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Abstract 

Capturing spatial variation is important while 

studying disease survival in different geographical 

regions where regions has its own risk factor 

associated with disease. To account this risk factor, 

frailty effect was introduced in this model that captures 

correlation and variation between neighboring 

locations using conditionally autoregressive (CAR) 

prior in Bayesian parametric survival model for 

studying dual infection of tuberculosis and HIV. 

National Institute for Research in Tuberculosis data on 

tuberculosis and HIV were used in this study. Monte 

Carlo Markov Chain (MCMC) technique was used to 

estimate the parameter. WinBUGS software was used 

for Bayesian Survival model estimation. The result of 

the study revealed that the spatial frailty model 

accounts higher heterogeneity along with weight at 

baseline was one of the significant factors associated 

with death and conclude that there were unmeasured 

covariates and risk factors influencing death in the 

Chennai regions.  
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I. BACKGROUND 

Survival analysis used when outcome variable 

of interest is time until an event occurs for individuals. 

The time indicates any unit of time for their time to end 

point. The event of interest in this study is death in an 

area along with covariates within model, random effects 

relating to individual heterogeneity and spatial 

correlation effect between regions1. Capturing spatial 

correlation and variation is important while studying 

disease survival in different geographical regions where 

regions has its own risk factor associated with disease. 

To account this risk factor, frailty or random effect was 

introduced in this model that captures spatial 

correlation and variation between geographical 

regions2-4. Normally, in conventional analysis regions 

are assumed to be independent, but random effects 

corresponding to region that are spatially arranged and 

suspect that regions in closer proximity to each other 

might also be similar in magnitude45. It will affect the 

robustness of the estimates of the parameter but in 

Bayesian frailty model incorporates random effects 

were introduced at neighboring locations that are 

allowed to exhibit spatial correlation in this model by 

specifying a conditionally autoregressive (CAR) prior 

developed by Besag6 for application in effects in time-

to-event data across neighboring units, with the 

neighbors defined via an adjacency matrix.  

 

Tuberculosis and HIV have been closely 

linked since the emergence of AIDS. TB is the most 

common opportunistic infection affecting HIV 

individuals and it remain the most common cause of 

death in patients with AIDS. HIV infection has 

contributed to a significant increase in the worldwide 

incidence of TB. TB and HIV co-infection each disease 

speeds up the progress of the other. In addition to HIV 

infection speeding up the progression from latent to 

active TB, TB bacteria also accelerate the progress of 

HIV infection7. The risk of developing tuberculosis 

(TB) is estimated to be between 26 and 31 times greater 

in people living with HIV (PLHIV) than among those 

without HIV infection. This work may accounts all this 

unmeasured risk factors considered in this model along 

with spatial variation. 

 

In this work, Parametric model of Weibull is 

explored for survival analysis due to its versatility. It 

contains shape parameter β, the scale parameter η, and 

location parameter γ. Also, parametric model with a 

Weibull formulation for the baseline hazards, placing a 

univariate Conditional autoregressive (CAR) structure 

on the frailty intercept terms was used to account the 

correlation between regions. This CAR model indicates 

the existence of spatial dependence on the composition 

of covariance where the CAR parameter distribution 

stating precision or variance inverse of its random 

effect distribution. CAR distribution captures 

correlation across both geographic regions and the 

random effects for a given region. This model 

implemented using MCMC computational techniques 

in a hierarchical Bayesian approach that permits 

borrowing of strength across regions.  

 

In the literature, Parametric proportional 

hazards model with a Weibull formulation for the 

baseline hazards, placing a univariate CAR structure on 

the frailty intercept terms was studied for infant 

mortality data and highlighted the importance of spatial 

model7. Bayesian spatial survival models for political 
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event process were extensively studied in spatial, non-

spatial model with in parametric and semiparametric 

approach and proved that spatial dependence in the 

random effects also produces changes in the effects of 

covariates8. Spatio-temporal model using CAR prior for 

tuberculosis disease was extensively studied for other 

diseases.  

 

II. BAYESIAN SPATIAL MODEL SPECIFICATION 

Weibull model was estimated using WinBUGS  software to model the hazard rate of death or relapse and 

significance of factors associated with the same. 

