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Abstract-  

The Present manuscript reports the instability 

mechanism of Hydromegnetic Double diffusive 

convective flow in a horizontal layer of  viscoelastic 

Maxwell fluid through porous medium with internal 

linear heating is presented in this manuscript. The flow is 

also effected with temperature and concentration 

gradient in their medium. The Darcy model is adopted in 

the momentum equation. The onset of stationary and 

oscillatory instabilities of the viscolastic Maxwell fluid 

layer is determine between free-free boundaries. The 

main emphasis is given to the internal heating which is 

linear in nature.  The entire result section is presented in 

terms of magnetic effect  and critical heat source of 

intensity with respect to other governing physical 

parameter.   
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1. INTRODUCTION 

 

Transport of heat through a porous medium is 

being extensively studied, as understanding the 

associated transport processes becomes 

increasingly important. This interest stems from the 

variety of cases which can be modeled or 

approximated as transport through porous media, 

such as packed sphere beds, high performance 

insulation for buildings, chemical catalytic reactors, 

grain storage, and many others. The study of 

convective flow with heat and mass transfer under 

the influence of  chemical reaction with heat source 

has practical applications in many areas of science 

and engineering. This phenomenon plays an 

important role in chemical industry, petroleum 

industry, cooling of nuclear reactors, and packed-

bed catalytic reactors. Natural convection flows 

occur frequently in nature due to temperature 

differences, concentration differences, and also due 

to combined effects. The concentration difference 

may sometimes produce qualitative changes to the 

rate of heat  transfer. The study of heat generation 

in many fluids due to exothermic and endothermic 

chemical reactions and natural convection with 

heat generenation can be added to combustion 

modeling. Heat source and chemical reaction 

effects are crucial in controlling the heat and mass 

transfer. Recently , the equally problem of 

hydromagnetic convective flow of a conducting 

fluid through a porous medium has been 

investigated. 

  

 The study of heat and mass transfer with chemical 

reaction is of great practical importance to 

engineers and scientists because of its almost 

universal occurrence in many branches of science 

and engineering. Possible applications of this type 

of flow can be found in many industries. Ajay 

Kumar Singh [1] has studied unsteady free 

convection flow of an incompressible micro-polar 

fluid past in infinite vertical plate with temperature 

gradient dependent heat source. Ajay Kumar Singh 

[2] who studied the effects of thermal diffusion on 

MHD free convection flow through a vertical 

channel . Acharya et al.[3] studied heat and mass 

transfer over an accelerating surface with heat 

source in presence of suction and injection. Atul 

Kumar Singh [4] investigated the effects of mass 

transfer on free convection in MHD flow of a 

viscous fluid. Cortell [5] studied flow and heat 

transfer of an electrically conducting fluid of 

second grade over a stretching sheet subject to 

suction and to a transverse magnetic field. 

Anjalidevi and Kandasamy [6] have examined the 

effect of a chemical reaction on the flow in the 

presence of heat transfer and magnetic field. 

 

 Mansour et al.[7] analyzed the effect of chemical 

reaction and viscous on MHD natural convection 

flows saturated in porous media with suction or 

injection. However, in engineering and technology, 

there are occasions where a heat source is needed 

to maintain the desired heat transfer. At the same 

time, the suction velocity has also to be normal to 

the porous plate.  Recently S.Shivaiah et al [8] 

analyze the effect of chemical reaction on unsteady 

magneto hydrodynamic free convective fluid flow 

past a vertical porous plate in the presence of 

suction or injection. More recently B.R.Rout et al 

[9] investigate the influence of chemical reaction 
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and the combined effects of internal heat 

generation and a convective boundary condition on 

the laminar boundary layer MHD heat and mass 

transfer flow over a moving vertical flat plate. The 

lower surface of the plate is in contact with a hot 

fluid while the stream of cold fluid flows over the 

upper surface with heat source and chemical 

reaction. 

 

The flow through porous media is a subject of most 

common interest and has emerged as a separate 

intensive research area because heat and mass 

transfer in porous medium is very much prevalent 

in nature and can also be encountered in many 

technological processes. In this context the effect 

of temperature-dependent heat sources has been 

studied by Moalem [10] taking into account the 

steady state heat transfer within porous medium. 

Rahman and Sattar [11] have investigated the effect 

of heat generation or absorption on convective flow 

of a micropolar fluid past a continuously moving 

vertical porous plate in presence of a magnetic 

field. The effect of chemical reaction on different 

geometry of the problem has been investigated by 

many authors. Das et al. [12] have studied the 

effect of mass transfer flow past an impulsively 

started infinite vertical plate with heat flux and 

chemical reaction.  

