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Abstract  
In this paper a theoretical studies of the 

space separation of electron and hole wave functions 

in the quantum well OZnMgZnO 0.730.27/  are presented. 

For this aim the self-consistent solution of the 

Schrödinger equations for electrons and holes and 

the Poisson equations at the presence of spatially 

varying quantum well potential due to the 

piezoelectric effect and local exchange-correlation 

potential is found. The one-dimensional Poisson 

equation contains the Hartree potential which 

includes the one-dimensional charge density for 

electrons and holes along the polarization field 

distribution. The three-dimensional Poisson equation 

contains besides the one-dimensional charge density 

for electrons and holes the exchange-correlation 

potential which is built on convolutions of a plane-

wave part of wave functions in addition. In 

ZnO/(Zn,Mg)O quantum well the electron-hole 

pairing leads to the exciton insulator states. An 

exciton insulator states with a gap 3.4 eV are 

predicted. If the electron and hole are separated, 

their energy is higher on 0.2 meV than if they are 

paired. The particle-hole pairing leads to the Cooper 

instability. In the paper a theoretical study the both 

the quantized energies of excitonic states and their 

wave functions in graphene is presented. An integral 

two-dimensional Schrödinger equation of the 

electron-hole pairing for a particles with electron-

hole symmetry of reflection is exactly solved. The 

solutions of Schrödinger equation in momentum 

space in graphene by projection the two-dimensional 

space of momentum on the three-dimensional sphere 

are found exactly. We analytically solve an integral 

two-dimensional Schrödinger equation of the 

electron-hole pairing for particles with electron-hole 

symmetry of reflection. In single-layer graphene 

(SLG) the electron-hole pairing leads to the exciton 

insulator states. Quantized spectral series and light 

absorption rates of the excitonic states which 

distribute in valence cone are found exactly. If the 

electron and hole are separated, their energy is 

higher than if they are paired. The particle-hole 

symmetry of Dirac equation of layered materials 

allows perfect pairing between electron Fermi sphere 

and hole Fermi sphere in the valence cone and 

conduction cone and hence driving the Cooper 

instability. 

 

Keywords — quantum well, graphene, Cooper 

instability, Dirac cone, exciton. 

I. INTRODUCTION  

The zinc oxides present a new state of matter 

where the electron-hole pairing leads to the exciton 

insulator states  [1]. The Coulomb interaction leads to 

the electron-hole bound states scrutiny study of which 

acquire significant attention in the explanations of 

high-temperature superconductivity. 

 

There has been widely studied in the blue, 

ultraviolet spectral ranges lasers based on direct 

wide-bandgap hexagonal würtzite crystal material 

systems such as ZnO  [2-7]. Significant success has 

been obtained in growth ZnO quantum wells with 

(ZnMg)O barriers by scrutinized methods of growth  

[8,9]. The carrier relaxation from (ZnMg)O barrier 

layers into a ZnO quantum well through time-

resolved photoluminescense spectroscopy is studied 

in the paper  [10]. The time of filling of particles for 

the single ZnO quantum well is found to be 3 ps  [10]. 

 

In the paper we present a theoretical 

investigation of the intricate interaction of the 

electron-hole plasma with a polarization-induced 

electric fields. The confinement of wave functions 

has a strong influence on the optical properties which 

is observed with a dependence from the intrinsic 

electric field which is calculated to be 0.37 MV/cm  

[11], causing to the quantum-confined Stark effect 

(QCSE). In this paper we present the results of 

theoretical studies of the space separation of electron 

and hole wave functions by self-consistent solution of 

the Schrödinger equations for electrons and holes and 

the Poisson equations at the presence of spatially 

varying quantum well potential due to the 

piezoelectric effect and the local exchange-

correlation potential. 

 

In addition large electron and hole effective 

masses, large carrier densities in quantum well ZnO 

are of cause for population inversions. These features 

are comparable to GaN based systems  [12,13]. 

 

A variational simulation in effective-mass 

approximation is used for the conduction band 

dispersion and for quantization of holes a 
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Schrödinger equation is solved with würtzite 

hexagonal effective Hamiltonian  [14] including 

deformation potentials  [15]. Keeping in mind the 

above mentioned equations and the potential energies 

which have been included in this problem from 

Poisson’s equations we have obtained completely 

self-consistent band structures and wave functions. 

 

We consider the pairing between oppositely 

charged particles with complex dispersion. If the 

exciton Bohr radius is grater than the localization 

range particle-hole pair, the excitons may be 

spontaneously created. 

