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Abstract

In this paper a theoretical studies of the
space separation of electron and hole wave functions
in the quantum well znO/Mg, ,.Zn, ,O are presented.

For this aim the self-consistent solution of the
Schrédinger equations for electrons and holes and
the Poisson equations at the presence of spatially
varying quantum well potential due to the
piezoelectric effect and local exchange-correlation
potential is found. The one-dimensional Poisson
equation contains the Hartree potential which
includes the one-dimensional charge density for
electrons and holes along the polarization field
distribution. The three-dimensional Poisson equation
contains besides the one-dimensional charge density
for electrons and holes the exchange-correlation
potential which is built on convolutions of a plane-
wave part of wave functions in addition. In
Zn0/(Zn,Mg)O quantum well the electron-hole
pairing leads to the exciton insulator states. An
exciton insulator states with a gap 3.4 eV are
predicted. If the electron and hole are separated,
their energy is higher on 0.2 meV than if they are
paired. The particle-hole pairing leads to the Cooper
instability. In the paper a theoretical study the both
the quantized energies of excitonic states and their
wave functions in graphene is presented. An integral
two-dimensional ~ Schrodinger equation of the
electron-hole pairing for a particles with electron-
hole symmetry of reflection is exactly solved. The
solutions of Schrddinger equation in momentum
space in graphene by projection the two-dimensional
space of momentum on the three-dimensional sphere
are found exactly. We analytically solve an integral
two-dimensional ~ Schrédinger  equation of the
electron-hole pairing for particles with electron-hole
symmetry of reflection. In single-layer graphene
(SLG) the electron-hole pairing leads to the exciton
insulator states. Quantized spectral series and light
absorption rates of the excitonic states which
distribute in valence cone are found exactly. If the
electron and hole are separated, their energy is
higher than if they are paired. The particle-hole
symmetry of Dirac equation of layered materials
allows perfect pairing between electron Fermi sphere
and hole Fermi sphere in the valence cone and
conduction cone and hence driving the Cooper
instability.

Keywords — quantum well, graphene, Cooper
instability, Dirac cone, exciton.

I. INTRODUCTION
The zinc oxides present a new state of matter
where the electron-hole pairing leads to the exciton
insulator states [1]. The Coulomb interaction leads to
the electron-hole bound states scrutiny study of which
acquire significant attention in the explanations of
high-temperature superconductivity.

There has been widely studied in the blue,
ultraviolet spectral ranges lasers based on direct
wide-bandgap hexagonal wurtzite crystal material
systems such as ZnO [2-7]. Significant success has
been obtained in growth ZnO quantum wells with
(ZnMg)O barriers by scrutinized methods of growth
[8,9]. The carrier relaxation from (ZnMg)O barrier
layers into a ZnO quantum well through time-
resolved photoluminescense spectroscopy is studied
in the paper [10]. The time of filling of particles for
the single ZnO quantum well is found to be 3 ps [10].

In the paper we present a theoretical
investigation of the intricate interaction of the
electron-hole plasma with a polarization-induced
electric fields. The confinement of wave functions
has a strong influence on the optical properties which
is observed with a dependence from the intrinsic
electric field which is calculated to be 0.37 MV/cm
[11], causing to the quantum-confined Stark effect
(QCSE). In this paper we present the results of
theoretical studies of the space separation of electron
and hole wave functions by self-consistent solution of
the Schrédinger equations for electrons and holes and
the Poisson equations at the presence of spatially
varying quantum well potential due to the
piezoelectric effect and the local exchange-
correlation potential.

In addition large electron and hole effective
masses, large carrier densities in quantum well ZnO
are of cause for population inversions. These features
are comparable to GaN based systems [12,13].

A variational simulation in effective-mass
approximation is used for the conduction band
dispersion and for quantization of holes a
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Schrodinger equation is solved with wirtzite
hexagonal effective Hamiltonian  [14] including
deformation potentials [15]. Keeping in mind the
above mentioned equations and the potential energies
which have been included in this problem from
Poisson’s equations we have obtained completely
self-consistent band structures and wave functions.

We consider the pairing between oppositely
charged particles with complex dispersion. If the

exciton Bohr radius is grater than the localization
range particle-hole pair, the excitons may be
spontaneously created.

If the Hartree-Fock band gap energy is
greater than the exciton energy in ZnO/(Zn,Mg)O
guantum wells then excitons may be spontaneously
created. It is known in narrow-gap semiconductor or
semimetal at sufficiently low temperature the
insulator ground state is instable with respect to the

C6v
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T +T,
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exciton formation [1,16], leading to a spontaneously

creating of excitons [17].

In a system undergo a phase transition into a exciton
Bardeen-Cooper-

insulator phase similarly to
Schrieffer (BCS) superconductor.

An exciton insulator states with a gap 3.4 eV are
predicted. The particle-hole pairing leads to the

Cooper instability.

representation I, + 1 of the point group Cy, , while
the wave function of the conduction band transforms
according to the representation I .

An irreducible presentations for orbital angular

momentum J may be built from formula

o1
Il. THEORETICAL STUDY _ sin(j+ §)¢’
zilp)=——5—. (1)
A. Effective Hamiltonian. sin ¢
It is known [14,18] that the valence-band 2
spectrum of hexagonal wiirtzite crystal at the I" point  For the vector representational j =1
originates from the sixfold degenerate I state. 30
Under the action of the hexagonal crystal field in sin——
wiirtzite crystals, I'; splits and leads to the formation x.(p) = _ =1+2cos . ()
of two levels: I}, I';. The wave functions of the ey
valence band transform according to the
C6v .
E |C,|2C, |2C, |30, |30,
4 I +T,
' 3 |-1/0 1 o
1, ’ 20 +1. +T
E[Zv (g)+lv(g )] 6 2 0 2 2 ! ° 6
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The direct production of two irreducible
presentations of wave function and wave vector of
difference x —I" expansion with taken into account
time inversion can be expanded on

p“ T, T, = (M+T) (L, +T5) =
=1, xI,
for the square of wave vector

©)

[p"p"l:7, xz, = (@0 + T+ ) X2 + T + ) =
= AL x I + T x T, + T x T,
(4)
In the low-energy limit the Hamiltonian of wirtzite
I—A|0 =1(A +A)+
+A,d2+A,,0,+20,3.0 +1 o)),

Hye = AKZ + Ak + (AK2 + Ak2)JIZ +
+ Ak, (2[3,3.]k +2[J,J ]k, )+
+ ALK+ I +iA (I k- J k),

Ha = 1gzz + DZSi + (D3EZZ + D48L)‘]12 +
+ D5(2[‘]z‘]+]‘c"—z + 2[JZJ—]€+Z) +
+D,(I%_+3%.).

