                           |
| Setup 3<br>(Ball plate in XZ plane)                             | ‘Measure distances between balls 9-10, 9-11,9-12,9-13,9-14,9-15,9-16,9-17 along Z axis’.                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Z- linear                                                                                                            |
|                                                                 | <p>‘On surface E, measure ball distance 17-18, 17-19,17-20, 17-21, 17-22,17-23,17-24, and 17-25’.</p> <p>‘On the surface F, measure distance of balls 1-25,1-26,1-27,1-28,1-29,1-30,1-31,1-32’.</p> <p>‘Measure squareness of surface F w.r.t. C’</p> <p>‘On the surface, D measures the distance of balls 17-18,17-19,17-20,17-21,17-22,17-23,17-24,17-25’.</p> <p>‘Measure distances between balls 25-24,25-23,25-22,25-21,25-20,25-19,25-18,25-17( with minimum and maximum probe extensions)<br/>Find the difference values between the maximum and minimum.</p> | X vertical straightness<br>Z- Vertical straightness<br>ZX squareness<br>Z-horizontal Straightness.<br>Yaw of X-Axis. |
| Setup 4<br>(Ball plate in YZ plane)                             | <p>‘Measure distances between balls 17-18,17-19,17-20,17-21,17-22,17-23,17-24,17-25’.</p> <p>‘Measure squareness of surface F w.r.t. C’.</p> <p>‘Measure points on surface F with horizontal probe with minimum extension in X negative direction. Again, measure the same points with maximum extension.’</p>                                                                                                                                                                                                                                                       | Y –vertical straightness<br>ZY squareness<br>The difference is roll of the Z Axis.                                   |
| Setup 5<br>(Ball plate along the diagonal of the machine table) | <p>‘Measure distances between balls 1-33,1-34,1-35,1-36,1-37,1-38,1-39,1-40,1-17’</p> <p>‘Measure distances between balls 9-25, 9-41,9-42,9-43,9-44,9-45,9-46,9-47,9-48’</p>                                                                                                                                                                                                                                                                                                                                                                                         | Volumetric errors                                                                                                    |
| Setup 6<br>(Ball plate in perpendicular position to set up 5)   | ‘Repeat the method of measurement as stated in the previous step ( i.e., set up 5)’.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Volumetric errors                                                                                                    |

Geometrical errors in measuring the volume of the CMM are mapped with the ball plate. For the orientation of the workpiece on the CMM table, measuring volume should be a good indication. For the given reference location, all three-dimensional position error components (in X, Y, and Z) are measured with the ball plate artifact.

Developed a Novel (ball plate) Artifact that is used for interim checking of CMM in IEPL (Inspatech Engineering Pvt Ltd), Bhosari, Pune, Maharashtra, India. Inspection is carried out for measuring the distance between balls (the distance between the reference ball and other balls), and errors have been estimated. Each distance is measured three times as specified in standard ISO 10360-2 [23]. Different orientations

of Novel Artifact on CMM table as experimental setups (positions as per ISO 10360-2) for estimation of errors are shown in Figure 7.

For the measurement of distances between balls, the Novel Artifact is placed on the CMM table in different orientations. The setup adopted, measurement strategy, and the outcome of the same are depicted in Table 11.

Table 12. Error values X-axis

| Position | Geometrical Error Values of X-Axis |         |        |                |                |
|----------|------------------------------------|---------|--------|----------------|----------------|
|          | Linear                             | Pitch   | Yaw    | V-Straightness | H-Straightness |
| 0        | 0                                  | 0       | 0      | 0              | 0              |
| 38       | 0.0000                             | 0.0003  | 0.0022 | -0.0001        | 0.0006         |
| 76       | -0.0005                            | -0.0012 | 0.0012 | -0.0003        | 0.0007         |
| 114      | 0.0018                             | -0.0032 | 0.0012 | -0.0010        | 0.0009         |
| 152      | -0.0005                            | -0.0009 | 0.0025 | -0.0006        | 0.0009         |
| 190      | 0.0001                             | -0.0005 | 0.0009 | -0.0003        | 0.0009         |
| 228      | -0.0003                            | -0.0002 | 0.0014 | -0.0005        | -0.0026        |
| 266      | 0.0004                             | -0.0023 | 0.0024 | 0.0006         | 0.0007         |
| 304      | -0.0011                            | -0.007  | 0.0023 | 0.0022         | -0.0021        |

