Microencapsulation: Applications in the Different Dairy Products

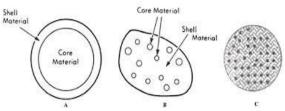
Suchita Bhosale¹, R.J.Desale², and Y.G.Fulpagare³

¹Department of Animal Husbandary and Dairy Science, Post Graduate Institute, M.P.K.V.Rahuri.Dist-Ahmednagar, Maharashtra, India ²Associate Professor, ³ Head Department of Animal Husbandry and Dairy Science ^{2,3}Post Graduate Institute, Mahatma Phule Krishi Vidyapeeth, Rahuri, Ahmednagar, Maharashtra

Abstract - Dairy and food industries are in a major technological and sociological revolution. There is no better example than dramatic changes occur in the availability of various products and consumer choice. There are various types of encapsulation technologies that can be employed in the food industry. The use of different encapsulation technologies for the protection of health ingredients achieved high ingredient efficiency. Microencapsulation is defined as a technology of packing solids, liquids, or gaseous materials in miniature, sealed capsules that can release their contents at controlled rates under specific conditions. The advantages of microencapsulation and nanotechnology have opened up new opportunities that can revolutionize dairy products processing. The present paper reviews the emerging trend and some of the potential applications of encapsulation technique in the field of agriculture with a precise exceptional pivot towards dairy science research interventions

Keywords - Nanotechnology, Microencapsulation, Nutraceuticals, Bioavailability, Viability

Introduction


Now a day, the Dairy and food industries are in a major technological and sociological revolution. There is no better example than dramatic changes occur in the availability of various products and consumer choice. Consumers demand fresh, genuine, convenient, and flavorful food commodities. To get the benefit and to maintain leadership in the food and food processing industry, novel frontline technology is required. Among all novel frontline technology, nanotechnology has earned much attraction in the Dairy and meat industry. Nanotechnology can assist a wide field of the food processing area. The function of nanotechnology in food processing is generally on food preservation and interactive foods. Nanoparticles can be incorporated into existing food to deliver nutrients, increased the absorption of nutrients by the body, and also could increase product shelf life. The advantages of nanotechnology in food processing are to develop the texture of food components, encapsulate food components or additives, developing new tastes and sensations, controlling the

release of flavors, and increasing the bioavailability of nutritional components. There are various types of encapsulation technologies that can be employed in the food industry. The use of different encapsulation technologies for the protection of health ingredients achieved high ingredient efficiency. It not only depends on developing or choosing the right encapsulation technique but also requires expertise in food processing.

WHAT IS MICROENCAPSULATION?

What is Microencapsulation?

Microencapsulation is defined as a technology of packing solids, liquids, or gaseous materials in miniature, sealed capsules that can release their contents at controlled rates under specific conditions. The product obtained by this process is called a microcapsule/microsphere. This is of two types: Microcapsule (particles diameter 3-800um), Macrocapsule (Larger than 1000um).

Coated material called core material, active fill / internal phase. The coating material can be a capsule/shell. (Mozafari *et* .al. 2007). The encapsulating agent should have certain ideal characteristics depending on objectives and requirements, the process of encapsulation, chemical characteristics of the core material.

Some general characteristics of the encapsulating agents are that it is insoluble in and non-reactive with the core material, has a solubility in the end product food system, and be able to withstand high-temperature processing. Some typical encapsulation agents are dextrans, gums, starches, and proteins.

Conting	motoriala	for	anaanaulation	
Coating	materials	TOL	encapsulation:	

Class of coating materials	Specific types of coatings	
Gums	Agar, Sodium alginate	
Carbohydrates	Starch, sucrose, dextrin	

Cellulose	CMC,ethylcellulose,acetylcellulose
Lipids	Wax, stearic acid, fats, beeswax
Proteins	Casein ,gelatin ,albumin
[7]	

[/]

Reasons for Encapsulation:

- Protection
- Convert liquid active components into a dry solid
- $\circ \quad \mbox{Create new functional food}$
- $\circ \quad \mbox{To increase bioavailability} \quad$
- Control release of the active components for delayed release
- o Increase acceptability

Numerous encapsulation techniques have been developed on micro- and nanoscales. In general, three steps are involved in the encapsulation of bioactive agents: formation of the wall around the material to be encapsulated; ensuring that undesired leakage does not occur; and ensuring that undesired materials are kept out.