In the basis of spherical wave functions with the
orbital angular momentum | =1 and the eigenvalue

m, ofits Z component:
11,60 = %(YEW(UZ)e*We*"“ +Y, Yy (—1/2) e 7%
Y

12,6,) = %(inllV(—l/Z)e*ime’m +Y, Yy (1/2)e' 6™
A

2 ,

18,6,) = 5 (X (U2)e e Y0y (-112)e" ™)
A

(8)
the Hamiltonian may be transformed to the diagonal
form indicating two spin degeneracy [21]:

FOK FiH, [ILe,)
H.=| K G ATiH2¢,),

HiH, AtH, 4 |I3.¢,)
©)

where F=A+A,+1+6 :
G=A-A+A+0, A= +4,,0=0,+0_,

= Ak AKY)
2m0 z t '
A, =D, + D, (&, +8yy) ,
= 7 AK+AKY)
k 2m0 z t ’

h2
0& = D3EZZ + DA(gxx +‘9yy) J Kt = H(A‘Sktz) J
0

2
Ho= 7 (Akk,). A= 20, K2 = K2 +K.
2m,

®)

From Kane model one can define the band-
edge parameters such as the crystal-field splitting
energy A, the spin-orbit splitting energy A, and
the momentum-matrix elements for the longitudinal
264”2) z-polarization and the transverse (e 1 Z)

polarization:
P, =(S1p,12), P, =(STh 1 X)
=(S|p, |Y) . Here we use the effective-mass

arameters, energy splitting parameters, deformation
g@tential parameters as in papers [15,19,20].

We consider a quantum well of width W in
ZnO under biaxial strain, which is oriented
perpendicularly to the growth direction (0001) and
localized in the spatial region —W/2 <z <W/2. In
the ZnO/MgZnO quantum well structure, there is a
strain-induced electric field. This piezoelectric field,
which is perpendicular to the quantum well plane (i.e.,
in z direction) may be appreciable because of the
large piezoelectric constants in wirtzite structures.

The transverse components of the biaxial
strain are proportional to the difference between the
lattice constants of materials of the well and the
barrier and depend on the Mg content Xx:
e =g = aMgXan_XO aZnO ,
aZnO

aMgXZnLXO =z 0t X(aMgO - aZnO) )
az,0 = 0.32496 nm, a,,,, =0.4216 nm [20].
The longitudinal component of a deformation is
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expressed through elastic constants and the transverse

: C
component of a deformation: &,, = -2 2 &, .
33
The physical parameters for ZnO are as follows.
We take the effective-mass parameters  [19]:

A =-2743, A, =-0393 A =2377,
A, =-2069, A =-2051 A =-2.099,
mZ* =0.329m, , where m, is the electron rest
mass in the vacuum, the parameters for deformation

potential [15]: D, =-3800 meVv, D, =-3800
meV, D,=-800 mev, D,=1400 meV,
D, :=-6860 mev, D, :=—-6260 meV, and the
energy parameters at 300 K [19,20]: E;, = 3400
meV, A, = A, =36.3 meV, A,/3=0.63 meV,
A/3=247 meV, A,=A;,=A, the elastic
constant [20]: C;; =90 GPa and C;, =196 GPa,
the permittivity of the host materials x = 7.8.

B. Zn0O/(Zn,Mg)O Quantum Well

We take the following wave functions
written as vectors in the three-dimensional Bloch
space:
< 1
¥y (@)
i=1 11,6,)

Ve, k) =YWLy, @)1 2.6,

EN 13,6,
> ¥l vly, (2)

10
The BI(()ch) vector of v -type hole with spin
Sy =+1/2 and momentum kt is specified by its
three coordinates
[‘Piftl)[m,v],‘l"((tz)[m,V],‘I’k(f’)[m,v]] in the basis

01,¢.012,6,013,6,)] [21], known as spherical

harmonics with the orbital angular momentum | =1
and the eigenvalue m, its Z component. The

envelope Z -dependent part of the quantum well
eigenfunctions can be specified from the boundary

conditions ¥, (Z=0)=y, (Z=1)=0 of the
infinite quantum well as

v, (Z2)= Fsin(ﬂmZ), (11)
w

z 1
where Z = (—+E), m is a natural number. Thus
w

the hole wave function can be written as
eikt Pt

lPvgvkt (r)= ﬁl vg, k). (12

The valence subband structure E Y (K,) can be

determined by solving equations system:
3

D (k, =) 4V (@) + GET (k)

=1

x¢,"¥(2,k) =0,

where .7 (z,k) = > Wiy, (2)
1=1,2,3.

The wave function of electron of first energy level
with accounts QCSE [22]:

W(r) = %eik‘p‘ﬂz,a 1) 16

where

(13)

(14)

1//1(2,6"‘) = Cle(lco‘s‘)(wz)’z c (—OO..O)

izt
Y(Z,&) =1y (Z,&) = Csin(k,w(Z _%)Jr&o)e awz 2)’2 c[0.1].
w,(Z,&)=C,e 0" 7 ¢ (1..)

1Sy=Y2, ¢ =+1/2.

5000 Flat band electron
= =Hartree-Fock electron|

4500

4000

3500

conduction band energy, (meV)

3000

0 2 4
k, (1/nm)

ISSN: 2394 - 8884

www.internationaljournalssrg.org

Page 4




SSRG International Journal of Material Science and Engineering ( SSRG — IJMSE ) Volume 1 Issue 2 May to Aug 2015

= Flat band heavy hole
= =Flat band light hole

= = Hartree-Fock heavy hole
== « Hartree-Fock light hole

100

-100

-200

valence band energy, (meV)

-300 L

k,, (1/nm)

Figure 1: (Color online) For the Quantum well
Zn0O/Mg,, ,,ZN, ;O with a Width 6 nm, at a

Carriers Concentration 4*10™ cm™2, (a)
Conduction Band Energy; (B) Valence Band Energy.

40000

20000y

absorption coefficient (cm™)

5 -4 3 -
E-E_, (meV)

gap’

Figure 2: (Color online) Absorption Coefficient for
the Quantum Well ZNO/Mg, ,.ZN, ;O with a

Width 6 nm, at a Carriers Concentration 4*10%

cm?ata Temperature 310 K.

