Use of Hollomon Equation in Combination with Conventional Equation, for Finding Change in strain Hardening Exponent Value, among Differently Aged and Tensile tested Maraging Steel Samples

Bineeth Benny ${ }^{\# 1}$
\#Junior Research Fellow- CARS-DRDL Project, School of Mechanical Engineering VIT University Vellore Bineeth Benny, School of mechanical Engineering, VIT university Vellore,632014

Abstract

strain hardening exponent can be found using all the available tensile data such as Tensile strength, 0.2% yield strength and Strain at fracture. And compare the heat treated sample for change in strain hardening exponent.

Keywords - Hollomon equation, Strain hardening exponent, Compare aged samples .Calculating the change in length. Fracture toughness from tensile data, Hahn and Rosen field equation.

I. INTRODUCTION

Maraging steels are high strength and low ductile materials. Usually maraging steels are cold rolled for improving the strength of the product, however maraging steel is poor in responding to cold work and it is evident from literature available [1] thus maraging steels are aged after cold working to improve the strength.

Strain hardening exponent (n) declares the amount of cold work done. If Value nears zero it shows that the material is perfectly plastic and a value one shows that the material is perfectly elastic.

II. JUSTIFICATION FOR COMBININGHOLLOMON EQUATION AND CONVENTIONAL EQUATION WHICH CORRELATES STRAIN HARDENINGEXPONENT AND THE STRENGTH COEFFICIENT WITH THE YIELD STRESS-STRAIN

Cold-rolled maraging steel will have certain amount of strain hardening and aging will definitely introduce retained austenite which may give Transformation induced plasticity.

By combining Hollomon equation with conventional equation for finding, strain hardening exponent (n) we stand a chance of finding accurate value with high accuracy in terms of material property difference.

Hollomon Equation

The true strain to necking, ε_{n}, in a uniaxial tensile test provides a valuable measure of the stretch formability of a material (1) - the stretch formability increasing with increasing ε_{n} and it is expressed as. [2]
$(\sigma)=K . \varepsilon^{n}$
n - Strain hardening exponent
K-Strength coefficient
ε-True strain at fracture
(σ)-True stress at fracture
(MPa)
$\varepsilon=\ln (\mathrm{L} / \mathrm{Lo})$
L - Gauge length after tensile testing.
Lo - Original gauge length before tensile testing.
$(\sigma)=\sigma_{N} \cdot\left(1+\varepsilon_{N}\right)$
(MPa)
$\sigma_{\mathrm{N}}=$ Normal stress at fracture (MPa)
$\varepsilon_{\mathrm{N}}=$ Normal strain at fracture

III. CONVENTIONAL RELATIONSHIP CORRELATING THE STRAIN
 HARDENING EXPONENT WITH THE 0.2% YIELD STRESS [3]

$\left(\sigma_{0.2}\right)=K .(0.002)^{n}$
n - Strain hardening exponent
K-Strength coefficient
$\left(\sigma_{0.2}\right)-0.2 \%$ Yield strength
Combining Equation (1) AND (2)
$(\sigma)=\mathrm{K} . \varepsilon^{\mathrm{n}}$
$\left(\sigma_{0.2}\right)=K .(0.002)^{\mathrm{n}}$
Equation (1) can be written as (taking natural \log)
$\ln (\sigma)=\ln \mathrm{K}+\mathrm{n} . \ln (\varepsilon)$
Same way Equation (2) can be written
$\ln \left(\sigma_{0.2}\right)=\ln K+n \cdot \ln (0.002) \quad$ (4)

Equate for $\log \mathrm{K}$

$$
\begin{equation*}
\ln (\sigma)-\mathrm{n} \cdot \ln (\varepsilon)=\ln \mathrm{K} \tag{5}
\end{equation*}
$$

$\ln \left(\sigma_{0.2}\right)-\mathrm{n} . \ln (0.002)=\ln \mathrm{K}$
TABLE (1) TABULATION FOR SAMPLE DATA AND RESULT. FOR TENSILE TEST /SAMPLE GAUGE LENGTH 25 MM

HT Condition	T.S (MPa)	0.2% Y.S (MPa)	\% Elongation
Aged sample	1720	1771	8
Over Aged sample	1626	1696	10

TABLE (2) FINDING CHANGE IN LENGTH

| HABLE (2) FINDING CHANGE INLENGTH |
| :--- | :---: | :---: |
| Condition | \(\left.\begin{array}{c}Change in length

(\Delta \mathrm{L}), \mathrm{mm}\end{array} \quad $$
\begin{array}{c}\mathrm{L} \\
(\mathrm{mm})\end{array}
$$\right]\)

TABLE (3) FINDING TRUE STRAIN AT FRACTURE

HT Condition	L (mm)	$\varepsilon=\ln (\mathrm{L} / \mathrm{Lo})$ (True strain)
Aged sample	27	0.0769
Over Aged sample	27.5	0.0953

TABLE (4) FINDING TRUE STRESS AT FRACTURE

HT Condition	L (mm)	$\varepsilon=\ln (\mathrm{L} / \mathrm{Lo})$ (True strain)
Aged sample	27	0.0769
Over Aged sample	27.5	0.0953

Equate for equation (5) and (6) for $\log \mathrm{K}$
$\ln (\sigma)-\mathrm{n} . \ln (\varepsilon)=\ln \left(\sigma_{0.2}\right)-\mathrm{n} \cdot \ln (0.002)$ (7)

HT Condition	$\varepsilon \mathbf{N}$	σ_{N} (MPa)	$\sigma=\sigma \mathrm{N} .(1+\varepsilon \mathrm{s})$ (MPa)
Aged sample	0.08	1720	1858
Over-Aged sample	0.10	1626	1788

TABLE (5) RESULTS

HT Condition	(n)
Aged sample	0.0131
Over-Aged sample	0.0138

Legends used in equations	
T.S	Tensile strength (MPa)
0.2% Y.S	0.2% Yield strength (MPa)
Lo	Gauge length of sample (25 mm assumed)
L	Gauge length after tensile testing
$\varepsilon \mathbf{N}$	Normal strain at fracture.
$\sigma \mathrm{N}$	Normal stress at fracture.
n	Strain hardening exponent
H.T condition	Heat treatment condition.

IV. CONCLUSIONS

- The strain hardening exponent value (n) can be seen differing for different data values.
- This method of finding (n) can be used for finding the difference among heat treated samples and arriving at conclusions.
- This method may be used for finding, strain hardening exponent (n) to be used in Hahn and Rosenfield equation to find fracture toughness of thin walled materials. [4]

REFERENCES

[1] Davis, Joseph R., ed. ASM specialty handbook: tool materials. ASM international, 1995.
[2] Sing, W. M., and K. P. Rao. "Role of strain-hardening laws in the prediction of forming limit curves." Journal of Materials Processing Technology 63, no. 1 (1997): 105110.
[3] Zhang, Zhongping, Wenzhen Zhao, Qiang Sun, and Chunwang Li. "Theoretical calculation of the strainhardening exponent and the strength coefficient of metallic materials." Journal of materials engineering and performance 15 , no. 1 (2006): 19-22.
[4] Chatterjee, S., S. Anantharaman, K. S. Balakrishnan, and H. K. Sriharsha. "Estimation of Fracture Toughness and Critical Crack Length of Zircaloy-2 Pressure Tube from Ring Tension Test." BARC/Gov. of India, Atomic energy commiss. (1999).