Table 13. Error values Y-axis

| Position | Geometrical Error Values of Y-Axis |         |         |                |                |
|----------|------------------------------------|---------|---------|----------------|----------------|
|          | Linear                             | Pitch   | Yaw     | V-Straightness | H-Straightness |
| 0        | 0                                  | 0       | 0       | 0              | 0              |
| 38       | 0.0004                             | -0.0002 | 0.0022  | 0.0014         | 0.0003         |
| 76       | -0.0007                            | -0.0001 | 0.0017  | 0.0025         | 0.0002         |
| 14       | 0.0013                             | -0.0002 | 0.0012  | 0.0020         | 0.0004         |
| 152      | 0.0001                             | 0.0000  | 0.0024  | -0.0009        | 0.0011         |
| 190      | 0.0008                             | -0.0005 | 0.0023  | 0.0026         | 0.0002         |
| 228      | -0.0006                            | -0.0009 | -0.0024 | -0.0018        | -0.0013        |
| 266      | 0.0019                             | 0.0004  | 0.0014  | -0.0028        | 0.0000         |
| 304      | -0.0032                            | -0.0001 | -0.0005 | -0.0029        | -0.0009        |

### 3.7. Error Mapping

Vertical Straightness: Vertical straightness errors are obtained by keeping the ball plate in a vertical position, and readings are taken. Vertical Straightness error is obtained by using the formula.

$$V(xi) = Zi - Zfit(xi) \quad (4)$$

Horizontal Straightness: Horizontal straightness errors are obtained by keeping the ball plate in a horizontal position, and readings are taken. Error is obtained by using the formula,

$$H(xi) = Yi - Yfit(xi) \quad (5)$$

Pitch errors are obtained by taking the difference of the deviation.

Yaw and rolling errors are obtained by taking the difference of readings with maximum and minimum probe extensions. Taking the readings along the diagonal of the machine, volumetric errors can be obtained.

#### 3.7.1. Experimental Results

Geometrical errors such as linear, Pitch, Yaw, Vertical, and horizontal straightness values along X, Y, and Z axes, and Roll error along Z are estimated (Refer to Tables 12, 13, and 14).

Table 14. Error values Z-axis

| Position | Geometrical Error Values of Z-Axis |         |        |        |                |                |
|----------|------------------------------------|---------|--------|--------|----------------|----------------|
|          | Linear                             | Pitch   | Yaw    | Roll   | V-Straightness | H-Straightness |
| 0        | 0                                  | 0       | 0      |        | 0              | 0              |
| 38       | 0.0005                             | 0.0002  | 0.0011 | 0.0027 | 0.0019         | 0.0004         |
| 76       | 0.0007                             | 0.0004  | 0.0017 | 0.0014 | 0.0042         | -0.0002        |
| 114      | 0.0002                             | 0.0000  | 0.0016 | 0.0012 | 0.0018         | 0.0003         |
| 152      | 0.0000                             | -0.0002 | 0.0026 | 0.0021 | -0.0026        | 0.0015         |
| 190      | 0.0008                             | -0.0001 | 0.0007 | 0.0011 | -0.0023        | 0.0018         |
| 228      | -0.0008                            | 0.0001  | 0.0017 | 0.0013 | 0.0003         | -0.0023        |
| 266      | -0.0006                            | 0.0029  | 0.0007 | 0.0020 | -0.0015        | 0.0009         |
| 304      | -0.0008                            | -0.0004 | 0.0024 | 0.0029 | -0.0017        | -0.0023        |

### 3.7.2. Graphical Representation of the Evaluated Errors

Graphical representation of errors along the X-axis is shown in Figure 8.