 

If the Hartree-Fock band gap energy is 

greater than the exciton energy in ZnO/(Zn,Mg)O 

quantum wells then excitons may be spontaneously 

created. It is known in narrow-gap semiconductor or 

semimetal at sufficiently low temperature the 

insulator ground state is instable with respect to the 

 

exciton formation  [1,16], leading to a spontaneously 

creating of excitons  [17]. 

In a system undergo a phase transition into a exciton 

insulator phase similarly to Bardeen-Cooper-

Schrieffer (BCS) superconductor. 

An exciton insulator states with a gap 3.4 eV are 

predicted. The particle-hole pairing leads to the 

Cooper instability.  

II.  THEORETICAL STUDY  

A. Effective Hamiltonian. 

It is known [14,18] that the valence-band 

spectrum of hexagonal würtzite crystal at the   point 

originates from the sixfold degenerate 15  state. 

Under the action of the hexagonal crystal field in 

würtzite crystals, 15  splits and leads to the formation 

of two levels: 1 , 5 . The wave functions of the 

valence band transform according to the 

representation 51   of the point group vC6 , while 

the wave function of the conduction band transforms 

according to the representation 1 .  

An irreducible presentations for orbital angular 

momentum j  may be built from formula 
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The direct production of two irreducible 

presentations of wave function and wave vector of 

difference   expansion with taken into account 

time inversion can be expanded on 
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In the low-energy limit the Hamiltonian of würtzite 
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In the basis of spherical wave functions with the 

orbital angular momentum 1=l  and the eigenvalue 

lm  of its z  component: 
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the Hamiltonian may be transformed to the diagonal 

form indicating two spin degeneracy  [21]: 
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From Kane model one can define the band-

edge parameters such as the crystal-field splitting 

energy cr , the spin-orbit splitting energy so  and 

the momentum-matrix elements for the longitudinal 

( ze ) z-polarization and the transverse ( ze  ) 

polarization: 

,|ˆ|  ZpSP zz  XpSP x |ˆ|

 YpS y |ˆ| . Here we use the effective-mass 

parameters, energy splitting parameters, deformation 

potential parameters as in papers  [15,19,20]. 

 

We consider a quantum well of width w  in 

ZnO under biaxial strain, which is oriented 

perpendicularly to the growth direction (0001) and 

localized in the spatial region /2<</2 wzw . In 

the ZnO/MgZnO quantum well structure, there is a 

strain-induced electric field. This piezoelectric field, 

which is perpendicular to the quantum well plane (i.e., 

in z direction) may be appreciable because of the 

large piezoelectric constants in würtzite structures. 

 

The transverse components of the biaxial 

strain are proportional to the difference between the 

lattice constants of materials of the well and the 

barrier and depend on the Mg content x: 

,== 1
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, 

0.32496=ZnOa  nm, 0.4216=MgOa  nm  [20]. 

The longitudinal component of a deformation is 
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expressed through elastic constants and the transverse 

component of a deformation: xxzz
C

C


33

132=  . 

The physical parameters for ZnO are as follows. 

We take the effective-mass parameters  [19]: 

,2.743=1 A ,0.393=2 A ,2.377=3A  

,2.069=4 A ,2.051=5 A ,2.099=6 A  

0

, 0.329= mmz

e


, where 0m  is the electron rest 

mass in the vacuum, the parameters for deformation 

potential  [15]: 3800=1 D  meV, 3800=2 D  

meV, 800=3 D  meV, 1400=4D  meV, 

6860:= czD  meV, 6260:= cD  meV, and the 

energy parameters at 300 K  [19,20]: 3400=gE  

meV, 36.3==1 cr  meV, 0.63=/32  meV, 

2.47=/33  meV, so == 32  the elastic 

constant  [20]: 90=13C  GPa and 196=33C  GPa, 

the permittivity of the host materials 7.8= . 

 

B. ZnO/(Zn,Mg)O Quantum Well 

 We take the following wave functions 

written as vectors in the three-dimensional Bloch 

space:  
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 The Bloch vector of  -type hole with spin 

1/2= v  and momentum tk  is specified by its 

three coordinates 
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harmonics with the orbital angular momentum 1=l  

and the eigenvalue lm  its z  component. The 

envelope Z -dependent part of the quantum well 

eigenfunctions can be specified from the boundary 
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infinite quantum well as  
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The wave function of electron of first energy level 

with accounts QCSE  [22]:  
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Figure  1: (Color online) For the Quantum well 

OZnMgZnO 0.730.27/  with a Width 6 nm, at a 

Carriers Concentration 
1210*4  

2cm , (a) 

Conduction Band Energy; (B) Valence Band Energy. 

