

Original Article

Clinical Evaluation of a Patent-Pending Plant-Based Dietary Test Formulation, *No-SugarX®* (NSX), in the Prevention and Management of Type 2 Diabetes Mellitus: A Six-Month Controlled Human Study

Shafi M. Shaafi¹, Harish Kulkarni², Khamer Taj³

¹Kannur Biomedical Research Center (KBRC), Anjarakandy Integrated Campus, Kerala, India.

²Mandyia Institute of Medical Sciences, Karnataka, India.

³Swasth Hindustan Mission®, Bengaluru, Karnataka, India.

¹Corresponding Author : indischolars@gmail.com

Received: 08 October 2025

Revised: 22 November 2025

Accepted: 10 December 2025

Published: 29 December 2025

Abstract - The rapidly rising global menace called Type 2 Diabetes Mellitus (T2DM) is largely driven by changes in lifestyle and dietary habits. Although drug-based strategies are effective to date, the control and management of T2DM are challenged with side effects and costs, along with diminished patient compliance. In fact, some plant-based nutrition modalities have shown improved glycemic control; however, there is a paucity of reports on their efficacy in controlled human studies using a standardized plant-based modality. The aim is to test the preventive and therapeutic properties of a plant-based modality – a patented formulation called No-SugarX®-NSX- in non-diabetic and drug-naïve type 2 diabetic subjects compared with traditional drug modalities. In a randomized controlled four-armed parallel human study with 200 forty- to sixty-year-old participants in Kerala and Karnataka states in Southern India over a six-month period. The primary outcome parameters included Fasting Blood Glucose (FBG), Post-Prandial Glucose (PPG), and glycated hemoglobin (HbA1c) levels. NSX significantly lowered FBG (20 to 35%), PPG (18 to 30%), and HbA1c (1.8 to 1.2%), a similar effect to drug regimens in drug-naïve T2DM subjects. Some modest preventive metabolic modulations occurred in non-diabetic subjects. There are no adverse effects.

Keywords – Glycaemic control, HbA1c, Low glycaemic index, Plant-based nutrition, Type 2 Diabetes Mellitus, Drug therapy, No-SugarX™.

1. Introduction

Type 2 Diabetes Mellitus (T2DM) is an important metabolic malfunction of the current era, representing one of the most serious threats to global public health, with more than 500 million individuals presently suffering from this disease. It predominantly affects, with an unprecedentedly high proportion, low- and middle-income nations, mainly due to their inadequate lifestyle of physical inactivity, high calorie intake, and the regular consumption of refined carbohydrates.

Medication has remained the cornerstone of diabetology; yet, the dependence on these drugs has often been confounded by the possible side effects of these drugs. In turn, dietary approaches focusing on the metabolic issues inherent in T2DM patients have attracted considerable interest. Plant-based food options, such as whole grains, millets, and legumes, as well as herbs and low-glycemic index foods, consistently work effectively in improving insulin sensitivity and glycemic levels. However, most evidence is largely observational and is mainly available in

relation to dietary interventions and not necessarily in relation to standardized nutrient supplements.

2. Materials and Methods

2.1. Study Design

This study was a randomized controlled trial. It was a six-month human intervention study. It was performed on four groups. The centers for conducting this study were chosen in Kerala and Karnataka states of India.

2.2. Ethical

The study was cleared by the Institutional Ethics Committee, Kannur Medical College. Informed written consent was taken from all subjects before selecting them for the study.

2.3. Participants and Sample Size Calculation

The study involved a total of 200 adults aged 40–60 years old, with 100 men and 100 women being selected for participation. The powering of the research followed a minimum HbA1c difference of 0.7% with a power of 80% and significance of 0.05.

This is an open access article under the CC BY-NC-ND license (<http://creativecommons.org/licenses/by-nc-nd/4.0/>)

2.4. Randomization and Allocation

Participants were randomly assigned using computer-generated block randomization. Blindness to confidentiality of the allocation was ensured using closed opaque envelopes. Because of the nature of the intervention, it is not possible for participants to be blinded. However, laboratory and data analysis personnel were blinded.

2.5. Study Groups

Table 1. Study Groups

Group	Description	n
Group 1	Normal control	50
Group 2	Normal + NSX	50
Group 3	T2DM + Standard drug	50
Group 4	Untreated T2DM + NSX	50

2.6. Intervention Protocol

Participants in group 2 and group 4 ingested 30 g NSX with 250 ml of warm water twice a day. Participants in group 3 ingested their regular physician-supervised medications for hypoglycemia. The need to change special dietary intake and undertake additional physical activity was not prescribed and regulated according to group assignments.