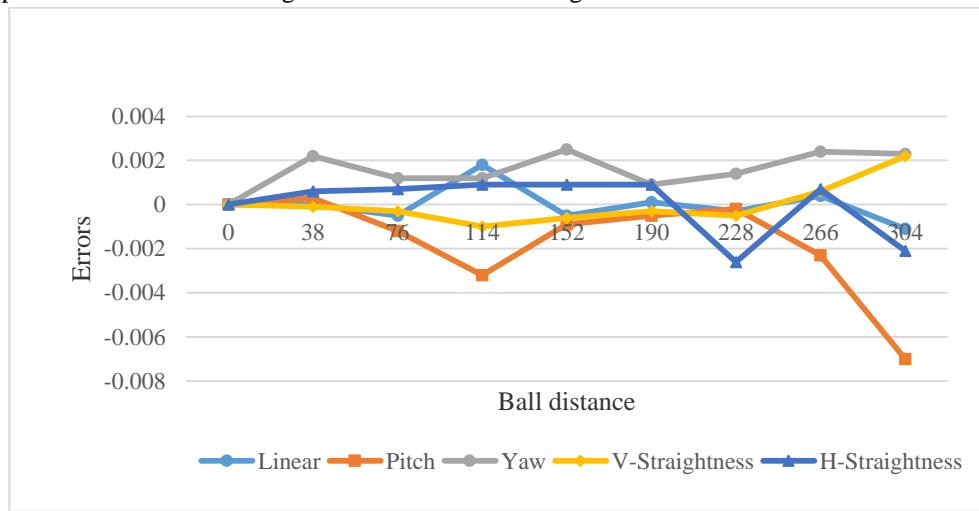



Fig. 8 Errors along X-axis

Graphical representation of errors along the Y-axis is shown in Figure 9.

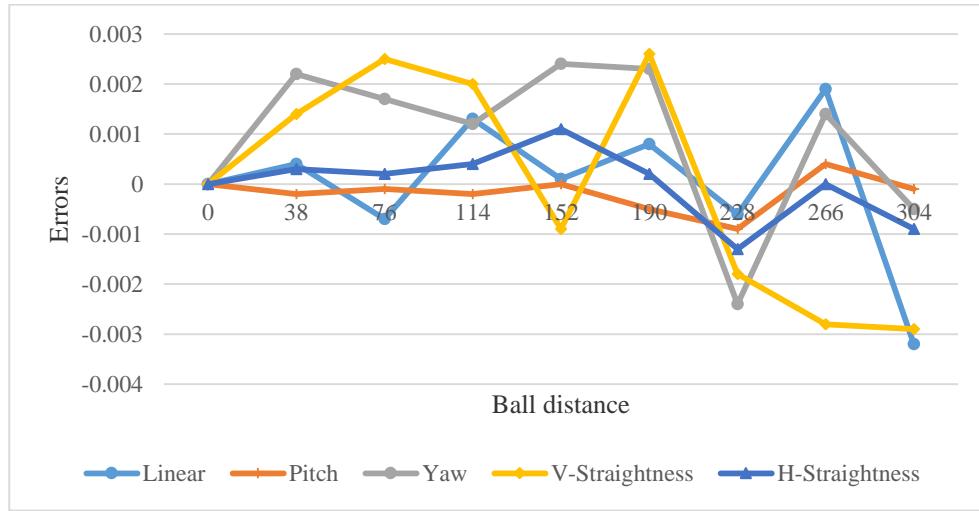



Fig. 9 Errors along Y-axis

Graphical representation of errors along the Z-axis is shown in Figure 10.