The encapsulation techniques are as below;
--

Technique	Major steps
1.Liposomes/Nanoliposomes	a. Micro-
1 1	fluidization
	b. Sonication
	c. French pressure
	cell: extrusion
2.Spray- cooling	a. Preparation of
	the dispersion
	b. Homogenization
	of the dispersion
	c. Atomization of
	the infeed
	dispersion
3.Spray – drying	a.Preparation of the
	dispersion
	b.Homogenization
	of the dispersion
	c.Atomization of
	the infeed
	dispersion
	d.Dehydration of
	the atomized
	particles
4.Extrusion	a.Preparation of the
	molten coating
	solution
	b.Dispersion of the
	core into the
	molten
	polymer
	c.Cooling or
	passing of core
	coat mixture
	through
	dehydrating

	liquid
5.Fluidized-bed coating	a.Preparation of the
_	coating solution
	b.Fluidization of
	core particles
	c.Coating of core
	particles
6. Coacervation	a.Formation of a
	three –
	immiscible
	chemical phases
	b. Deposition of the
	coating
	c. Solidification of
	the coating
7.Spray –chilling	a.Preparation of the
	dispersion
	b.Homogenization
	of the dispersion
	c.Atomization of
	the infeed
	dispersion
8.Centrifugal extrusion	a.Preparation of the
	core solution
	b.Preparation of
	coating material
	solution
	c.Co-extrsion of
	core and coat
	solution through
	nozzles
9.Lyophillization	a.Mixing of core in
	a coating
	solution
	b.Freeze-drying of
10 Inclusion complementing	the mixture
10.Inclusion complexation	Preparation of
	complexes by
	mixing or
	grinding or
	spray-drying

[7]

Microencapsulated Dairy products;

a) MILK: Milk microencapsulated with different nutraceutical ingredients

Functional	Study	Impact
ingredients		
1.Chitosan	The incorporation of	Health-
[1]	microencapsulated	promoting
	chitooligosaccharide	function, Used
	into milk by using	as a functional
	polyglycerol	food
	monostearate	ingredients
	(PGMS) as a coating	
	material	
2.Isoflavon	Microencapsulated	A significant
e	isoflavone added to	role in
[3]	milk by entrapping	lowering blood
	chitosan particles	cholesterol

	with medium-chain triglycerides (MCT) as the coating material.	level
3.CLA(Con	WPC has been an	CLA having
jugated	effective coating	health function
linoleic	material to prevent	as being
acid) [4]	the oxidative	anticarcinogen
	deterioration of	ic effect.
	CLA.	
4.Peanut	The study	Anti-aging,
sprout	demonstrated that	Anti-
extract [6]	the concentration of	inflammatory
	peanut sprouts	and
	extract	anticarcinogen
	microcapsules	ic properties
	(PPSEM) of up to	
	0.1% could be used	
	in formulating	
	functional milk.	

b) MILK WITH IRON:

Microencapsulation of Milk with Iron. [6]

Milk and dairy products are being considered as suitable iron-fortifying vehicles due to their high consumption and as an outstanding source of essential nutrients. Moreover, milk is well known for its low content of iron (0.2 mg/kg), despite being abundant with other nutritional elements. Therefore, the fortification of milk with iron could be an important solution in the fight against iron deficiencies. For a feasible iron fortification in milk, microencapsulation of iron salts has begun using a type of phospholipid called SFE-171 as a coating material. [6]

Iron is an essential microelement and has several important functions in the human body. Lack of this element leads to one of the most prevalent nutritional deficiencies around the world called iron deficiency anemia (IDA) which affects nearly 20% of the world's population.

c) FLAVOURED MILK

Application of microencapsulation technology for the production of Vit –C fortified Flavoured Milk