From  bond  conditions [22,23]
Wi(Z,8) 1720=w(Z,8) ;=0
WoZ,8) ;2= w(Z,8) |2
%’(Z,é)| e W’(Z,§)|
w(Z,8) " w(Z.9)
Z16319) |- = v(Z.£) l,-, one can find
w,(Z,$) w(Z,$)

C, = Csin(—k(’TW 1 8)e 2,

C,= Csin(k07W L8 2,
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1—-cosk,w Kow K,
K, =k,(———2), &,=-2—+arctan -2,
sink,w 2 K,
where A is the area of the quantum well in the Xy
plane, p is the two-dimensional vector in the Xy

plane, k, = (k,,k,) is in-plane wave vector. The

constant multiplier C is found from normalization
condition:

[1w@.&Pwiz=1 @s

One can find the functional, which is built in
the form:

_(YIH|P)
J(Af)——ﬂ,lqj> , (17)
where
H=H_+V(z), (8

where H_ is a conduction band kinetic energy
including deformation potential:

B n ., K 0
H.=E, +A1+A2+2mel K; _2mez 572
+Dge, + D, (64 +y)-

The potential energies V (z) can look for as
follows:

V(2) =ed" (2) + U, (2) + @,. (2),

where @ (2) is the solution of one-dimensional
Poisson’s equation with the strain-induced electric
field in the quantum well, SU_ (z) are the

conduction and valence bandedge discontinuities
which can be represented in the form [24]:

U, - eEW(E +1),z € (—o0..— W/2)
w
eEz,z e[-w/2..w/2]
U, — eEw(Z ~1),z e (W/2..0).
w

58U, (2) =

®, (z) is exchange-correlation potential energy

which is found from the solution of three-dimensional
Poisson’s equation, using both an expression by
Gunnarsson and Lundquist [25], and following

criterions. At carrier densities 4*10'> cm™, the
criterion K. >+/n/4 at a temperature T=0 K as

1> 0.1 has been carried. K is Fermi wave vector.

The criterion does not depend from a width of well.
The ratio of Coulomb potential energy to the Fermi

energy is I, = E./EL =0.63<1. The problem

consists of the one-dimensional Poisson’s equation
solving of which may be found Hartree potential

Page 5

(19)

(20)

(21)



SSRG International Journal of Material Science and Engineering ( SSRG — IJMSE ) Volume 1 Issue 2 May to Aug 2015

energy and three-dimensional Poisson’s equation

which is separated on one-dimensional and two- fn,v(kt;g)=
dimensional equations by separated of variables using vk zzn e |’”)/kT
a criterion e i#] +1
[V, (ke,2)sinkp] <<1, where o =¢/h . _ 1
The three-dimensional Poisson’s equation includes (e1(1+r +r2 +_._))(£""’vkt T +1
local exchange-correlation potential: S8 (26)
2
L0en s a0, = 22 (o0 (z10) + 5 (r.1))
dz o ehe eh 27 27 The solution of equations system (13), (17),
@2%) as well as (13), (17), (23) does not depend from
a temperature.
244 H
d cI)e,h - Ar (Z 9), ( Solving one-dimensional Poisson’s equation
dz? K Pen %ﬁ) one can find screening polarization field and
Hartree potential energy by substituting her in the
Schrddinger equations. From Schrédinger equations
qu)exch = peh(r r, (a@ve functions and bandstructure are found. The
' conclusive determination of screening polarization
where field is determined by iterating Egs. (13), (17), (22)

2 . i i i
Pe A (Z g) Fe Z | o (k“ Z) | fn,v (kv 9)1 until fche solutions of c_onductlon and val.ence band
vk, energies and wave functions are converged:

(25) D" (2) = D (z) + D, (2), (27)

ed} (2) = 2— 3 0, o, 1 v D] 0 )

com(w+;)(l +m) cosﬂ(\lzv+;)(m -

- |
. W 7r2(l+m)2 AmonE " -
( + ) 1cosZ;zm(Z+;)
W(Wz T2 ﬂzm\gv ym=l
2e’
e (z)-—— jkdkc f. (k,)x

2(x0—§xz+5>

1-cos(—k,w+29,) §W

Z e (—o0..—W/2)

2 A(xcy — 5)2 ,
e %% 2c0s2(k,z+0,)e *? sin2(k,z + &, )e **
S era (&7 k) + 00 K&z e [~wi2.wi2]
85 (457 +4ky) 4(&° +kyg)

w
~2q+EN2-2)
1—cos(k,W+25,) -~ o2

2 4(x, + &) 2

, 2 € (W/2..0),

(29)
7z 1 value of electron charge, x is the permittivity of a
where Z = WJFE g, and g, correspond to the ot material, and f, (k). f, (k) are the Fermi-

degeneration of the v hole band and the first  Dirac distributions for holes and electrons.
quantized conduction band, respectively, € is the
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Exchange-correlation charge density may be
determined as:

Pen(r,r') =
0 | o
=3 Y ¥k D) P (=i (P2
1=0m=—I lp—p'|
(30)
using the expansion of plane wave
o |
Z Zplm (p)YIm (L) =
1=0m=-1 Ip
_ iktp _ 29 ] . * kt p
=€ - 4”2 ZI JI (ktp)YIm (_)Ylm (_)
1=0m=-1 k, |p|

At the condition [V, .(Kg,Z)sink:p] <<1,

VN

the solution Eqg. (24) may be found as follows V

o 1
@, (x¢) = | por(p) = dp.
Y2,
The solution the three-dimensional
equation may be presented in the form:
— H
.5 (2) = D, (D), (XC).
The complete potential which describes piezoelectric

effects and local exchange-correlation potential in
quantum well one can find as follows

D(z) = @y (2) + ;' (2) +
+ @ ()@, (xc) + D (2)D, (xC).

Poisson’s

C. Uncertainty Heisenberg Principle

The excitons in semiconductors have been
studied by [26].

The Heisenberg equation for a microscopic
dipole f);evh =(b_,a,) due to an electron-hole pair
with the electron (hole) momentum p (—p) and the

subband number v, (v, ) is written in the form:

AVeVh
0 p

We assume a nondegenerate situation

described by the Hamiltonian H = I-AI0 +V +H,

int?
which is composed of the kinetic energy of an

Ve
electron &, |,

the electron-hole representation:

and the kinetic energy of a hole &, in

T Ve A+A ikt K
H, = de,papan + gh,pbfpbfp'
P
where p is the transversal quasimomentum of
carriers in the plane of the quantum well, &, a7,

bfp, and bfp are the annihilation and creation

operators of an electron and a hole. The Coulomb
interaction Hamiltonian for particles in the electron-

) hole representation takes the form:

~ 1 V V VLV
- = e'e’'e’leAt At A A
V= 5 DV, 4,4 Ad +

p.k.q

VAVhVhYhiIA+ Rt R K _
LV B BB

V ViViVL A ~ ~ A
_2qu " ea;+qbk+—qbkap’

Gere
VaVBY Y a 82 e s ! ! 27[
5'p =2 jdz jdz;(va(z)zvﬂ(z)—x
K A S w2 g
(32)

—qlz-7]
xe ", (D)2, (D),
is the Coulomb potential of the quantum well, x is
(thw dielectric permittivity of a host material of the

quantum well, and A is the area of the quantum well
in the Xy plane.