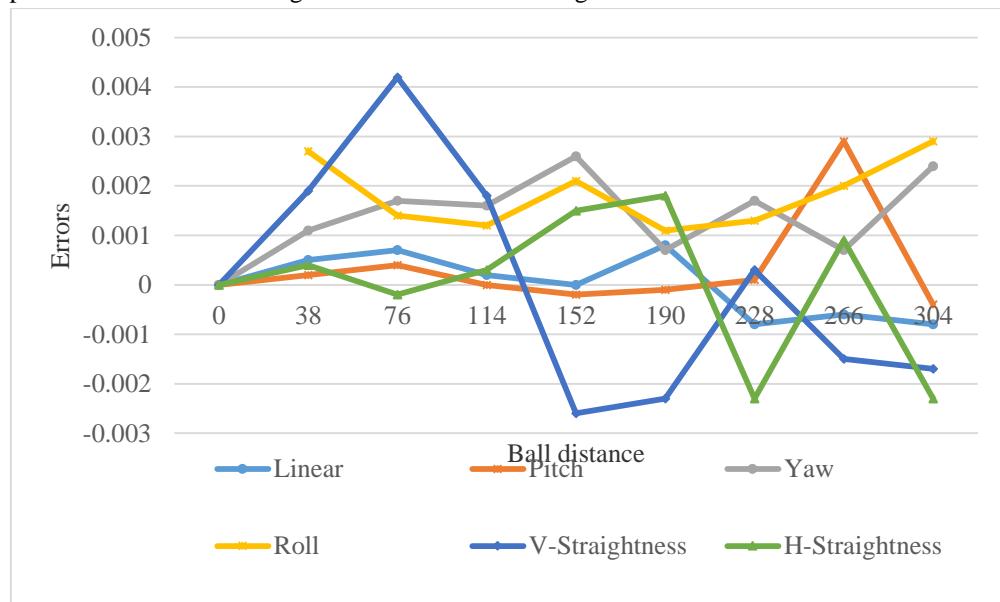



Fig. 10 Errors along Z-axis

#### 4. Results, Discussion, and Conclusion

In order to minimize the time to perform the interim test, an abbreviated test procedure is focused on those test positions that most commonly reveal a problem with the CMM. This is taken up for further research, and the solution is reported here as a redesigned ball-plate type artifact. Design and development of the Novel artifact is as recommended by the international standard ISO 10360-2. The results obtained for testing the artifacts are summarized here.

From the analysis for dimensional stability of the Novel Artifact, it is observed that the Anderson Darling Normality Test (A-Squared value 1.70, P-Value <0.05) shows readings follow a normal distribution curve. It indicates random measurement variations with negligible systematic errors. Hence, it can be concluded that the manufacturing precision and material stability of the ball plate produce consistent measurement data over time (Refer to paragraph 3.5.1.).

Further, the Pearson correlation coefficient for the difference in readings of 1<sup>st</sup>-12<sup>th</sup> and 1<sup>st</sup>-22<sup>nd</sup> week is 0.969 (very close to 1), indicating a strong affirmative relationship. This shows that readings in the 1<sup>st</sup> week vary, the later readings vary in the same direction and magnitude, which means no significant dimensional drift (Refer to paragraph 3.5.2.). A correlation plot is used to prove the recalibration period of the Novel artifact. Correlation is high, and no phase shift is observed for a period of one year. This confirms that a Novel artifact requires no dimensional verification for one year. Artifact exhibits long-term dimensional stability, making it low maintenance, a high standard for interim checks of CMM (Refer to paragraph 3.5.3.). Geometric errors and the Probing system errors are the main contributors to the CMM errors.

Geometric errors are due to the structural imperfections of the machine itself.

These are a total of 21 types of errors (18 measured along X, Y, Z axes and 03 squareness errors). Straightness, linear, yaw, pitch, and roll errors, etc. During actual interim checking of CMM used for inspection of the jobs in production line by using developed Novel Artifact, it is observed that the maximum deviation along X-axis is 0.0032 mm (pitch) in the distance range 76 mm to 114 mm; maximum deviation along Y-axis is 0.0029 mm vertical straightness, and maximum deviation along Z-axis is 0.0029 (Pitch and Roll) clearly indicates the improved accuracy w.r.to accuracy reported till date which shows capability of Novel Artifact to estimate all types of errors (Refer to paragraphs 3.7.1. and 3.7.2.). By using this Novel artifact, it is possible to measure the total 19 geometric and volumetric errors of the CMM out of 21 types of errors.