2.7. Compliance and Safety Monitoring

Compliance was measured through monthly NSX sachet counts and in-depth interviews. There were no serious adverse reactions reported. Participants found the NSX intervention amicable and palatable.

2.8. Composition of the Test Formulation, NSX

Table 2. Composition of NSX

Category	% w/w
Millets	28
Sprouted Pulses	25
Grains	22
Oily seeds	12
Herbs	10
Barks	3
Total	100

Table 3. Nutritional Composition of NSX (per 100 g)

Component	Amount
Energy (kcal)	315
Protein (g)	18.0
Total carbohydrate (g)	58.0
Dietary fibre (g)	22.0
Total sugars (g)	1.2
Total fat (g)	6.5
Saturated fat (g)	0.9
Sodium (mg)	18
Calcium (mg)	180
Magnesium (mg)	160
Potassium (mg)	620
Iron (mg)	5.4
Zinc (mg)	3.1
Total polyphenols (mg)	420
Estimated glycaemic index	< 40

2.9. Statistical Analysis

The analysis was done using SPSS software 25. The data in this study were analysed using repeated measures ANOVA to determine changes in variables within a group. The analysis between groups was done using one ANOVA with Bonferroni correction. The significance level for all tests was 0.05.

3. Results and Discussion

There were no statistically significant changes in the non-diabetic control subjects. The non-diabetic subjects on NSX showed mild but statistically significant changes in glycaemic indices without exaggerating the values beyond physiological ranges.

The NSX-treated subjects with T2DM had significant reductions in FBG, PPG, and HbA1c values similar to those achieved by medication.

Table 4. Glycaemic Outcomes After Six Months

Group	FBG mg%	PPG mg%	HbA1c (%)	Interpretation
Normal control	-1.0	-1.5	-0.02	Stable
Normal + NSX	-4.0	-6.5	-0.15	Preventive
T2DM + drug	-32.0	-48.0	-1.10	Therapeutic
Untreated T2DM + NSX	-27.5	-42.0	-1.00	Strong therapeutic

The intensity of the reduction in HbA1c values in the NSX-treated group is comparable to values in intensive dietary management and traditional oral hypoglycaemic therapies, making it a comparable treatment. It is postulated that a combination of low glycaemic carbs, fiber, polyphenols, and essential minerals is responsible for increased insulin sensitivity and lowered postprandial glycemia.

4. Conclusion

NSX showed excellent preventive and therapeutic effects on glycaemic levels, comparable to conventional medical treatment, in addition to a remarkably low health risk, confirming its possible usage as a nutritional preventive/therapeutic regime in the management of diabetes in human subjects.

Conflicts of Interest

The authors have declared that there is no conflict of interest concerning the publication of this manuscript.

Acknowledgments

The authors express deep gratitude to both the Chairman and the Director of Kannur Medical College and Anjarakandy Integrated Campus for the support and encouragement throughout the study.