  
Figure  2: (Color online) Absorption Coefficient for 

the Quantum Well OZnMgZnO 0.730.27/  with a 

Width 6 nm, at a Carriers Concentration 
1210*4  

2cm , at a Temperature 310 K. 

 

From bond conditions  [22,23] 
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where A is the area of the quantum well in the xy  

plane,   is the two-dimensional vector in the xy  

plane, ),(= yxt kkk  is in-plane wave vector. The 

constant multiplier C  is found from normalization 

condition:  
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The potential energies )(zV  can look for as 

follows:  
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 where )(zH  is the solution of one-dimensional 

Poisson’s equation with the strain-induced electric 

field in the quantum well, )(, zU vc  are the 

conduction and valence bandedge discontinuities 

which can be represented in the form  [24]:  
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 )(zxc  is exchange-correlation potential energy 

which is found from the solution of three-dimensional 

Poisson’s equation, using both an expression by 

Gunnarsson and Lundquist  [25], and following 

criterions. At carrier densities 
1210*4  

2cm , the 

criterion /4> nkF  at a temperature T=0 K as 

0.1>1  has been carried. Fk  is Fermi wave vector. 

The criterion does not depend from a width of well. 

The ratio of Coulomb potential energy to the Fermi 

energy is 1<0.63=/= FCs EEr . The problem 

consists of the one-dimensional Poisson’s equation 

solving of which may be found Hartree potential 
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energy and three-dimensional Poisson’s equation 

which is separated on one-dimensional and two-

dimensional equations by separated of variables using 

a criterion 

 1<<]sin),([ ,, ρkFFn zk , where he,= . 

The three-dimensional Poisson’s equation includes 

local exchange-correlation potential:  
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The solution of equations system (13), (17), 

(22) as well as (13), (17), (23) does not depend from 

a temperature. 

 

Solving one-dimensional Poisson’s equation 

(23) one can find screening polarization field and 

Hartree potential energy by substituting her in the 

Schrödinger equations. From Schrödinger equations 

wave functions and bandstructure are found. The 

conclusive determination of screening polarization 

field is determined by iterating Eqs. (13), (17), (22) 

until the solutions of conduction and valence band 

energies and wave functions are converged:  
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 (29) 

 

where 
2

1
= 

w

z
Z , g  and 1g  correspond to the 

degeneration of the   hole band and the first 

quantized conduction band, respectively, e  is the 

value of electron charge,   is the permittivity of a 

host material, and )(, tp kf , )(1 tn kf  are the Fermi-

Dirac distributions for holes and electrons. 
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Exchange-correlation charge density may be 

determined as:  
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 using the expansion of plane wave  

).
||

()()(4==

=)
||

()(

*

=0=

=0=

ρ

ρ
ρk

ρ

ρ
ρ

ρk

lm

t

t

lmtl

l
l

lml

t
i

lmlm

l

lml

Y
k

k
Yjie

Y
















 (31) 

 

At the condition 1<<]sin),([ ,, ρkFFn zk , 

the solution Eq. (24) may be found as follows  

.
1

)(=)( 00
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 dxche ρ


  (32) 

 The solution the three-dimensional Poisson’s 

equation may be presented in the form:  
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H
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 The complete potential which describes piezoelectric 

effects and local exchange-correlation potential in 

quantum well one can find as follows  
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C. Uncertainty Heisenberg Principle 

The excitons in semiconductors have been 

studied by [26]. 

The Heisenberg equation for a microscopic 

dipole   ppp abp he ˆˆ=ˆ


 due to an electron-hole pair 

with the electron (hole) momentum p (–p) and the 

subband number e  ( h ) is written in the form: 
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i
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 (35) 

 

We assume a nondegenerate situation 

described by the Hamiltonian ntHVHH i0
ˆˆˆ=ˆ  , 

which is composed of the kinetic energy of an 

electron e
e


 p,  and the kinetic energy of a hole h

h


 p,  in 

the electron-hole representation: 
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 where p is the transversal quasimomentum of 

carriers in the plane of the quantum well, pâ , 


pâ , 

pb̂ , and 


pb̂  are the annihilation and creation 

operators of an electron and a hole. The Coulomb 

interaction Hamiltonian for particles in the electron-

hole representation takes the form: 
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 is the Coulomb potential of the quantum well,   is 

the dielectric permittivity of a host material of the 

quantum well, and A  is the area of the quantum well 

in the xy  plane. 