The Hamiltonian of the interaction of a dipole with
an electromagnetic field is described as follows:

(34) L
H == 3 () By Ere™ +

VaVp P

"By ) B,
where f);evh = (prép) is a microscopic dipole due

to an electron-hole pair with the electron (hole)
momentum p (—p) and the subband number v, (v,),

w4t = fd3rUj,a,keﬁU

of the electric dipole moment, which depends on the
(RRle vector k and the numbers of subbands, between
which the direct interband transitions occur, € is a
unit vector of the wvector potential of an

electromagnetic wave, P is the momentum operator.
Subbands are described by the wave functions
Ui U g, where | is the number of a subband

from the conduction band, o is the electron spin, |

is the number of a subband from the valence band,
and o is the hole spin. We consider one lowest

(geyduction subband j' =1 and one highest valence

jok » 1S the matrix element

jok 1

subband j=1. E and @ are the electric field

amplitude and frequency of an optical wave.
The polarization equation for the wurtzite quantum
well in the Hartree—Fock approximation with regard
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for the wave functions for an electron and a hole
written in the form [13,27], where the coefficients of
the expansion of the wave function of a hole in the
basis of wave functions (known as spherical functions)

with the orbital angular momentum | =1 and the
eigenvalue M, of its Z component, depend on the
wave vector can look for as follows:

A VAV

dp e’h
p —- _- Vth Ave‘/h _ - Vth _ A‘/e Avh
o iw,*" P, Q" (=1+A° +A").

The transition frequency a);evh and the Rabi

frequency with regard for the wave function [13,27]
are described as
Ve'h —

1 Vv, 14
h
e = g(ggo + &S5+ gh'p),

h :1
/]

A Vevh

Vv VthV
g ¢ ) pp+q 4

q {l_';?'q,}

Hartree-Fock energies for electron

Ve VeVh —imt
Q, (4,° "EET +

|4 v
where £,%, &% -

and holes,

VeVhVhVe zliibr
V{l—:%} 2k 21 ! d‘ngaqux

x [z, [dz.. g0 (2.) o, (22 2w, (22) 20, (2) %

—Qlze—2o| . i i
xe < Chn, AV Iy, 21CY [n, AV [m, 41,

n=m=n,=m,=1,

Q =qg+p,

where Z”l(zf) is the envelope of the wave

functions of the quantum well, V;[ml,l] and

Cg[nl,l] are coefficients of the expansion of the

wave functions of a hole and electron at the envelope
part, @ is the angle between the vectors P and (,

and g, isadegeneracy order of a level.

Numerically  solving this integro-differential
equation, we can obtain the absorption coefficient of
a plane wave in the medium from the Maxwell
equations:

a(w)=—2

ImP, (44
Em (44)

where C the velocity of light in vacuum, N is a
background refractive index of the quantum well
material,

2 VaVhnk VoVl ~io
P :K Z (Iupe h) ppe hgiet
Ve,Vh,p
The light absorption spectrum presented in the
paper in Fig. 2, reflects only the strict TE (x or y)
(Kght polarization.
From Uncertainty Heisenberg principle:

(45)

AXAP 22, (46)

can be found the localization range particle-hole pair
41
( 2<z h

(42Yable 1. The Localization Range Particle-Hole Pair
AX in cm, Exciton Binding Energy Ry in meV,

Carriers Concentration N1 = P incm _2, Bohr Radius

aB incm.
AX Ry n=p ag
9.95*107192.16 4*10"% |4.26*10°°

Hence the exciton Bohr radius is grater than
the localization range particle-hole pair, and the
excitons may be spontaneously created.

D. Results and Discussions
We consider QCSE in strained wirtzite

ZnO/Mg, ,,ZNn, ;O quantum well with width 6
nm, in which the barrier height is a constant value for
electrons and is equal to U, =536.22 meV. The

theoretical analysis of piezoelectric effects and
( Zhange—correlation effects is based on the self-
consistent solution of the Schrédinger equations for
electrons and holes in quantum well of width W with
including Stark effect and the Poisson equations. The
one-dimensional Poisson equation contains the
Hartree potential which includes the one-dimensional
charge density for electrons and holes along the
polarization field distribution. The three-dimensional
Poisson equation contains besides the one-
dimensional charge density for electrons and holes
along the polarization field distribution the exchange-
correlation potential which is built on convolutions of
a plane-wave part of wave functions in addition.

We have calculated carriers population of
the lowest conduction band and the both heavy hole
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and light hole valence band. Solving (13) for holes in
the infinitely deep quantum well and finding the
minimum of functional (17) for electrons in a
quantum well with barriers of finite height, we can
find the energy and wave functions of electrons and
holes with respect to Hartree potential and exchange-
correlational potential in a piezoelectric field at a

carriers concentration N = p = 4*10"* cm™. The

screening field is determined by iterating Egs. (13),
(17), (22) until the solution of energy spectrum is
converged.

The Hartree-Fock dispersions of the valence

bands and the conduction band are presented in Fig. 1.

The light absorption spectrum presented in the paper
in Fig. 2.

It is found that the localization range particle-hole

h -
pair AX>——0c9.95*%10° cm.
4mc

binding energy is equal Ry=2.16 meV at carriers
concentration N = p = 4*10"* ¢cm . Bohr radius
is equal a5 = 4.26*10°° cm.

If the exciton Bohr is grater than the localization
range particle-hole pair, the excitons may be
spontaneously created.

Exciton

We consider the pairing between oppositely
charged particles with complex dispersion. The
Coulomb interaction leads to the electron-hole bound
states scrutiny study of which acquire significant
attention in the explanations of high-temperature
superconductivity. If the exciton Bohr radius is grater
than the localization range particle-hole pair, the
excitons may be spontaneously created.

It is found that

E E =0.2 meV. If the
electron and hole are separated, their energy is higher

on 0.2 meV than if they are paired. Hence it can be
energetically favorable for them to be paired.

(Hartree-Fockbandgap) ~ —(1sexciton)

If the Hartree-Fock band gap energy is
greater than the exciton energy in ZnO/(Zn,Mg)O
quantum wells then excitons may be spontaneously
created. It is known in narrow-gap semiconductor or
semimetal then at sufficiently low temperature the
insulator ground state is instable with respect to the
exciton formation [1,16], leading to a spontaneously
creating of excitons. In a system undergo a phase

transition into a exciton insulator phase similarly to
Bardeen-Cooper-Schrieffer (BCS) superconductor.