The study presents an approach to use a Novel artifact for interim calibration of Bridge type CMM. This Novel artifact is recommended for an interim check of CMM working in the temperature range of 20°C to 24°C. Maximum deformation at 24°C is 0.00097986 mm (0.97986 μm), which is much less than 2 μm (Refer to paragraph 3.3.). Hence, the use of the artifact can also be extended until deformation reaches 2 μm, particularly for shop floor utilization. This can also be used as a measurement standard for assessing the measuring accuracy and repeatability of the CMM used in an Industrial environment. However, this Novel artifact needs periodic dimensional verification, careful handling, specified working conditions, and appropriate mounting on the CMM table.

## References

- [1] Fernando A.M. Ferreira, Jesus de Vicente y Oliva, and Angel M. Sanchez Perez, "Evaluation of the Performance of Coordinate Measuring Machines in the Industry, using Calibrated Artefacts," *Procedia Engineering*, vol. 63, pp. 659-668, 2013. [\[CrossRef\]](#) [\[Google Scholar\]](#) [\[Publisher Link\]](#)
- [2] Nardelli Vitor Camargo, and Gustavo Daniel Donatelli, "A Simple Solution to Interim Check of Coordinate Measuring Machines," *Eighteenth IMEKO World Congress Metrology for a Sustainable Development*, Rio de Janeiro, Brazil, pp. 1-5, 2006. [\[Google Scholar\]](#)
- [3] David Flack, "Measurement Good Practice Guide No. 42," *CMM Verification*, National Physical Laboratory, pp. 1-101, 2001. [\[Google Scholar\]](#) [\[Publisher Link\]](#)
- [4] Mizanur Rahman, and Rene Mayer, "Performance of a Five-Axis Machine Tool as a Coordinate Measuring Machine (CMM)," *Journal of Advanced Mechanical Design, Systems, and Manufacturing*, vol. 10, no. 5, pp. 1-14, 2016. [\[CrossRef\]](#) [\[Google Scholar\]](#) [\[Publisher Link\]](#)
- [5] V.A. Kulkarni, B.B. Ahuja, and A.V. Mulay, "Pooled Error Mapping of Probe Type Coordinate Measuring Machine," *International Journal of Scientific & Engineering Research*, vol. 76, pp. 242-245, 2015. [\[Google Scholar\]](#)
- [6] H. Schwenke et al., "Geometric Error Measurement and Compensation of Machines—An Update," *CIRP Annals*, vol. 57, no. 2, pp. 660-675, 2008. [\[CrossRef\]](#) [\[Google Scholar\]](#) [\[Publisher Link\]](#)
- [7] Xuan Wei et al., "A Novel Method for the Measurement of Geometric Errors in the Linear Motion of CNC Machine Tools," *Applied Sciences*, vol. 9, no. 16, pp. 1-11, 2019. [\[CrossRef\]](#) [\[Google Scholar\]](#) [\[Publisher Link\]](#)
- [8] Zhao Zhang et al., "Geometric Error Measuring, Modeling, and Compensation for CNC Machine Tools: A Review," *Chinese Journal of Aeronautics*, vol. 37, no. 2, pp. 163-198, 2014. [\[CrossRef\]](#) [\[Google Scholar\]](#) [\[Publisher Link\]](#)
- [9] E.S. Lee, and M. Burdekin, "A Hole-Plate Artifact Design for the Volumetric Error Calibration of CMM," *The International Journal of Advanced Manufacturing Technology*, vol. 17, pp. 508-515, 2001. [\[CrossRef\]](#) [\[Google Scholar\]](#) [\[Publisher Link\]](#)
- [10] T. Liebrich, B. Bringmann, and W. Knapp, "Calibration of a 3D-Ball Plate," *Precision Engineering*, vol. 33, no. 1, pp. 1-6, 2009. [\[CrossRef\]](#) [\[Google Scholar\]](#) [\[Publisher Link\]](#)
