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Abstract 

This work concerns the numerical analysis of large 

deflections of an inextensible, flexible elastica subjected to 

any load. In many cases, elastica can represent, for 

example, a prismatic beam of a longitudinal cross-section 

of a textile structure. These objects under the influence of 

loads often experience large deflections. Also, the solution 

can be used for non-prismatic beams with various end 

conditions, and a numerical solution is presented to 

obtain exact solutions. 

Keywords: elastica, bending rigidity, large deflections, 

numerical methods, beam theory. 

I. INTRODUCTION 

The large deflection of beams has been investigated by 

Bisshopp and Drucker [1] for a point load on a cantilever 

beam. Timoshenko and Gere [2] developed the solution for 

the axial load. The problem of the column with load 

through fixed point was also presented by Timoshenko and 

Gere [2]. Virginia Rohde [3] developed the solution for the 

uniform load on the cantilever beam. John H. Law [4] 

solved it for a point load at the tip of the beam and a 

uniform load combined. In this paper, the general solution 

developed for a prismatic beam and, in some cases, for 

non-prismatic. However, numerical integration may be 

needed along with solving compatibilities equations for the 

constants of integrations. A more general and preferable 

numerical solution for a non-prismatic beam is also given 

using only many point loads acting with an angle on the 

beam with a moment on the node representing the 

approximate load. This point load can take any direction 

on the beam bending in the x-x-direction or y-y-direction of 

the moment of inertia. Thus the load is to be resolved to 

x-x-direction and y-y-direction of the moment of inertia in 

each orthogonal deflection given two non-linear 

differential equations. By solving each non-linear 

differential equation, the orthogonal deflection 

components can be obtained. An approximation attempt 

has been investigated by Scott and Caver [5] for all 

problems in which the moment can be expressed as a 

function of the independent variable. Jong-Dar Yau [6] 

presented a solution for Closed-Form Solution of Large 

Deflection for a Guyed Cantilever Column Pulled by an 

Inclination Cable. Large deflections of bending structures 

were also considered by Szablewski using the elastica 

theory (in works [7]–[10]). 

II. MATERIALS AND METHODS 

The presented analysis is based on solving the non-

linear differential equation of Bernoulli-Euler beam 

theory. 
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Where M(x) is the bending moment in the direction that 

corresponds to the moment of inertia I(x), E is the 

modulus of elasticity, and y is the orthogonal deflection. 

It is assumed the modulus of elasticity is constant, and the 

bending does not alter the length of the beam. Only one 

closed-form solution is investigated for one case of the 

non-linear differential equation. In many ways, M(x) is not 

known until the final deflection is known. It will be 

assumed that M(x) is known in the equations. 

In general, for a non-prismatic beam, I(x) is not constant 

along beam length. The value of I(x) is a function of x and 

is different for different values of the x coordinate. The 

paper considers a simpler case for a prismatic beam. It 

was assumed that I(x) = I is constant for the whole meam. 

Let us denote further that y(x) = y. 

In this case, assume )(
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φ is a new variable, then substitute φ in Equation 2 yields 

1)(cos)(cos Cdxxfdxf     
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Or 1)(sin Cdxxf   . 
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C1 and C2 are constants of integration. This, of course, the 

solution Scott and Carver approximated as an infinite 

series, not realizing it can be expressed in a closed-form. 

Equation 4 gives an integrated solution where if the 

moment is approximated by a curve, it can give a better 

approximation than small deflection equations 

approximations. It is seen that if the denominator of 

Equation 4 is approximated as a unity, it will give the 

standard solution for small deflection approximations. 

III. NUMERICAL SOLUTION 

This example is to demonstrate the solution for a 

cantilever beam. Other boundary conditions for beams are 

similar. First, divide the beam into segmental beams of 

each length li, and on each node of the segment, insert the 

equivalent load Pi and moment Qi (see Fig. 1). 

 

Figure 1: The infinitesimal section of elastica 

The moment on the segment beam at xi is 
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Where all xi is unknown. 

It is assumed that I(x) = I = const. Therefore 
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Substitute Equation 6 in Equation 3 and find the slope on 

the segmental beam i yield 
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for xi ≤ x ≤xi+1 ………………………………………… (7) 

Let's apply the condition of continuity 

 )()(1 iiii xyxy 
          at x = xi (8) 

At x = L, where L is the length of the beam at x = xn = L 

 0)()(  Lyxy nnn  , (9) 

where n is the number of beam segments, and n+1 is the 

total number of beam segments. Using Equation 8 and 

Equation 9 in Equation 7, we have 
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When applying Equation 8 for all i we have 
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Ultimately 
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Now let's apply the assumption that the beam segment is 

inextensible. The length of segment li is 
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After the transformations, we get 
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To simplify the equation, assume the increments are small 

enough such that the slope throughout the interval of 

xi  ≤  x  ≤ xi+1 is the same 

 )()( 1
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iiii xyxy , (13) 

Therefore 
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Thus at i = 0 yields 
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At i = 1 
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At i = 2 
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Using x1-x0 from Equation 16 and x2-x1 from Equation 17 

in Equation 18, (for a given C1) x3-x2 is found, 

where x2-x0 = (x2-x1) + (x1-x0). 

Thus, if guessing C1, then find xi+1 – xi can be found since 

the denominator of Equation 15 is always known from 

previous equations. And since 
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x0 can be found. 

Therefore for a given C1 x0, x1, x2, …, xn-1 can be solved, 

then proceed by checking the end slope of Equation 9 or 

Equation 10. If it is not satisfied, update C1 with numerical 

analysis until all the variables are found. The deflection 

from Equation 4 yields 
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To find C2i, let's apply the condition of continuity 
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 and find C2n-1, 

)()( 111   nnnn xyxy  and find C2n-2 

etc. 

The solution is found numerically. 

IV. RESULTS OF CALCULATIONS 

Numerical calculations were performed for the 

following parameters. 

L = 0.6 m, 

E = 199,95 GPa, 

Circular cross-section: fi = 0.01 m, I = 4.9087·10-10 m4 

Fig. 2 shows the results of the calculations for the problem 

mentioned. 

 

Figure 2: Calculation result for an example task 

In order to verify the correctness of the results, 

calculations with the finite element method were used 

(Solid Edge software). 

 

Figure 3: FEM calculations 

The results are consistent with sufficient accuracy. 

V. CONCLUSIONS 

The solution of large deflections by the numerical 

method has become effective. This solution can be used 

under various load conditions. FEM was used to verify 

the obtained results (Solid Edge software). As the 

obtained results show, the compliance of the results is 

satisfactory. This method can be used in theoretical 

problems. 
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