The Hamiltonian of the interaction of a dipole with 

an electromagnetic field is described as follows: 

 

  tihehe
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  pp  (39) 

 where   ppp abp he ˆˆ=ˆ


 is a microscopic dipole due 

to an electron-hole pair with the electron (hole) 

momentum p (–p) and the subband number e  ( h ), 

kkk p 


 jj

he UerUd ˆ= 3

 , is the matrix element 

of the electric dipole moment, which depends on the 

wave vector k and the numbers of subbands, between 

which the direct interband transitions occur, e  is a 

unit vector of the vector potential of an 

electromagnetic wave, p̂  is the momentum operator. 

Subbands are described by the wave functions 

k jU , kjU , where j  is the number of a subband 

from the conduction band,    is the electron spin, j  

is the number of a subband from the valence band, 

and   is the hole spin. We consider one lowest 

conduction subband 1=j  and one highest valence 

subband 1=j . E  and   are the electric field 

amplitude and frequency of an optical wave. 

The polarization equation for the wurtzite quantum 

well in the Hartree–Fock approximation with regard 
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for the wave functions for an electron and a hole 

written in the form [13,27], where the coefficients of 

the expansion of the wave function of a hole in the 

basis of wave functions (known as spherical functions) 

with the orbital angular momentum 1=l  and the 

eigenvalue lm  of its z  component, depend on the 

wave vector can look for as follows: 
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 The transition frequency he


p  and the Rabi 

frequency with regard for the wave function [13,27] 

are described as  
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 where h
h

e
e


 pp ,, ,  - Hartree-Fock energies for electron 

and holes, 
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 where )(
1

 zn  is the envelope of the wave 

functions of the quantum well, ,1][ 1mV i

p  and 

,1][ 1nC j

p  are coefficients of the expansion of the 

wave functions of a hole and electron at the envelope 

part,   is the angle between the vectors p  and q , 

and g  is a degeneracy order of a level. 

Numerically solving this integro-differential 

equation, we can obtain the absorption coefficient of 

a plane wave in the medium from the Maxwell 

equations: 

,I=)( Pm
ncE


  (44) 

 where c  the velocity of light in vacuum, n  is a 

background refractive index of the quantum well 

material, 
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The light absorption spectrum presented in the 

paper in Fig. 2, reflects only the strict TE (x or y) 

light polarization. 

From Uncertainty Heisenberg principle:  

,
2


 px  (46) 

can be found the localization range particle-hole pair 

cm
x

4


 . 

Table 1. The Localization Range Particle-Hole Pair 

x  in cm, Exciton Binding Energy Ry in meV, 

Carriers Concentration pn =  in cm
2

, Bohr Radius 

Ba  in cm. 

x  Ry  n=p   Ba     

1010*9.95 

  

2.16  1210*4   
610*4.26 

  

 

Hence the exciton Bohr radius is grater than 

the localization range particle-hole pair, and the 

excitons may be spontaneously created. 

 

D. Results and Discussions 

We consider QCSE in strained würtzite 

OZnMgZnO 0.730.27/  quantum well with width 6 

nm, in which the barrier height is a constant value for 

electrons and is equal to 536.22=0U  meV. The 

theoretical analysis of piezoelectric effects and 

exchange-correlation effects is based on the self-

consistent solution of the Schrödinger equations for 

electrons and holes in quantum well of width w  with 

including Stark effect and the Poisson equations. The 

one-dimensional Poisson equation contains the 

Hartree potential which includes the one-dimensional 

charge density for electrons and holes along the 

polarization field distribution. The three-dimensional 

Poisson equation contains besides the one-

dimensional charge density for electrons and holes 

along the polarization field distribution the exchange-

correlation potential which is built on convolutions of 

a plane-wave part of wave functions in addition. 