An exciton insulator states with a gap 3.4 eV are
predicted. The particle-hole pairing leads to the
Cooper instability.

E. Elliott Formula for Particle-Hole Pair of Dirac
cone.

The graphene [28-30] presents a new state
of matter of layered materials. The energy bands for
graphite  was found using  "tight-binding"
approximation by P.R. Wallace [31]. In the low-
energy limit the single-particle spectrum is Dirac
cone similarly to the light cone in relativistic physics,
where the light velocity is substituted by the Fermi

velocity V. and describes by the massless Dirac

equation.

In the paper we present a theoretical investigation
of excitonic states as well as their wave functions in
graphene. An integral form of the two-dimensional
Schrodinger equation of Kepler problem in
momentum space is solved exactly by projection the
two-dimensional space of momentum on the three-
dimensional sphere in the paper [17].

The integral Schrodinger equation was analytically
solved by the projection the three-dimensional
momentum space onto the surface of a four-
dimensional unit sphere by Fock in 1935 [32].

We consider the pairing between oppositely
charged particles with complex dispersion. The
Coulomb interaction leads to the electron-hole bound
states scrutiny study of which acquire significant
attention in the explanations of superconductivity.

If the exciton binding energy is greater than the flat
band gap in narrow-gap semiconductor or semimetal
then at sufficiently low temperature the insulator
ground state is instable with respect to the exciton
formation [1,16]. And excitons may be
spontaneously created. In a system undergo a phase
transition into a exciton insulator phase similarly to
Bardeen-Cooper-Schrieffer (BCS) superconductor. In
a single-layer graphene (SLG) the electron-hole
pairing leads to the exciton insulator states [33].

In the paper an integral two-dimensional
Schrddinger equation of the electron-hole pairing for
particles with complex dispersion is analytically
solved. A complex dispersions lead to fundamental
difference in exciton insulator states and their wave
functions.

1
DSh

{E10} [{c{ [0}{C,**° |0{o, | 7}

{o*9 |7}

{9173

K -1
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g2
{E|O0} {ct&|0y{E|0} {EI0} |{s&7 |3 HEICG}
2 1 0 4 1 0
x°(9)
N K +K; +K
2 -1 2 2 -1 2
x(9%) ,
1., , 0 1 3 0 1
E[l (9)+x(99)] 3 K+ K]
L) - 20 ' b ' ' B
S (9)-2(9 1 K,

We analytically solve an integral two-dimensional
Schradinger equation of the electron-hole pairing for
particles with electron-hole symmetry of reflection.

For graphene in vacuum the effective fine structure

2

(S
VFhK\/;
in substrate arg = 0.77, when the permittivity of

parameter g = =1.23 . For graphene

graphene in substrate is estimated to be x =1.6
[34]. 1t means the prominent Coulomb effects [35].

It is known that the Coulomb interaction leads to
the semimetal-exciton insulator transition, where gap
is opened by electron-electron exchange interaction
[1,36-38]. The perfect host combines a small gap and
a large exciton binding energy [1,16].

In graphene the existing of bound pair states are
still subject matter of researches [39-43].

It is known [44] in the weak-coupling limit [45],
exciton condensation is a consequence of the Cooper
instability of materials with electron-hole symmetry
of reflection inside identical Fermi surface. The
identical Fermi surfaces is a consequence of the
particle-hole symmetry of massless Dirac equation
for Majorana fermions.

F. Quantized Spectral Series of the Excitonic States
Of Valence Dirac Cone.

In the honeycomb lattice of graphene with
two carbon atoms per unit cell the space group is

D;, [46].

Figure 3: (Color online) Single-particle spectrum of
graphene for massless Dirac fermions (Majorana
fermions).

ISSN: 2394 - 8884 www.internationaljournalssrg.org Page 10

The direct production of two irreducible
presentations of wave function and wave vector of

difference x—K or x—K’' expansion is
K3 xKJ® and can be expanded on

p* 17, 7, = (K +K; +KJ)xK; = Kg <K,

In the low-energy limit the single-particle
spectrum is Dirac cone describes of the massless
Dirac equation for a massless Dirac fermions
(Majorana fermions). The Hamiltonian of graphene
for a massless Dirac fermions [31]

H =v.(zq,0,+0,5,),
where 0, , g, are Cartesian components of a wave

vector, 7 =1 is the valley index, V. =10° m/s is

x» Oy are Pauli

matrices (here we assume that 7 =1).
The dispersion of energy bands may be found in
the form [31]

&, =1Vv.Q,

where = \/qf +q§ .

The Schrddinger equation for the calculating of
exciton states can be written in the general form

1, d(q
(6@ + )D(e) = = [ -2

7o lg-q
where qg = —¢g, & is a quantized energy. We look

for the bound states and hence the energy will be
negative.
For the single layer graphene

2
5((21)+ch _ 4 Ve sin(9)+1 cos@l
q +Go 2q,
An integral form of the two-dimensional
Schrodinger equation in momentum space for the

the graphene Fermi velocity, &

dq’,

(47)

(48)

(49)

(50)

(51)
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graphene is solved exactly by projection the two-
dimensional space of momentum on the three-  COS@ = q CIO SIHG‘Zi,q2 =q§(1+COS‘9).
dimensional sphere. q°+q? q°+q? 1-cosé

When an each point on sphere is defined of two (52)
spherical angles 8, ¢ , which are knitted with a

Using spherical symmetry the solution of integral
momentum ¢ - [17,32]. A space angle {2 may be Schradinger equation can look for in the form
found as  surface  element on  sphere 2 o
— 0 3/2 0
402 = sin(0)d0dg = (—2%_Y2dgq [17.52. A ©() = /d (qz N qg) IZ;AYl (©.9), (53)
n -

. 4+ % where
spherical angle @ and a momentum ( are shown
[17,32] to be knitted as Y,°(6,4) = \ P (cos@). (54)

Since [17]
2 2\1/2 f 12 2\1/2
(q +q0) (q +q0) (0 ¢)Y,u*(61 ¢) (55)
2q, |- Q| a=0u= 122 +1 7
then substituting (53), (55) in (50), can find equation
&(q) + . , 2 :
> q° e LAVO9) ——ZZZI—Y”(@ OO IO DA . )
Oo 120 im0 2A+1 +0,

The integral equations for SLG based on Eq. (51) may be found in the form

Jepg sin(@)+ ROV ROV TS
v 1w (57)
; J Z Z Z Py LM Catd Y, (0,8, (6, $)dQAYA,.
Since [47]
coséR" (cos 6) = F-m? P mﬂ:"l(cos 0), (58)