References

- [1] American Diabetes Association, "Summary of Revisions: Standards of Medical Care in Diabetes-2024," *Diabetes Care*, vol. 47, suppl. 1, pp. S5-S10, 2024. [\[CrossRef\]](#) [\[Google Scholar\]](#) [\[Publisher Link\]](#)
- [2] Dianna Magliano, and Edward J. Boyko, *IDF Diabetes Atlas*, International Diabetes Federation, 2021. [\[Google Scholar\]](#) [\[Publisher Link\]](#)
- [3] Frank B. Hu, "Globalization of Diabetes: The Role of Diet, Lifestyle, and Genes," *Diabetes Care*, vol. 34, no. 6, pp. 1249-1257, 2011. [\[CrossRef\]](#) [\[Google Scholar\]](#) [\[Publisher Link\]](#)
- [4] Neal D. Barnard et al., "A Low-Fat Vegan Diet Improves Glycemic Control and Cardiovascular Risk Factors in a Randomized Clinical Trial in Individuals with Type 2 Diabetes," *Diabetes Care*, vol. 29, no. 8, pp. 1777-1783, 2006. [\[CrossRef\]](#) [\[Google Scholar\]](#) [\[Publisher Link\]](#)
- [5] Ambika Satija et al., "Plant-Based Dietary Patterns and Incidence of Type 2 Diabetes in US Men and Women: Results from Three Prospective Cohort Studies," *PLoS Medicine*, vol. 13, no. 6, 2016. [\[CrossRef\]](#) [\[Google Scholar\]](#) [\[Publisher Link\]](#)
- [6] Sylvia H. Ley et al., "Prevention and Management of type 2 Diabetes: Dietary Components and Nutritional Strategies," *The Lancet*, vol. 383, no. 9933, pp. 1999-2007, 2014. [\[Google Scholar\]](#) [\[Publisher Link\]](#)
- [7] Katherine Esposito et al., "Prevention and Control of Type 2 Diabetes by Mediterranean Diet: A Systematic Review," *Diabetes Research and Clinical Practice*, vol. 89, no. 2, pp. 97-102, 2010. [\[CrossRef\]](#) [\[Google Scholar\]](#) [\[Publisher Link\]](#)
- [8] Olubukola Ajala, Patrick English, and Jonathan Pinkney, "Systematic Review and Meta-analysis of Different Dietary Approaches to the Management of type 2 Diabetes," *The American Journal of Clinical Nutrition*, vol. 97, no. 3, pp. 505-516, 2013. [\[CrossRef\]](#) [\[Google Scholar\]](#) [\[Publisher Link\]](#)
- [9] David J.A. Jenkins et al., "Effect of Legumes as Part of a Low Glycemic Index Diet on Glycemic Control and Cardiovascular Risk Factors in Type 2 Diabetes Mellitus A Randomized Controlled Trial," *Archives of Internal Medicine*, vol. 172, no. 21, pp. 1653-1660, 2012. [\[CrossRef\]](#) [\[Google Scholar\]](#) [\[Publisher Link\]](#)
- [10] Shilpa N. Bhupathiraju et al., "Glycemic Index, Glycemic Load, and Risk of Type 2 Diabetes: Results from 3 Large US Cohorts and An Updated Meta-analysis," *American Journal of Clinical Nutrition*, vol. 100, no. 1, pp. 218-232, 2014. [\[CrossRef\]](#) [\[Google Scholar\]](#) [\[Publisher Link\]](#)
- [11] Omorogieva Ojo, "Dietary Intake and Type 2 Diabetes," *Nutrients*, vol. 11, no. 9, 2019. [\[CrossRef\]](#) [\[Google Scholar\]](#) [\[Publisher Link\]](#)
- [12] David S. Ludwig, "The Glycemic Index," *Journal of the American Medical Association*, vol. 287, no. 18, pp. 2414-2423, 2002. [\[CrossRef\]](#) [\[Google Scholar\]](#) [\[Publisher Link\]](#)
- [13] Jordi Salas-Salvadó et al., "Reduction in the Incidence of Type 2 Diabetes with the Mediterranean Diet: Results of the Predimed-Reus Nutrition Intervention Randomized Trial," *Diabetes Care*, vol. 34, no. 1, pp. 14-19, 2011. [\[CrossRef\]](#) [\[Google Scholar\]](#) [\[Publisher Link\]](#)
- [14] Lukas Schwingshackl, and Georg Hoffmann, "Long-term Effects of Low-fat Diets Either Low or High in Protein on Cardiovascular and Metabolic Risk Factors: A Systematic Review and Meta-Analysis," *Nutrition Journal*, vol. 12, pp. 1-9, 2013. [\[CrossRef\]](#) [\[Google Scholar\]](#) [\[Publisher Link\]](#)
- [15] Gabriele Riccardi, Angela A. Rivelles, and Rosalba Giacco, "Role of Glycemic Index and Glycemic Load in the Healthy State, in Prediabetes, and in Diabetes," *The American Journal of Clinical Nutrition*, vol. 87, no. 1, pp. 269S-274S, 2008. [\[CrossRef\]](#) [\[Google Scholar\]](#) [\[Publisher Link\]](#)
- [16] Martin O. Weickert, and Andreas F.H. Pfeiffer, "Metabolic Effects of Dietary Fiber Consumption and Prevention of Diabetes," *The Journal of Nutrition*, vol. 138, no. 3, pp. 439-442, 2008. [\[Google Scholar\]](#) [\[Publisher Link\]](#)
- [17] Jordi Salas-Salvadó et al., "Nuts in the Prevention and Treatment of Metabolic Syndrome," *The American Journal of Clinical Nutrition*, vol. 100, pp. 399S-407S, 2014. [\[CrossRef\]](#) [\[Google Scholar\]](#) [\[Publisher Link\]](#)
- [18] D.J.A. Jenkins et al., "Low-glycemic Index Diet in Diabetes," *Journal of Nutrition*, vol. 132, pp. 2072-2079, 2002.
- [19] Pan An et al., "Red Meat Consumption and Risk of Type 2 Diabetes: 3 Cohorts of US Adults and An Updated Meta-Analysis," *American Journal of Clinical Nutrition*, vol. 94, no. 4, pp. 1088-1096, 2011. [\[CrossRef\]](#) [\[Google Scholar\]](#) [\[Publisher Link\]](#)
- [20] Diana Thomas, and Elizabeth J. Elliott, "Low Glycaemic Index, or Low Glycaemic Load, Diets for Diabetes Mellitus," *Cochrane Database of Systematic Reviews*, 2009. [\[CrossRef\]](#) [\[Google Scholar\]](#) [\[Publisher Link\]](#)
- [21] Lukas Schwingshackl et al., "Plant-based Dietary Patterns and Glycaemic Control," *European Journal of Epidemiology*, vol. 33, pp. 157-170, 2018. [\[CrossRef\]](#) [\[Google Scholar\]](#) [\[Publisher Link\]](#)
- [22] James W. Anderson et al., "Health Benefits of Dietary Fiber," *Nutrition Reviews*, vol. 67, no. 4, pp. 188-205, 2009. [\[CrossRef\]](#) [\[Google Scholar\]](#) [\[Publisher Link\]](#)
- [23] Frank M. Sacks et al., "Comparison of Weight-loss Diets with Different Compositions of Fat, Protein, and Carbohydrates," *The New England Journal of Medicine*, vol. 360, pp. 859-873, 2009. [\[CrossRef\]](#) [\[Google Scholar\]](#) [\[Publisher Link\]](#)
- [24] Joanne L. Slavin, "Dietary Fiber and Body Weight," *Nutrition*, vol. 21, no. 3, pp. 411-418, 2005. [\[CrossRef\]](#) [\[Google Scholar\]](#) [\[Publisher Link\]](#)
- [25] Kitt Falk Petersen et al., "Impaired Mitochondrial Activity in the Insulin-Resistant Offspring of Patients with Type 2 Diabetes," *The New England Journal of Medicine*, vol. 350, no. 7, pp. 664-671, 2004. [\[CrossRef\]](#) [\[Google Scholar\]](#) [\[Publisher Link\]](#)
- [26] Hana Kahleová, and Terezie Pelikánová, "Vegetarian Diets in the Prevention and Treatment of type 2 Diabetes," *Journal of the American College of Nutrition*, vol. 34, pp. 448-458, 2015. [\[CrossRef\]](#) [\[Google Scholar\]](#) [\[Publisher Link\]](#)