 

We have calculated carriers population of 

the lowest conduction band and the both heavy hole 



SSRG International Journal of Material Science and Engineering ( SSRG – IJMSE ) Volume 1 Issue 2 May to Aug 2015 

ISSN: 2394 - 8884                     www.internationaljournalssrg.org                               Page 9 

and light hole valence band. Solving (13) for holes in 

the infinitely deep quantum well and finding the 

minimum of functional (17) for electrons in a 

quantum well with barriers of finite height, we can 

find the energy and wave functions of electrons and 

holes with respect to Hartree potential and exchange-

correlational potential in a piezoelectric field at a 

carriers concentration 
1210*4== pn  

2cm . The 

screening field is determined by iterating Eqs. (13), 

(17), (22) until the solution of energy spectrum is 

converged. 

 

The Hartree-Fock dispersions of the valence 

bands and the conduction band are presented in Fig. 1. 

The light absorption spectrum presented in the paper 

in Fig. 2. 

It is found that the localization range particle-hole 

pair 
1010*9.95

4


cm

x


 cm. Exciton 

binding energy is equal Ry=2.16 meV at carriers 

concentration 
1210*4== pn  cm

2
. Bohr radius 

is equal 
610*4.26= 

Ba  cm. 

If the exciton Bohr is grater than the localization 

range particle-hole pair, the excitons may be 

spontaneously created. 

 

We consider the pairing between oppositely 

charged particles with complex dispersion. The 

Coulomb interaction leads to the electron-hole bound 

states scrutiny study of which acquire significant 

attention in the explanations of high-temperature 

superconductivity. If the exciton Bohr radius is grater 

than the localization range particle-hole pair, the 

excitons may be spontaneously created. 

It is found that 

0.2=)(1)( excitonsgapbandFockHartree EE   meV. If the 

electron and hole are separated, their energy is higher 

on 0.2 meV than if they are paired. Hence it can be 

energetically favorable for them to be paired. 

 

If the Hartree-Fock band gap energy is 

greater than the exciton energy in ZnO/(Zn,Mg)O 

quantum wells then excitons may be spontaneously 

created. It is known in narrow-gap semiconductor or 

semimetal then at sufficiently low temperature the 

insulator ground state is instable with respect to the 

exciton formation  [1,16], leading to a spontaneously 

creating of excitons. In a system undergo a phase 

transition into a exciton insulator phase similarly to 

Bardeen-Cooper-Schrieffer (BCS) superconductor. 

An exciton insulator states with a gap 3.4 eV are 

predicted. The particle-hole pairing leads to the 

Cooper instability. 

 

E. Elliott Formula for Particle-Hole Pair of Dirac 

cone. 

The graphene  [28-30] presents a new state 

of matter of layered materials. The energy bands for 

graphite was found using "tight-binding" 

approximation by P.R. Wallace  [31]. In the low-

energy limit the single-particle spectrum is Dirac 

cone similarly to the light cone in relativistic physics, 

where the light velocity is substituted by the Fermi 

velocity Fv  and describes by the massless Dirac 

equation. 

In the paper we present a theoretical investigation 

of excitonic states as well as their wave functions in 

graphene. An integral form of the two-dimensional 

Schrödinger equation of Kepler problem in 

momentum space is solved exactly by projection the 

two-dimensional space of momentum on the three-

dimensional sphere in the paper  [17]. 

The integral Schrödinger equation was analytically 

solved by the projection the three-dimensional 

momentum space onto the surface of a four-

dimensional unit sphere by Fock in 1935  [32]. 

We consider the pairing between oppositely 

charged particles with complex dispersion. The 

Coulomb interaction leads to the electron-hole bound 

states scrutiny study of which acquire significant 

attention in the explanations of superconductivity. 

If the exciton binding energy is greater than the flat 

band gap in narrow-gap semiconductor or semimetal 

then at sufficiently low temperature the insulator 

ground state is instable with respect to the exciton 

formation  [1,16]. And excitons may be 

spontaneously created. In a system undergo a phase 

transition into a exciton insulator phase similarly to 

Bardeen-Cooper-Schrieffer (BCS) superconductor. In 

a single-layer graphene (SLG) the electron-hole 

pairing leads to the exciton insulator states  [33]. 

In the paper an integral two-dimensional 

Schrödinger equation of the electron-hole pairing for 

particles with complex dispersion is analytically 

solved. A complex dispersions lead to fundamental 

difference in exciton insulator states and their wave 

functions. 
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We analytically solve an integral two-dimensional 

Schrödinger equation of the electron-hole pairing for 

particles with electron-hole symmetry of reflection. 

For graphene in vacuum the effective fine structure 

parameter 1.23==
2




F

G
v

e
. For graphene 

in substrate 0.77=G , when the permittivity of 

graphene in substrate is estimated to be 1.6=   

[34]. It means the prominent Coulomb effects  [35]. 