M7 pm 0
Jar_g eSO Ja+1)2-1

. I-m)(I-m-1 l+m+1)(I+m+2
sin@P" (cos @) = AJ-m) ) P™" (cos 0) + i X ) P™" (cos ), (59)
Jar 1 A0 +1)* -1
then solutions of the integral equation (56) for the 1
energies and wave functions correspondingly can be &y =— 1 1 1 ' (61)
found analytically with taken into account the (74_7(14_7)31)2
normalization condition 2
+
o] © q°|c1><q)| dg =1, _ 1
a1 11, 1, 1., ©®
From equation (57) one can obtain the CA+D)+b+ =+ Day)’
eigenvalue and eigenfunction problem one can find 2 2" 4 2 2
recurrence relation
1

1 1 1 1 1 1 1
I+ D)A+=A+=A L+ += A, (+3)b =0. (60) £, =— ,
22 2 22 2 CCer D b e D)

The solutions of the quantized series in excitonic

Rydbergs where Ry= 87.37 meV, and wave (63)
functions of the integral equation (57) one can find in
the form
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& =—

1
1.1 1, 1. 1. 1_
@+ 4=+, + = (4+2)a,)?
(2(+2)+2(+2)2+2(+2)4)

@, (cos b)) = Z(l cos 6)**P°(cos 0),

\ 0|)3
where qg, =-¢,1=01,234,...,
" /2(|—1)+1
'ox 2

|
21+1 a2 41

1+1

Jal+1)2 -1

1
b = E\/Z(I +1)+1-/21+1

Table 2. Quantized spectral series of the
excitonic states which distribute in valence cone &,
n=01.23,..
meV.

in meV, exciton Rydberg Ry in

(65) The

(66)

obtain in the form W
(67)

R
& &1 &, &, y

1107.94

122.47  [39.59 17.97 87.37

Quantized spectral series of the excitonic states
distribute in valence Dirac cone. The energies of
bound states are shown to be found as negative, i. e.
below of Fermi level. Thus if the electron and hole
are separated, their energy is higher than if they are
paired.

G. Elliott Formula and Light Absorption Rates of
The Excitonic States of Valence Dirac Cone.
The intervalley transitions probability
caused intervalley photoexcitations taken into
account Coulomb interaction of electron-hole pair
one can obtain from Fermi golden rule in the form

P—Z—”(ev Ew> S ILals, 7.0

X(Dn(qz - q% NS, (¢, —hw) + 6, (&, + ho)].
q° + Qo

(68)
Considering the case of relatively weak
excitation the total rate of increase of the number of
photons in the fixed mode one can obtain in the form
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@)= 27 (2eEoyes (3 (41,91 6, | FLa) | x
o oho .

q° -9
x® (= g))z[é'y(gn —hw)+9,(&, + ho)].
q”+0qo

(69)
change in the energy density of
electromagnetic waves can be presented in the form

aw _ho o
d S
Under ac electric field E_ecos(0z —t) the

energy density of electromagnetic waves one can

(70)

1
= —KEf,. Light absorption
8

1 dW
rate one can obtain in the form a(w) = — ——
W dz
dw _ dw
Since —— = —£ then light absorption rate
dz dt ¢
with taken into account

|(¥1,9]5,, |F1,0) |’=1/2 can be rewritten in
the form

—(ev)"2 ([ dax

w0, (L =%)205 (5~ ha) +6. (&, + ha)],
g +q,

S(a(w) = \/—

(2 )?
Table 3. Light absorption rate of quantized

spectral series of the excitonic states which distribute
-1

in valence cone «r,, N =0,1,... incm
Q a,
7.67%10 % 1.14*102°

www.internationaljournalssrg.org

H. Results and Discussions

The integral Schrddinger equation for a
parabolic bands was analytically solved by the
projection the three-dimensional momentum space
onto the surface of a four-dimensional unit sphere by
Fock in 1935 [32].

In the paper an integral two-dimensional
Schrédinger equation of the electron-hole pairing for
particles with complex dispersion is analytically
solved. A complex dispersion leads to fundamental
difference in the energy of exciton insulator states
and their wave functions.
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We analytically solve an integral two-
dimensional Schrddinger equation of the electron-
hole pairing for particles with electron-hole
symmetry of reflection.

It is known that the Coulomb interaction leads to
the semimetal-exciton insulator transition, where gap
is opened by electron-electron exchange interaction
[1,36-38]. The perfect host combines a small gap and
a large exciton binding energy [1,16].

We consider the pairing between oppositely
charged particles in graphene. The Coulomb
interaction leads to the electron-hole bound states
scrutiny study of which acquire significant attention
in the explanations of superconductivity.

It is known [1,16] if the exciton binding energy
is greater than the flat band gap in narrow-gap
semiconductor or semimetal then at sufficiently low
temperature the insulator ground state is instable
concerning to the exciton formation with follow up
spontaneous production of excitons. In a system
undergo a phase transition into a exciton insulator
phase similarly to BCS superconductor. In a SLG the
electron-hole pairing leads to the exciton insulator
states.

The particle-hole symmetry of Dirac equation of
layered materials allows perfect pairing between
electron Fermi sphere and hole Fermi sphere in the
valence band and conduction band and hence driving
the Cooper instability. In the weak-coupling limit in
graphene with the occupied conduction-band states
and empty valence-band states inside identical Fermi
surfaces in band structure, the exciton condensation
is a consequence of the Cooper instability.

. Conclusions
In this paper a theoretical studies of the
space separation of electron and hole wave functions

in the quantum well ZnO/Mg, ,.ZNn,.O by the

self-consistent solution of the Schrédinger equations
for electrons and holes and the Poisson equations at
the presence of spatially varying quantum well
potential due to the piezoelectric effect and local
exchange-correlation potential are presented. The
exchange-correlation potential energy is found from
the solution of three-dimensional Poisson’s equation,
using both an expression by Gunnarsson and
Lundquist  [25], and following criterions. The

criterion K. >/n/4 at carrier densities 4*10"

cm™2, at a temperature T=0 K is carried as 1> 0.1.
The criterion does not depend from a width of well.
The solution of equations system (13), (17), (23) as
well as (13), (17), (22) does not depend from a
temperature. The ratio of Coulomb potential energy

to the Fermi energy is I, = E./E =0.63<1. The

one-dimensional Poisson equation contains the
Hartree potential which includes the one-dimensional
charge density for electrons and holes along the
polarization field distribution. The three-dimensional

Poisson equation contains besides the one-
dimensional charge density for electrons and holes
along the polarization field distribution the exchange-
correlation potential which is built on convolutions of
a plane-wave part of wave functions in addition. The
problem consists of the one-dimensional Poisson’s
equation solving of which may be found Hartree
potential energy and three-dimensional Poisson’s
equation which is separated on one-dimensional and
two-dimensional equations by separated of variables.
At the condition that the ratio of wave function
localization in the longitudinal z direction on
transversal in-plane wave function localization is less
1. It is found that the localization range particle-hole

h _
pair AX>——0c9.95%107° cm.
4mc
binding energy is equal Ry=2.16 meV at carriers
concentration N = p = 4*10"* ¢cm . Bohr radius

Exciton

is equal a; =4.26*10° cm. It is found that the

exciton binding energy is grater than the localization
range particle-hole pair, and the excitons may be
spontaneously created. If the electron and hole are
separated, their energy is higher on 0.2 meV than if
they are paired. Hence it can be energetically
favorable for them to be paired. An exciton insulator
states with a gap 3.4 eV are predicted. The particle-
hole pairing leads to the Cooper instability.