- [27] David J.A. Jenkins et al., "Effect of a Low–Glycemic Index or a High–Cereal Fiber Diet on Type 2 Diabetes," *Journal of the American Medical Association*, vol. 300, no. 23, pp. 2742-2753, 2008. [\[CrossRef\]](#) [\[Google Scholar\]](#) [\[Publisher Link\]](#)
- [28] Andrew Reynolds et al., "Carbohydrate Quality and Human Health: A Series of Systematic Reviews and Meta-Analyses," *The Lancet*, vol. 393, no. 10170, pp. 434-445, 2019. [\[Google Scholar\]](#) [\[Publisher Link\]](#)
- [29] Dagfinn Aune et al., "Whole Grain and Refined Grain Consumption and The Risk of Type 2 Diabetes: A Systematic Review and Dose–Response Meta-analysis of Cohort Studies," *European Journal of Epidemiology*, vol. 28, pp. 845-858, 2013. [\[CrossRef\]](#) [\[Google Scholar\]](#) [\[Publisher Link\]](#)
- [30] Sofi Francesco et al., "Accruing Evidence on Benefits of Adherence to the Mediterranean Diet on Health: An Updated Systematic Review and Meta-analysis," *The American Journal of Clinical Nutrition*, vol. 92, no. 5, pp. 1189-1196, 2010. [\[CrossRef\]](#) [\[Google Scholar\]](#) [\[Publisher Link\]](#)