 

 

The chemical reaction effect on heat and mass 

transfer flow along a semiinfinite horizontal plate 

has been studied by Anjalidevi and Kandaswamy 

[13] and later it was extended for Hiemenz flow by 

Seddeek et al. [14] and for polar fluid by Patil and 

Kulkarni [15]. Salem and Abd El-Aziz [16] have 

reported the effect of hall currents and chemical 

reaction on hydromagnetic flow of a stretching 

vertical surface with internal heat generation or 

absorption  . J. Anand Rao et al [17],studied the the 

chemical reaction effects on an unsteady magneto 

hydrodynamics free convection fluid flow past a 

semiinfinite vertical plate embedded in a porous 

medium with heat absorption. 

 

Magnetoconvection (convection in the presence of 

a magnetic field) on such processes has been 

intensively studied by many  authors. In recent 

years, progress has been considerably made in the 

study of heat and mass transfer in 

magnetohydrodynamic (MHD) flows due to its 

application in many devices, like the MHD power 

generators and Hall accelerators. 

 

 Recently Philip Oladapo et al [18]   evaluated 

numerically  the effects of heat and mass transfer in 

the hydromagnetic boundary layer flow of the 

moving plate, and chemical reaction with Dufour 

and Soret in the presence of suction/injection . 

Makinde [19-22] have investigated magneto-

hydrodynamics (MHD) convection in porous 

medium.Asimilar problem, involving natural 

convection about a vertical impermeable flat plate, 

was tackled by Sparrow and Cess [23].Kumar Jha 

and Prasad [ 24 ] studied the heat source 

cheracteristics on the free – convection and mass 

transfer flow past an impulsively started infinite 

vertical plate bounded a saturated porous medium 

under the action of magnetic field. 

 

 Yih [25] studied the free convection effect on 

MHD-coupled heat and mass transfer from a 

moving permeable vertical surface. Alan and 

Rahman [26] examined Dufour and Soret effects on 

mixed hydrogen-air convective flow past a vertical 

porous flat plate embedded in a porous medium. 

The onset of double diffusive convection in a two 

component coupled stress fluid layer with Soret 

and Dufour effects was investigated by Gaikwad et 

al. [27], via linear and non-linear stability analysis 

Anwar et al. [28] examined the   combined 

diffusion and impedance effects on heat and mass 

transfer in an electrically-conducting fluid from a 

vertical  tretching surface in a porous medium in 

the presence of a uniform transverse magnetic 

field. Numerical simulations of double-diffusive 

natural convection of water in a partially heated 

enclosure with Soret and Dufour coefficients 

around the density maximum were conducted by 

Nithyadevi and Yang [29]. 

 

Yih[30] numerically analyzed the effect of the 

transpiration velocity on the heat and mass transfer 

characteristics of the mixed convection about a 

permeable vertical plate embedded in a saturated 

porous medium under the coupled effects of 

thermal and mass diffusion. Elbashbeshy[31] 

studied the effect of the surface mass flux on the 

mixed convection along a vertical plate embedded 

in a porous medium. Pal and Talukdar[32] 

analyzed the combined effect of the mixed 

convection with the thermal radiation and chemical 

reaction on the MHD flow of viscous and 

electrically conducting fluid past a vertical 

permeable surface   

embedded in a porous medium. 

Mukhopadhyay[33] performed an analysis to 

investigate the effects of the thermal radiation on 

the unsteady mixed convection flow and heat 

transfer over a porous stretching surface in a 

porous medium. Hayat et al.[34] analyzed a 

mathematical model in order to study the heat and 

mass transfer characteristics in the mixed 

convection boundary layer flow about a linearly 

stretching vertical surface in a porous medium 

filled with a viscoelastic fluid, by taking into 

account the diffusion thermo (Dufour) and thermal 

diffusion (Soret) effects.  

 



SSRG International Journal of Thermal Engineering (SSRG-IJTE) volume 1 Issue2 May to Aug 2015 

ISSN: 2395 – 0250                   www.internationaljournalssrg.org         Page 9 

Gaikwad et al.[35] investigated the onset of the 

double diffusive convection in a two-component 

couple of the stress fluid layer with the Soret and 

Dufour effects using both linear and nonlinear 

stability analyses. Ambethkar[36] studied 

numerical solutions of heat and mass transfer 

effects of an unsteady MHD free convective flow 

past an infinite vertical plate with constant suction. 

Alam et al.[37] studied the Dufour and Soret 

effects on a steady MHD combined free-forced 

convective and mass transfer flow past a semi-

infinite vertical plate. Alam and Rahman[38] 

investigated the Dufour and Soret effects on the 

mixed convection flow past a vertical porous flat 

plate with variable suction. Postelnicu[39] 

discussed influence of a magnetic field on heat and 

mass transfer by natural convection from vertical 

surfaces in a porous media considering the Soret 

and Dufour effects. 