It is known that the Coulomb interaction leads to 

the semimetal-exciton insulator transition, where gap 

is opened by electron-electron exchange interaction  

[1,36-38]. The perfect host combines a small gap and 

a large exciton binding energy  [1,16]. 

In graphene the existing of bound pair states are 

still subject matter of researches  [39-43]. 

It is known  [44] in the weak-coupling limit  [45], 

exciton condensation is a consequence of the Cooper 

instability of materials with electron-hole symmetry 

of reflection inside identical Fermi surface. The 

identical Fermi surfaces is a consequence of the 

particle-hole symmetry of massless Dirac equation 

for Majorana fermions. 

F. Quantized Spectral Series of the Excitonic States 

Of Valence Dirac Cone. 

In the honeycomb lattice of graphene with 

two carbon atoms per unit cell the space group is 
1

3hD   [46]. 

  
Figure  3: (Color online) Single-particle spectrum of 

graphene for massless Dirac fermions (Majorana 

fermions). 

  

The direct production of two irreducible 

presentations of wave function and wave vector of 

difference K  or K  expansion is 
å  33 KK  and can be expanded on 

.=)(=: 333321

  KKKKKKp k


 (47) 

 

In the low-energy limit the single-particle 

spectrum is Dirac cone describes of the massless 

Dirac equation for a massless Dirac fermions 

(Majorana fermions). The Hamiltonian of graphene 

for a massless Dirac fermions  [31] 

 

),ˆˆ(=ˆ
yyxxF qqvH    (48) 

 where xq , yq  are Cartesian components of a wave 

vector, 1=   is the valley index, 
610=Fv  m/s is 

the graphene Fermi velocity, x̂ , y̂  are Pauli 

matrices (here we assume that 1= ). 

The dispersion of energy bands may be found in 

the form  [31]  

,= qvF
 (49) 

 where 
22= yx qqq  . 

The Schrödinger equation for the calculating of 

exciton states can be written in the general form  
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 where =2

0q ,   is a quantized energy. We look 

for the bound states and hence the energy will be 

negative. 

___For the single layer graphene_______________  
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An integral form of the two-dimensional 

Schrödinger equation in momentum space for the 
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graphene is solved exactly by projection the two-

dimensional space of momentum on the three-

dimensional sphere. 

When an each point on sphere is defined of two 

spherical angles  ,  , which are knitted with a 

momentum q   [17,32]. A space angle   may be 

found as surface element on sphere 

qd
qq

q
ddd 2

2

0

2

0 )
2

(=)(sin=


    [17,32]. A 

spherical angle   and a momentum q  are shown  

[17,32] to be knitted as  
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 (52) 

 

Using spherical symmetry the solution of integral 

Schrödinger equation can look for in the form  

),,()
2
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3/2

2

0

2

0
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 where  
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4
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Since  [17]   
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 then substituting (53), (55) in (50), can find equation  
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 (56) 

 

The integral equations for SLG based on Eq. (51) may be found in the form  
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Since  [47]  
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then solutions of the integral equation (56) for the 

energies and wave functions correspondingly can be 

found analytically with taken into account the 

normalization condition 
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2

)
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. 

From equation (57) one can obtain the 

eigenvalue and eigenfunction problem one can find 

recurrence relation  
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 (60) 

The solutions of the quantized series in excitonic 

Rydbergs where Ry= 87.37  meV, and wave 

functions of the integral equation (57) one can find in 

the form  

,
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Table 2. Quantized spectral series of the 

excitonic states which distribute in valence cone n , 

.0,1,2,3,..=n  in meV, exciton Rydberg Ry in 

meV. 

 

 0   1   2   3   Ry  

1107.94 122.47  39.59  17.97  87.37  

 

Quantized spectral series of the excitonic states 

distribute in valence Dirac cone. The energies of 

bound states are shown to be found as negative, i. e. 

below of Fermi level. Thus if the electron and hole 

are separated, their energy is higher than if they are 

paired. 

 

G. Elliott Formula and Light Absorption Rates of 

The Excitonic States of Valence Dirac Cone. 