Cox proportional hazard model is of the form 

        1a) 

       1b) 

where  is the time to death or censoring for individual  in the ward ,  ,  is a vector 

of individual-specific covariates and  is a vector of parameters,  is the baseline hazard.  Extending this model to 

include the spatial dependency, we propose the model 

       2a) 

       2b) 

The likelihood for the Cox model with spatial and non-spatial frailties is; 
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Where iW is the spatial frailties and iV   is non-spatial frailties for the same region. The event of interest is death 

during treatment as well as follow up period. The event is coded   as 1 and 0 is coded for censoring. There are other 

important covariates are included in the analysis such as age, sex, treatment group, weight at baseline. W represents 

CAR model distribution supporting the possibility of correlated random effects at the wards level )1,0(~ NWi   

and V represents non-frailty random effect and this exchangeable prior )1,0(~ NVi . 

 

III. WEIBULL MODELS WITH SPATIAL FRAILTIES 

 

The joint posterior distribution for the Bayesian parametric Weibull model is 

)()()()|(),,;,,(),,|,,,(  pppWpxtWLxtWp     (1) 

Where ρ is the shape parameter for the baseline hazard in the Weibull model. The likelihood for the Bayesian 

Weibull model with spatial individual frailties is; 
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(2) 

The individual Weibull frailties are completed by assigning suitable prior for the parameter. The likelihood for the 

Bayesian Weibull model with spatial individual frailties is; 
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Where Vi represents the non-spatial frailties with )1,0(~ NVi  

IV. MATERIAL AND METHODS 

 

The data have been collected from National Institute for Research in Tuberculosis, Chennai. The data 

consists of 105 HIV infected Tuberculosis patients admitted in clinical trial who were treated with three types of 

treatments of 6 months to 8 months duration. The covariates considered for analysis are age (in years), sex (Male-1 

and Female-0), treatment group, weight at baseline (in kg).  The event of interest is death during treatment and 

follow up period. The event of interest is coded as1 and censoring is coded as 0. 

 

Weibull distribution assumed for the time distribution and a number of covariate is considered for the 

individual level and at a higher spatial level the wards within which the individual was distributed is considered. 

Weibull time to endpoint model is defined as 
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      (4) 

Where i  is modeled as 

iiiii VWxx  ...)log( 22110        (5) 

where  X1 – Age, X2 – Sex, X3 – Treatment group, X4 – Weight at baseline, W  –  CAR model distribution 

supporting the possibility of correlated random effects at the wards level and V – represents non-frailty random 

effect and this exchangeable prior )1,0(~ NVi . The WinBUGS software used for Weibull model analysis for 

which observed time, censoring time with other covariate mentioned above and adjancy matrix for Chennai wards 

were included for analysis. The prior for this model is hyper prior i.e., Gamma prior which is distributed with a 

small precision, thus taking a larger neighborhood structure into account. The software used for Cox model analysis 

is WinBUGS 14.0. The prior for this model is hyper prior i.e., Gamma prior which is distributed with a small 

precision, thus taking a larger neighborhood structure into account. The non-informative priors were considered 

where ~ N(0,0.000001). Using a burn in of 10000 samples and additional of 10000, from 10000 to 30000 Gibbs 

samples were drawn, posterior estimates of ’s given in the table. The comparisons of the posterior estimates 

indicate that the convergence has achieved in 30000 iterations.  

 

V. RESULTS 

 

The Table 1 shows the non-frailty and frailty Weibull model for the HIV infected TB data considering the 

covariates age, treatment (cat), sex and wt were given in the table. The analysis was carried over by STATA 

software for these models.  
 

Table 1 Summary Statistics for Weibull model 

Cov. 

Weibull model without frailty Weibull model with frailty 

Beta SE  95 % CI Beta SE 95 % CI 

Age 0.003 0.015 -0.03, 0.033 -0.028 0.040 -0.107, 0.051 

Sex 0.41 0.333     -0.24, 1.061 0.693 0.708 -0.695, 2.081 

Cat -0.16 0.194 -0.54, 0.219 0.300 0.603 -0.882, 1.482 

wt0m -0.049* 0.047 -0.08, -0.02 -0.112 * 0.013 -0.195, -0.029 

Cons -1.02 0.9 -2.78, 0.748 0.765 0.934 -3.026, 4.555 

 *P<0.05 

The above table shows the Weibull models for frailty and non-frailty in which weight is one factors 

associated with death for both model, but SE for frailty model is substantially reduced for all the covariates. The 

heterogeneity accounts between areas are 2.37 in this frailty model.  
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Figure 1 Survival curve for Weibull model for gender 

Figure 1 shows the survival curve for male and female in which male are having better survival pattern than female. 