In this paper we found the solution the integral
Schrédinger equation in a momentum space of two
interacting via a Coulomb potential Dirac particles
that form the exciton in graphene.

In low-energy limit this problem is solved
analytically. We obtained the energy dispersion and
wave function of the exciton in graphene. The
excitons were considered as a system of two
oppositely charge Dirac particles interacting via a
Coulomb potential.

We solve this problem in a momentum space
because on the whole the center-of-mass and the
relative motion of the two Dirac particles can not be
separated.

We analytically solve an integral two-
dimensional Schrddinger equation of the electron-
hole pairing for particles with electron-hole
symmetry of reflection. An integral form of the two-
dimensional Schrddinger equation in momentum
space for graphene is solved exactly by projection the
two-dimensional space of momentum on the three-
dimensional sphere.

Quantized spectral series of the excitonic states
distribute in valence Dirac cone. The energies of
bound states are shown to be found as negative, i. e.
below of Fermi level. Thus if the electron and hole
are separated, their energy is higher than if they are
paired. In the SLG the electron-hole pairing leads to
the exciton insulator states.
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A. Matrix Elements of Interband Transitions.

Appendix A.

[ x (I3 +15)
E |C, |2C, |2C, |30, |30,
wa v 1 I +1I.
zy (g)lv (g) 3 1 0 2 il 1 5
1 I +T,
Ao 3 M D 2 1 S
Matrix elements of interband transitions transforms according to representations:
M, (K):z, xz, = ([ + ) x([} +T5) = .
=1, xI] +I;xI%. 72
Ce, E C, 2C, |2C, |30, |30,
I, 1 1 1 1 1 1 kzz’ktz"]zz’l
T, 1 1 1 101 -1 J,,o,
I, 1 1 -1 1 1 -1
T, 1 1 -1 101 1
FS 2 -1 0 2 1 0 k+’kf'o-+’a—7‘]+"J—’[‘]+‘]z]![‘J—‘]z]
T, 2 -1 0 2 -1 0 kf’k_z’\]f,\]_z
where  k, =k ik, |, kP=ki+k? | J, = 12(JX ) L 2[3,3.]=3,,+3,9,
A
1
o, = E(GX to,),
010
J.=]0 0 1], (3
0 0O
0 0O
J_ =1 0 0 (74
010
1 0 O
J,=l0 0 0f (5
0 0 -1
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1 0O
J2=10 0 0], (76)
0 0 1
0 0 1
J2=J0 0 0| (77
0 0O
0 0O
J2=]0 0 0 (78
1 00
01 O
2[3,J.]1=0 0 -1 (79)
0 0 O
0O 0 O
2[J,3_1=|1 0 Q0 (80)
0 -1 0
1 0 1)
o, = ,
Z O _
0 (82)
o, = ,
TJo o0
0 (83)
o= .
-1 0
Appendix B
D;,
{E |0} {C:§+,—)Io}{CZI(A,B,C)lo{O-hlz-} {Sé“*’lr} {GV(A,B,C)|T}
K/ 1 1 1 1 1 1 X2 +y2, 72
K; 1 1 1 1 1 -1 ‘Jz
s 2 . : 1 0 )
K, 1 1 1 -1 -1 1
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K, 1 1 1 -1 -1 1 VA
K, 2 1 0 -2 1 0 ) )
(X -y ,Xy),
(‘]x ! ‘] y)
Appendix C

From a trigonometric calculations one can find a following recurrence relations

cot a3|m+1 (cos6) = pIer2 (cos @) +I(l ;—(]:l ;]rg(m +1)]P|m (cos 6) |

(83)

_iPlTl(cose) _@ +1)P™*(cos @) + (I —m)(1 —m+1)(2l +1)P|”“l(cos¢9)’
siné@ (@+m)(+m+1)—(-m)(l —-m+1))

(84)
cot R (cos 20) = (— ! +cot 26)P™ (cos 26),
sin 260
(85)
1 n 1 1 m m
(=(3+4(cotd)’)—=——-)R"(cos 28) = cot R (cos 26),
2 2 siné
(86)

where

" (x) = - 4Qiﬂﬂlf( )WZFOn—IJn+I+an+L1;X)

2" (I=m)Im!
(87)
Fafrd=-- r(i( LG [y @a-ty@-w) .
(88)

In order to find a light absorption rates necessarily to solve the integral

1-x
J= IWF(H+11 )

(89)
Substituting (88) into (89) we obtain the integral in the form

1 TA+NrQa) ¢ NE) | t Xoa
J=- dxq (-t 1-t) (1-—+—) " dt,
27 T(1+1) [oxfena-0'a-5+7)
(90)
which can be rewritten as follows
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_ 1 T@+Nr@) p N | Ty X g
I=- TLeD def(—t) (-0 (- 2) "+ o)t

(91)

The solution the following integral

J= j (1+ 7)*' X,

(92)
may be found by substitution
yo %
2t
(93)
We find the solution of the integral
ot 2 | 2 |
3= [ @+y)dy = 50 t) + 50 )" (@2-t)".
T2t
(94)

Then substituting (94) into (91) we obtain the integral in the form

_ 1 r@+nr@a) 2
2zi T(A+1) 1+2

(o a-n'a- ) tat- feo ™ a-n'a- ) a2,
(95)

which can be expressed via a hypergeometric functions as follows

F(l) I'(1)
1= W eanh  Craa,
5, (F ) Q) ( 2)r(1 e |))
(96)
In a similar form can be calculated the integral
1
J =deP|m(x).
97)

Substituting (87) into (97) we obtain the integral in the form

1 (I+m)! mi2 1-x
J= j > 1 —mmi S (1-x7) F(m—tm+l+1,m+1,725).