Aim	Result	Importance
To develop	1. Study revealed	1. Vitamins and
flavored	the use of	minerals
milk with	microencapsulation	fortification has
standardized	technologies for	been used to
Vit-C	the protection of	improve the
microcapsule	health as achieved	nutrient content
& storage	through high	of foods.
stability of	ingredient	2.Many
Vit-C	efficiency.	vitamins are
fortified	2. The outcome of	relatively
flavored	the study pointed	unstable and
milk	out the possibility	their activity in
	to stabilize the	foods depends
	vitamin-C in	on pH and their

flavored milk by	stability to heat,
using	light, oxygen,
microcapsules for	oxidizing
even more	agents and
than one-month	enzymes
storage at room	3.Encapsulation
temperature.	of vitamin-C
3. The study also	provides higher
envisaged the need	shelf life.
for replacing the	Stable vitamin-
costly vitamin-C	C shall be a
powder with an	good asset to
alternate natural	fortify with
source and fortified	foods.
in some other dairy	
products.	

[10]

d) **ICE CREAM** Enhancement of probiotic viability in ice cream by microencapsulation

Aim		Importance
Aim Turnal at a the	Results	Importance
To evaluate the	1. Probiotic	1. Probiotic
survivability of	survivability in ice	dairy products
two proven	cream can	is a key
probiotic strains	significantly be	research
viz., Lactobacillus	improved by	priority for
acidophilus (LA-5)	microencapsulation.	food design
and Lactobacillus	2. High fat and	and a
casei (NCDC-298)	solids content of ice	challenge for
in ice cream using	cream and other	both industry
microencapsulation	frozen desserts may	and science
technique.	protect the	sectors.
-	probiotic bacteria	2. Nutritional
	and serve as the	and
	carrier for	physiological
	delivering the	benefits of
	probiotic bacteria	probiotic foods
	into the human gut.	are the
	3.In all types of ice	promotion of
	cream the number	growth and
	of the viable	digestion,
	probiotic bacterial	setting effect
	count was between	on the
	10^8 and 10^9 cfu/g at	gastrointestinal
	the end of three	tract,
	months of storage	improving
	which is the normal	bowel
	shelf life of ice	movement,
	cream.	suppression of
	cicum.	cancer,
		catering to
		lactose
		intolerance,
		and lowering
		blood
		cholesterol
		level
		etc.

[5]

e) FETA CHEESE

Chemical composition and sensory characteristics of Feta cheese fortified with iron and ascorbic acid

Aim	Result	Importance
 To investigate the effect of iron fortification on the quality of Feta cheese. (Cheese sample-cow milk Fortified with- Iron compounds - ferrous sulfate (FeSO4), ferric chloride (FeC13), and microencapsulated ferrous sulfate at the level of 80 mg.kg⁻¹ with or without L- ascorbic) 	fortification of cheese with 80 mg.kg-1 microencapsulated iron and 150 mg.kg-1L-ascorbic acids is technically feasible with only a small increase in lipid oxidation, measured by TBA value. 2. No off-flavor was detected by trained sensory panelists.	 Feta cheese is one of the most popular soft cheese, with high worldwide consumption is an excellent source of calcium and protein, but as a typical dairy product, it contains a very low amount of iron. Therefore, fortification of cheese with iron would help to meet this nutritional need.

[2]

6. YOGHURT

Fortification of Microencapsulated Iron in Yoghurt

Fortheadon of Microencapsulated from in Fognut		
1To develop microencapsulated whey	1. Fortified iron did not affect the	1. Iron deficiency
protein-chelated iron (Fe-wp) using	viability of <i>Lactobacillus</i>	anemia is still the
ferrous sulfate as the iron source by	delbrueckii ssp. bulgaricus and	most prevalent
emulsion method employing sodium	Streptococcus salivarius ssp.	nutritional
alginate as the wall material that could be	thermophilus in yogurt.	problem, which
used in the development of iron-fortified	2. Indicated that iron can be fortified	affects 30% of the
yogurt.	only up to 20mg per liter in	world"s population.
	unencapsulated form, while in the	2. Iron deficiency
	form of microencapsulated iron it	anemia affects 60
	can be incorporated up to 80 mg per	% of Asian women
	liter of yogurt using ferrous sulfate	of reproductive age
	without affecting the accepted	and 40 to 50 % of
	appearance, sensorial and textural	children enrolled in
	attributes of yogurt.	preschool and
		primary grades
		3.Fortification of
		dairy foods to
		obtain the
		recommended daily
		dietary allowances
		for iron (10- 15 mg
		for adults) is one of
		the most effective
		solutions