The intervalley transitions probability 

caused intervalley photoexcitations taken into 

account Coulomb interaction of electron-hole pair 

one can obtain from Fermi golden rule in the form 
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 (68) 

Considering the case of relatively weak 

excitation the total rate of increase of the number of 

photons in the fixed mode one can obtain in the form 
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 (69) 

The change in the energy density of 

electromagnetic waves can be presented in the form 

 

.= R
Sdt

dW 
 (70) 

Under ac electric field )(cos tqzeE    the 

energy density of electromagnetic waves one can 

obtain in the form 
2

8

1
= 


EW . Light absorption 

rate one can obtain in the form 
dz

dW

W

1
=)( . 

Since 
cdt

dW

dz

dW 
=  then light absorption rate 

with taken into account 

1/2=|1,|ˆ|1,| 2

,  qq yx  can be rewritten in 

the form 

 

)],()([))(

()(
16

=))((

2

2

0

2

2

0

2

2

2






 









 

nnn

n

F

qq

qq

dev
c

q

 (71) 

where qd
S

q  
2)(2

 in a formula (69). 

Table 3. Light absorption rate of quantized 

spectral series of the excitonic states which distribute 

in valence cone n , 0,1,...=n  in cm
1

. 

 

 0    1     

7.67*10
22

  1.14*10
25

  

 

H. Results and Discussions 

The integral Schrödinger equation for a 

parabolic bands was analytically solved by the 

projection the three-dimensional momentum space 

onto the surface of a four-dimensional unit sphere by 

Fock in 1935  [32]. 

In the paper an integral two-dimensional 

Schrödinger equation of the electron-hole pairing for 

particles with complex dispersion is analytically 

solved. A complex dispersion leads to fundamental 

difference in the energy of exciton insulator states 

and their wave functions. 
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We analytically solve an integral two-

dimensional Schrödinger equation of the electron-

hole pairing for particles with electron-hole 

symmetry of reflection. 

It is known that the Coulomb interaction leads to 

the semimetal-exciton insulator transition, where gap 

is opened by electron-electron exchange interaction  

[1,36-38]. The perfect host combines a small gap and 

a large exciton binding energy  [1,16]. 

We consider the pairing between oppositely 

charged particles in graphene. The Coulomb 

interaction leads to the electron-hole bound states 

scrutiny study of which acquire significant attention 

in the explanations of superconductivity. 

It is known  [1,16] if the exciton binding energy 

is greater than the flat band gap in narrow-gap 

semiconductor or semimetal then at sufficiently low 

temperature the insulator ground state is instable 

concerning to the exciton formation with follow up 

spontaneous production of excitons. In a system 

undergo a phase transition into a exciton insulator 

phase similarly to BCS superconductor. In a SLG the 

electron-hole pairing leads to the exciton insulator 

states. 

The particle-hole symmetry of Dirac equation of 

layered materials allows perfect pairing between 

electron Fermi sphere and hole Fermi sphere in the 

valence band and conduction band and hence driving 

the Cooper instability. In the weak-coupling limit in 

graphene with the occupied conduction-band states 

and empty valence-band states inside identical Fermi 

surfaces in band structure, the exciton condensation 

is a consequence of the Cooper instability. 

I. Conclusions 

In this paper a theoretical studies of the 

space separation of electron and hole wave functions 

in the quantum well OZnMgZnO 0.730.27/  by the 

self-consistent solution of the Schrödinger equations 

for electrons and holes and the Poisson equations at 

the presence of spatially varying quantum well 

potential due to the piezoelectric effect and local 

exchange-correlation potential are presented. The 

exchange-correlation potential energy is found from 

the solution of three-dimensional Poisson’s equation, 

using both an expression by Gunnarsson and 

Lundquist  [25], and following criterions. The 

criterion /4> nkF  at carrier densities 
1210*4  

2cm , at a temperature T=0 K is carried as 0.1>1 . 

The criterion does not depend from a width of well. 

The solution of equations system (13), (17), (23) as 

well as (13), (17), (22) does not depend from a 

temperature. The ratio of Coulomb potential energy 

to the Fermi energy is 1<0.63=/= FCs EEr . The 

one-dimensional Poisson equation contains the 

Hartree potential which includes the one-dimensional 

charge density for electrons and holes along the 

polarization field distribution. The three-dimensional 

Poisson equation contains besides the one-

dimensional charge density for electrons and holes 

along the polarization field distribution the exchange-

correlation potential which is built on convolutions of 

a plane-wave part of wave functions in addition. The 

problem consists of the one-dimensional Poisson’s 

equation solving of which may be found Hartree 

potential energy and three-dimensional Poisson’s 

equation which is separated on one-dimensional and 

two-dimensional equations by separated of variables. 