(98)
Using the formula (88) the integral (98) one can transform into the integral

1 T(l-m+Dr(m+1) 1 (I

TS Tasny 27a-

+m) Id (1-x )mlzif( -t)™ "1(1_t)|(1_tl_zx)_m_'_ldt,

(99)
which can be rewritten in the form
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_ 1 F(l m+|)r(m+1) 1 (I+m) m/2 m-1-1 m—1-1 [ -m-I-1
- o e jd (1-x%) {( )™ (1-t) (1- f) (L)t

(100)
In order to find the solution of the integral (100) it is necessarily to consider the integral of form:

1 X
J = 1— 2\m/2 1 —mflfld ,
[ (e
(101)

which can be transformed into the integral of form:
t
J = -m-I-1 1 m/2 +X —m-I ldX
G )
(102)

The solution the integral (102) one can find using the binomial theorem and following replacements

(103)

y=m/2,

t )—1/(m+l+l)
(104)

So integral (103) may be rewritten as follows

J= ( 2—t )Zk—m—l—l J‘u 2(m+|+l)(k+l)—(m+l+l)2 —(m+1+1) (l— u (m+|+l))—2(k+l)+m+l+l dU )

t
(105)

The solution of the integral (105) one can find by replacement

u= (y)ll(m+l+l).
(106)

We obtain the following expression the looking for of integral:

—_ l 2—t 2k—m—l—1 /2 2(k+1)-m—1- 3+m el 2symilid _
B (m+1+1) ( ) J:tl(2—2t) (1-y) dy =

_ 1 (2 _t)Zk—m—I—lItlz 2(k+1)—m—|—3+m+l|+l y
(m+1+1) -v(e-21)
A (-2k+m+1-1)!

(-2k+m+l-1-n) ¢\ \nN
2 ycaksml—1—np® (~y)"dy.

(107)
The solution the integral (107) one can find using the binomial theorem
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k(2K +m+ 1 =1)!
= MY(-2k+m+I1-1-n)!

(l— y)—Z(k+1)+m+I+l = (l)(—2k+m+l—1—n) (_y)n.

(108)
Substituting equation (108) in the integral (107) one can obtain the sought for integral in the form

_ 1 (2—t)z,(,m,,,l’z“i*"l (=2k +m+1-1)!

J - (1)(—2k+m+l—l—n) (_1)n «
m+1+ = MI(-2k+m+I-1-n)!
(Mm+1+1) " t (n)!(—2k | —1—n)!
t/2 2(k+l)—m—|—3+ﬁ+nd
I—tl(Z—Zt)y y:
(109)

We find the solution of the integral (109) in the form:

_ 1 (2—t)2k,m,,,l‘2k§:*"l (=2k +m+1-1)!
(m+1+1) "t = (MY(-2k+m+1-1-n)!

2k—m-I1+ L +n
y m-+1+1

1
m+1+1

(1)(—2k+m+l—l—n) (_1) n «

|t12

X t(2-21) -

k—-m—I+ +n)

(110)
Substituting (110) in (103) one can rewrite the integral (103) in the form:

O D JPSE A CU G

o k=0 K!(y —k)!
1 2t oma R =2k +m+1-1)! okml—ion N
x ( )2k 1-1 ( ) (1)( 2k -1 )(_1) «
(m+1+1) "t = MI(-2k+m+1-1-n)!
2k—m—|+m+1|+1+n
x y t—/tzl(z-zt) .
2k -—m-—1I+ +n)
m+1+1
(111)

Substituting (111) in the sought for integral (100) one can rewrite the integral (100) as follows:

L TEm I Loem) 1 &
2 TQD) 27 (-mm (D) G- k)!
£ (n)!((__illiir:;ll __11)i D
Xzzk:; (s)!((ii)i ST
% f(_t)m—l—l(l_t)l (1- ;)mll %

2k—m—I+ ! +n

(1) (-1)* x

2 s m+1+1
X(t*)(Zk ) y 1 |t—/fl(2—2t) dt,
2k-m-1+ +n)
m+1+1
(112)
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which can be rewritten in the form

] :_21- 1“(1—m+|)1“(m+1)im (I+m)! 1 27: 1 (1)7‘k(—1)k><
7l @+ 2" (I=m)ImI (m+1+1) & k' (y —k)!
A (_2k+m+|_1)! (-2k+m+l-1-n) ¢ n o
pord (n)!(—2k+m+|—1—n)!(1) D
@)
SZ:;‘(S)!(ZK—S)!( 2
" 1 . f(—t)m_l_l(l—t)l(l—;)_m_l_lx
2k-m-I1+ +n)
m+|+11 .
x(f) 2k=s) ((t/Z) 2k-m-— A B (—t/(2 B 2t))2k—m—l+m+n)dt’
(113)
or as follows
] =_21_ F(l—m+|)l‘(m+1)im (I +m)! 1 i My 1y
7 T(1+1) 2™ (I—m)Im! (m+1+1) & k! (y —k)!

Rt (2k +m+ 1 -1)!
= (MY(-2k+m+1-1-n)!

& (2Kk)! s
Lok D

(1)(—2k+m+l—1—n) (—l) n x

m+l— -
2 m-+1+1

t
> (_t)mflfl(l_t)l (1_ 7)7mflfl >
@k-m—l+ S 4 n)f 2

X m+1+1 . L
s—m—l+m+n e 2k—m—l+m+n _ —2k+m+l—mfn
x(t) (1-(-1) (1-1) )dt.

(114)
We find the solution of the looking for integral as follows:
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(1]
(2]

(31

(4]

(5]

(6]
(71
(8]

(9]

[10]

[11]
[12]

[13]
[14]
[15]

[16]

[17]
[18]

[19]

o T@-m+Dr(m+1) 1 (1+m)!

7y D)

T+

—2k+m+1-1

1
2™ (L—m)Im! (m+1+1) ék!(y—k)!
(=2k +m+1-1)!

(1) (-2k+m+1-1-n) (_l)n x

= (MI(-2k+m+1-1-n)!
XZZ": (2k)!

= (s)!(2k —s)!

m+l-—=——n-s
2 m+l+1

(-1)°x

—S+Mm+l-—————n
X 1 (_1) HHl
k-m-l+———+n)
m+1+1
1 1 r{+1
><(F(s—2|+T+n,m+l+1,s—l+ﬁ+n+1,1/2) 1 (1+1) i -
m+i+ m-+1+ F-s+2l-—— —nI(s=l+——+n+1)
m+1+1 m+1+1
1
" 1 rd-2k+m+2l-———-n)
R 1 m+1+1
-(-1) mH - E(s-21 +T+ nm+1+1,s+1-2k+m,1/2) 1 ).
m+1+ F(l-s+2l—-———n)(s+1-2k +m)
m+1+1
(115)
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