Table 2 Posterior Summaries for Spatial Weibull frailty model 

Parameter 

Spatial Weibull frailty Model 

Mean MC error Credible Interval 

 [Tr.Cat] -0.129 0.0047 -0.469, 0.198 

  [Age] -0.011 0.0006 -0.039, 0.017 

  [Sex] 0.381 0.0088 -0.206, 1.021 

  [Wt] -0.044 0.0017 -0.074, -0.015 

  [Const] -1.039 0.2455 -2.615, 0.492 

  0.004 0.0032 0.001, 0.164 

  0.739 0.0198 0.428, 1.218 

  2.276 0.0613 0.674, 5.472 

 

The table 2 shows the Bayesian spatial Weibull frailty model for the HIV-TB data. The Bayesian spatial 

Weibull frailty model’s MC error is less for all the covariates. The credible Interval for spatial Weibull frailty model 

is also.  The precision for   is 2.276 to the Weibull model.  

Table 3 Goodness of Fit for Weibull Models 

 

Model  

Bayesian Weibull frailty 

No. Spatial  Non-Spatial 

 pD DIC pD DIC 

1 

iiWtSex

AgeCatTr

VWWtSex

AgeCatTr





**

*.*.0




 

89.67 701.525 101.92 719.291 
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2 

 

iiSex

AgeCatTr

VWSex

AgeCatTr





*

*.*.0




 

13.755 864.435 123.61 896.164 

3 

IiWt

AgeCatTr

VWWt

AgeCatTr





*

*.*.0




 

15.096 855.437 119.34 881.235 

4 

iiWt

SexCatTr

VWWt

SexCatTr





*

*.*.0




 

14.977 854.624 91.341 876.473 

5 

iiWt

SexAge

VWWt

SexAge





*

**0




 

14.893 853.856 87.128 875.932 

6 

WtSex

AgeCatTr

WtSex

AgeCatTr

**

*.*.0








 

25.992 973.724 67.243 1051.18 

 

The Deviance  Information Criterion(DIC) 

was used to assess the model fit for this data in which 

first model contains full model with correlated effect 

were captured through (W) and uncorrelated effects 

were captured through (V). The model with lowest DIC 

value was considered to be better model. From the 

above six models, spatial frailty models fits better than 

the other  non-spatial frailty model and the minimum 

value of DIC 701.5 in model(1) of Weibull model better 

than other spatial model. The model(5) consists of age, 

sex and weight had the next lowest DIC(853.8) after 

ignoring Treatment regimen, indicates that the effect of 

Treatment regimen was very less impact on death. The 

model(4) and model(3) are almost having same DIC 

value viz, 854.6 and 855.4 respectively. The model(2) 

contains treatment regimen, age and sex were having 

high value DIC(864.4) and ignoring weight in this 

model indicates that weight at baseline is important 

factor for death in our analysis. The last model(6) is a 

fixed effect model, with highest DIC value of 973.7, 

indicates that random effects with in region and spatial 

autocorrelation between ward were important factors 

for estimating any parameter in spatial analysis. 

  

VI. CONCLUSION 

 

In the standard approach on frailty modeling, 

the random effects are treated as independent. But in 

the Bayesian spatial survival modeling approach, 

spatial dependence between neighboring effects are 

modeled with a spatial prior. The conditionally 

autoregressive prior allows to incorporate this spatial 

dependence in their survival models. The random effect 

model considers the other unmeasured factors 

influencing death in the region. Also, it was found that 

weight at baseline, was one of the factor associated with 

death in our study and hazard rate of male having two  

 

fold high as comparing to female. The spatial 

correlation was diverse in Chennai ward and north-

eastern wards in Chennai having spatial high spatial 

dependence. Spatial random effect model accounts 

higher heterogeneity (2.3) in our model which indicates 

that the regional variation and other environmental 

factors influencing survival pattern of disease in this 

study. Weibull spatial frailty model fits better other 

than the non-spatial Weibull frailty model. Spatial 

frailty accounts higher heterogeneity between regions. 

It is clear that a non-spatial and non-frailty model 

understates the unexplained heterogeneity in the data. 

Hence, spatial frailty model captures the unexplained 

spatial heterogeneity and it draws accurate inferences 

about other spatial covariates of interest.  
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