[9]

CONCLUSIONS

Microencapsulation is no longer just an added value technique, but the source of totally new ingredients with matchless properties and can be applied in the development of new and novel functional foods. It is only one of a suite of technologies that may be applied to enhance the quality of healthy dairy foods and its suitability depends on the food product to be fortified, the need for protection of food components, and timed release of nutraceuticals.

The advantages of microencapsulation nanotechnology have opened up and new opportunities that can revolutionize dairy product processing. Based on recent research, it is worth noting that some of the inventions are not only suitable for small scale processing but also are potential candidates for commercial applications. Research regarding the application of nanotechnology in dairy products is still in infancy, yet a few of the studies show great potential for the dairy industry.

Causal Productions is credited in the revised template as follows: "the original version of this template was provided by courtesy of Causal Productions (www.causalproductions.com)".

REFERENCES

- Choi, H.J., J. Ahn, N.C.Kim and H.S.Kwak,2006."The effects of microencapsulated Chito oligosaccharide on the physical and sensory properties of the milk". Asian Australasian J.of Animal Sci. 19:1347-1357.
- [2] Jalil Maryam, 2016. "Chemical Composition and sensory characteristics of feta cheese fortified with iron and ascorbic acid". Diiry Sci. & Technol., 96:579-589.

- [3] Jeon, B.J., N.C.Kim, E.M.Han, and H.S.Kwak.,2005. "Application of microencapsulated isoflavone into milk". Archives of Pharmacology Research,7:859-865.
- [4] Jimenze, M., H.S.Garcia, and C.I.Beristai,2006. "Spraydried encapsulation of Conjugated linoleic acid (CLA) with polymeric matrices".J. Of the Sci.of Food and Agriculture, 86 2431-2436.
- [5] Karthikeyan N., A.elango, G.Kumaresan, T.R.gopalarikrishnamurty and B.V.Raghunath, 2014. "Enhancement of Probiotic viability in ice cream by microencapsulation". International J.Of Sci.,Environment, 3:(1),339-347.
- [6] Kwak Hae-Soo, Mohammad Al Mijan, and Palanivel Ganesan,2014. "Application of Nanomaterials, nano, and Microencapsulation to milk and dairy products". Nano and Microencapsulation for Food, 1:273-300.
- [7] Mandal, Surajit, 2013. Microencapsulation: a delivery system for functional food ingredients.28th National training, CAFT, Dairy processing, Dairy Microbiology Division, NDRI, Karnal.
- [8] Mozafari Reza M., Kianoush Khosravi Darani, G.Gokce Borazan, Jian Cui, Abbas Pardakhty, and Seyhun Yurdugul, 2008.Encapsulation of food ingredients using nanoliposomes technology.International J. of Food Properties,11:833-844.
- [9] R.Subhash, A. Elango, C.Pandiyan, N. Karthikeyan, and G.Kumaresan, 2015. "Fortification of microencapsulated iron in yogurt". International J. Of Food and Nutritional Sci.,4(1),201-205.
- [10] Thangaraj S and M.Seethalakshmi, 2015. "Application of microencapsulation technology for the production of vitamin –C fortified flavored milk". J.Advances in dairy Res., 3 : (3).
- [11] Özge İnşaatçı, Necla Yaman Turan, (2018). "Encapsulation of Propolis by Complex Coaservation Technique: Preparation and Characterizations". SSRG International Journal of Polymer and Textile Engineering 5(3), 15-20.