 

Mansour et al.[40] investigated the effects of 

chemical reaction, thermal stratification, Soret and 

Dufour numbers on MHD free convective heat and 

mass transfer of a viscous, incompressible and 

electrically conducting fluid on a vertical stretching 

surface embedded in a saturated porous medium. 

Srihari et al.[41] studied the Soret effect on an 

unsteady MHD free convective mass transfer flow  

past an infinite vertical porous plate with the 

oscillatory suction velocity and heat sink.  More 

recently  S. R. VempatI et all [ 42 ]   investigate the 

effect of flow parameters on the free convection 

and mass transfer of an unsteady 

magnetohydrodynamic flow of an electrically 

conducting, viscous, and incompressible fluid past 

an infinite vertical porous plate under oscillatory 

suction velocity and thermal radiation. The Dufour 

(diffusion thermo) and Soret (thermal diffusion) 

effects are taken into account. 

2. MATHEMATICAL FORMULATIONS OF 

THE PROBLEM 

 
Let us Consider an infinite horizontal layer of 

viscoelastic Maxwell fluid with thickness “𝑑,” 

confined between the planes 𝑧 = 0 and 𝑧 = 𝑑 in a 

porous medium of porosity 𝜀 and medium 

permeability 𝑘 1 and is acted upon by gravity g(0, 

0, −𝑔). This layer of fluid is heated and soluted in 

such a way that a constant temperature and 

concentration distribution is prescribed at the 

boundaries of the fluid layer. The temperature (𝑇) 

and concentration (𝐶) are taken to be 𝑇 0 and 𝐶 0 at 

𝑧 = 0 and 𝑇 1 and 𝐶 be the difference in 

temperature and concentration across the 

boundaries.            

 

Let q(𝑢, V, 𝑤), 𝑝, 𝜌, 𝑇, 𝐶, 𝛼, 𝛼 ′,  𝜇, 𝜅, and 𝑘 ′ , 𝑸𝟎 

be the Darcy velocity vector, hydrostatic pressure, 

density, temperature, solute concentration, 

coefficient of thermal expansion, an  analogous 

solvent coefficient of expansion, viscosity, thermal 

diffusivity,  solute diffusivity, and linear heat 

source  of fluid, respectively.  

 

2.1. Assumptions. The mathematical equations 

describing the physical model are based upon the 

following assumptions. 

(i) Thermo physical properties expect for density in 

the buoyancy force (Boussinesq hypothesis) are 

constant. 

(ii) Darcy’s model with time derivative is 

employed for the momentum equation. 

(iii) The porous medium is assumed to be isotropic 

and homogeneous. 

(iv) No chemical reaction takes place in a layer of 

fluid. 

(v) The fluid and solid matrix are in thermal 

equilibrium state. 

(vi)  Radiation heat transfer between the sides of 

the wall is negligible when compared with other 

modes of the heat transfer. 

 

2.2. Governing Equations. The Governing 

equations for viscoelastic  Maxwell  fluid through 

porous medium is goverened in form of partial 

differential equation which may written as  

 

 

∇. 𝑞 = 0                                                                       

 𝟏 + 𝝀
∂

∂t
  −𝛻𝑝+𝜌 (1 − 𝛼 𝑇 − 𝑇0 +

𝛼 ′ 𝐶 − 𝐶0 𝑔) −
𝜇

𝑘`1
𝒒−𝝈𝑩𝟎

𝟐

𝝆
𝒖 = 𝟎             

 𝝈
∂T

∂t
+ q.∇T = 𝑘  𝛁𝟐𝑻 +  𝑫𝑻𝑪𝛁

𝟐𝑪 + 𝑸𝟎(𝑻′ − 𝑻𝟎),                                            

 𝜺
∂C

∂t
+ q.∇C = 𝑘 ′𝛁𝟐 𝑪 + 𝑫𝑪𝑻𝛁

𝟐𝑻 −  𝑪 ,                             

(1) 

Where 𝑫𝑻𝑪 𝒂𝒏𝒅 𝑫𝑪𝑻 are the dufour and Soret 

coefficients ; 𝝈 = (𝝆𝒄𝒑)𝒎/= (𝝆𝒄𝒑)𝒇 is the 

thermal capacity , 𝒄𝒑is specific heat, and the 

subscript m and f refer to porous medium and fluid, 

respectively. 