At the condition that the ratio of wave function 

localization in the longitudinal z direction on 

transversal in-plane wave function localization is less 

1. It is found that the localization range particle-hole 

pair 
1010*9.95

4


cm

x


 cm. Exciton 

binding energy is equal Ry=2.16 meV at carriers 

concentration 
1210*4== pn  cm

2
. Bohr radius 

is equal 
610*4.26= 

Ba  cm. It is found that the 

exciton binding energy is grater than the localization 

range particle-hole pair, and the excitons may be 

spontaneously created. If the electron and hole are 

separated, their energy is higher on 0.2 meV than if 

they are paired. Hence it can be energetically 

favorable for them to be paired. An exciton insulator 

states with a gap 3.4 eV are predicted. The particle-

hole pairing leads to the Cooper instability. 

In this paper we found the solution the integral 

Schrödinger equation in a momentum space of two 

interacting via a Coulomb potential Dirac particles 

that form the exciton in graphene. 

In low-energy limit this problem is solved 

analytically. We obtained the energy dispersion and 

wave function of the exciton in graphene. The 

excitons were considered as a system of two 

oppositely charge Dirac particles interacting via a 

Coulomb potential. 

We solve this problem in a momentum space 

because on the whole the center-of-mass and the 

relative motion of the two Dirac particles can not be 

separated. 

We analytically solve an integral two-

dimensional Schrödinger equation of the electron-

hole pairing for particles with electron-hole 

symmetry of reflection. An integral form of the two-

dimensional Schrödinger equation in momentum 

space for graphene is solved exactly by projection the 

two-dimensional space of momentum on the three-

dimensional sphere. 

Quantized spectral series of the excitonic states 

distribute in valence Dirac cone. The energies of 

bound states are shown to be found as negative, i. e. 

below of Fermi level. Thus if the electron and hole 

are separated, their energy is higher than if they are 

paired. In the SLG the electron-hole pairing leads to 

the exciton insulator states. 
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Appendix A. 

 

A. Matrix Elements of Interband Transitions. 
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Matrix elements of interband transitions transforms according to representations:  
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Appendix B 
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Appendix C 

 

From a trigonometric calculations one can find a following recurrence relations 
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In order to find a light absorption rates necessarily to solve the integral 
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Substituting (88) into (89) we obtain the integral in the form 
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which can be rewritten as follows 
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The solution the following integral 
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may be found by substitution 
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We find the solution of the integral 
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Then substituting (94) into (91) we obtain the integral in the form 
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which can be expressed via a hypergeometric functions as follows 
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In a similar form can be calculated the integral 
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Substituting (87) into (97) we obtain the integral in the form 
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Using the formula (88) the integral (98) one can transform into the integral 
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which can be rewritten in the form 
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In order to find the solution of the integral (100) it is necessarily to consider the integral of form: 
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which can be transformed into the integral of form: 
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The solution the integral (102) one can find using the binomial theorem and following replacements 
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/2= m , 
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 (104) 

 

So integral (103) may be rewritten as follows 

 

.)(1)
2

(= 11)2(1)(1)(21)(1)1)(2(12 duuu
t

t
J lmklmlmlmklmlmk  


    

 (105) 

 

The solution of the integral (105) one can find by replacement 
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We obtain the following expression the looking for of integral: 
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The solution the integral (107) one can find using the binomial theorem 
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Substituting equation (108) in the integral (107) one can obtain the sought for integral in the form 
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We find the solution of the integral (109) in the form: 
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Substituting (110) in (103) one can rewrite the integral (103) in the form: 
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Substituting (111) in the sought for integral (100) one can rewrite the integral (100) as follows: 
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which can be rewritten in the form 

 

,)))2/(2(/2)(()
2

(

)
2

(1)(1)(

)
1

1
(2

1

1)(
)!(2)!(

)!(2

1)((1)
)!12()!(

1)!2(

1)((1)
)!(!

!

1)(

1

!)!(

)!(

2

1

)(1

1)()(1

2

1
=

1

1
2

1

1
2

)(2

11

2

0=

)12(
12

0=

0=

dtttt
t

t
tt

n
lm

lmk

sks

k

nlmkn

lmk

kklmmml

ml

l

mlm

i
J

n
lm

lmkn
lm

lmk
sk

lmllm

s
k

s

nnlmk
lmk

n

kk

k
m























































 








 

 (113) 

or as follows 
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We find the solution of the looking for integral as follows: 
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