- [11] Q.C. Dang, S. Yoo, and S.W. Kim, "Complete 3-D Self-Calibration of Coordinate Measuring Machines," *CIRP Annals*, vol. 55, no. 1, pp. 527-530, 2006. [\[CrossRef\]](#) [\[Google Scholar\]](#) [\[Publisher Link\]](#)
- [12] Haiting Wu et al., "Error Prediction of CMM Using a Hybrid Model Based on Neural Network Quantile Regression and Kernel Density Estimation," *Journal of Physics: Conference Series: The 2020 International Conference on Internet of Things, Artificial Intelligence and Mechanical Automation*, Hangzhou, China, vol. 1605, pp. 1-6, 2020. [\[CrossRef\]](#) [\[Google Scholar\]](#) [\[Publisher Link\]](#)
- [13] A. Weckenmann, and J. Lorz, "Monitoring Coordinate Measuring Machines by Calibrated Parts," *Journal of Physics: Conference Series: Seventh International Symposium On Measurement Technology And Intelligent Instruments*, University of Huddersfield, UK, vol. 13, pp. 190-193, 2005. [\[CrossRef\]](#) [\[Google Scholar\]](#) [\[Publisher Link\]](#)
- [14] Yusuke Asano, Ryosuke Furutani, and Miyu Ozaki, "Verification of Interim Check Method of CMM," *International Journal of Automation Technology*, vol. 5, no. 2, pp. 115-119, 2011. [\[CrossRef\]](#) [\[Google Scholar\]](#) [\[Publisher Link\]](#)
- [15] Grzegorz Krajewski, and Adam Woźniak, "Simple Master Artefact for CMM Dynamic Error Identification," *Precision Engineering*, vol. 38, no. 1, pp. 64-70, 2014. [\[CrossRef\]](#) [\[Google Scholar\]](#) [\[Publisher Link\]](#)
- [16] Anke Guenther, Dirk Stöbener, and Gert Goch, "Self-Calibration Method for a Ball Plate Artefact on a CMM," *CIRP Annals*, vol. 65, no. 1, pp. 503-506, 2016. [\[CrossRef\]](#) [\[Google Scholar\]](#) [\[Publisher Link\]](#)
- [17] Diego Rodríguez-Ibáñez, José Alonso, and Juan Antonio Quiroga, "Squareness Error Calibration of a CMM for Quality Control of Ophthalmic Lenses," *The International Journal of Advanced Manufacturing Technology*, vol. 68, pp. 487-493, 2013. [\[CrossRef\]](#) [\[Google Scholar\]](#) [\[Publisher Link\]](#)
- [18] Abdulaziz Mohammad et al., "Coordinate Measuring Machine (CMM) Performance Verification Using Standard Step Gauges with New Measurement Model and Modified Uncertainty Analysis," *Measurement: Sensors*, vol. 38, pp. e1-e5, 2025. [\[CrossRef\]](#) [\[Google Scholar\]](#) [\[Publisher Link\]](#)
- [19] Achyut Khare, Anand Bewoor, and Vinay Kulkarni, "A New Approach to Artefact Material Selection for Interim Checks of CMMs that uses MADM Tools," *MAPAN*, vol. 38, pp. 193-202, 2023. [\[CrossRef\]](#) [\[Google Scholar\]](#) [\[Publisher Link\]](#)
- [20] Nasrin Khatun, "Applications of Normality Test in Statistical Methods," *Open Journal of Statistics*, vol. 11, no. 1, pp. 113-122, 2021. [\[CrossRef\]](#) [\[Google Scholar\]](#) [\[Publisher Link\]](#)
- [21] Hugo Hernandez, "Testing for Normality: What is the Best Method?," Forchem Research Reports, vol. 6, pp. 1-38, 2021. [\[Google Scholar\]](#) [\[Publisher Link\]](#)
- [22] Arnab Kumar Laha, "A Note on Tests of Normality," Case and Teaching Notes, pp. 1-6, 2005. [\[Google Scholar\]](#) [\[Publisher Link\]](#)
- [23] ISO 10360-2:2009 Geometrical Product Specifications (GPS)—Acceptance and Reverification Tests for Coordinate Measuring Machines (CMM): Part 2: CMMs used for Measuring Linear Dimensions, ISO Standard, Third edition, pp. 1-29, 2009. [\[Google Scholar\]](#) [\[Publisher Link\]](#)