Here the wall  temperature and concentration 

assumed to be constant w.r.t the  boundaries of the 

fluid layer. Therefore , the boundary condition are 

define as follows 

𝑤 = 0,𝑇 = 𝑇𝑜   ,𝐶 =  𝐶𝑜    𝑎𝑡 𝑧 = 0                   

𝑤 = 0,𝑇 = 𝑇1  ,𝐶 =  𝐶1   𝑎𝑡 𝑧 = 𝑑                                       

(2) 
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2.3 Steady state and its solutions.   The steady 

state solution can be obtained by assuming 

 𝑢 = 𝑣 = 𝑤 = 0, 𝑝 = 𝑝 𝑧 ,𝑇 = 𝑇𝑠 𝑧 ,𝐶 = 𝐶𝑠 (𝑧)                       

(3) 

The steady state solution is given by 

𝑇𝑠 = 𝑇0 − ∆𝑇  
𝑍

𝑑
 ,  

𝐶𝑠 = 𝐶0 − ∆𝐶  
𝑧

𝑑
                                                    

(4)   

𝑝𝑠 = 𝑝0 −  𝑝0𝑔(𝑧 + 𝛼
∆𝑇

2𝑑
𝑧2 + 𝛼 ′ ∆𝐶

2𝑑
𝑧2)  

Where subscript 0 shows the value of the variable 

at boundary z = 0 

2.4 Disturbance in flow : In order to investigate 

the stability of the flow dynamic, it necessary to 

give  imposed infinitesimal perturbations on the 

basic state which is well documented in the book of 

Chandershakra rao (1992), The perturbation on the 

base flow is defined as . 

𝑞 = 0 + 𝑞′ , 𝑇 = 0 + 𝑇 ′,  C= 𝐶𝑠 + 𝐶 ′ , 𝑝 = 𝑝𝑠 + 𝑝′                   

(5) 

where the parameters 𝑞′ , 𝑇 ′,  𝐶 ′ , 𝑝′    is known as 

the  perturbed quantities of the mean flow 

dynamics. Substituting (5) into (1) and neglecting 

higher order terms of the perturbed quantities,  then 

we get 

 

∇. 𝑞′ = 0  

 

 1 + 𝜆
∂

∂t
 (−∇ 

 p′ + 𝜌0 αT′ + α′C′ g) =
μ

𝑘1 
𝑞′ −

𝜍𝐵0
2

𝜌
𝑢   

 

σ
∂T′

∂t
− ω′ ∆T

d
= κ(∇2 + 𝑄)𝑇 ′ +  𝐷𝑇𝐶∇

2𝐶 ′                                                      

   𝜀
∂C ′

∂t
− ω′ ∆C

d
  = κ′∇2𝐶′ +  𝐷𝐶𝑇∇

2𝑇 ′                                         

(6) 

the dimensionless parameters are defines  as 

follows. 

 𝑥", 𝑦", 𝑧" =
1

𝑑
(𝑥 ′, 𝑦′, 𝑧 ′),           𝑢", 𝑣" ,𝑤" =

𝑑

𝑘
(𝑢′, 𝑣 ′,𝑤 ′),        𝑡" =

𝑘

𝜍𝑑 2 𝑡
′ ,    𝑇" =

𝑇′

∆𝑇′
      ,𝐶" =

𝐶′

∆𝑐′
    ,   𝑝" =

𝑘1𝑑
2

𝜇𝑘
𝑝′     ,  𝑄 =

2𝑄0

𝛼𝑚 (𝜌𝑐𝑝 )𝑓
 ,  , 𝑀 =

𝜍
𝐵0

2

𝑢0
2 𝑉 (7) 

Remove asterisk for the simplicity 

 

∇. 𝑞 = 0  
 

 1 +  𝐹
∂

∂t
  −∇p + RaT + RasC − q − MU = 0  

 
∂T

∂t
− w = (∇2 + 𝑄)𝑇 + 𝐷𝑓∇

2𝐶,                                                         

𝜀

𝜍

∂𝐶

∂t
− w =

1

Le
∇2𝐶 − 𝐶+  𝑆𝑟∇

2𝑇                                              

(8)      

The different  non-dimensional parameters are 

defined as follows. 

,  𝑅𝑎 =
𝛼  𝑑𝑘1  ∆𝑇𝑔𝜌0 

𝜇𝐾
 is the thermal Rayleigh number 

, Ras =
𝛼 ′  𝑑𝑘1  ∆𝐶𝑔𝜌0 

𝜇𝑘 ′
   is the solutal Rayleigh 

number, 𝐿𝑒 =
𝑘  

𝑘′
 is the Lewis number, 𝐹 = (

𝑘

𝜍𝑑2)𝜆 

is the stress relaxation parameter and Q is the rate 

of heat addition per unit mass by internal sources.  

𝐷𝑓 =
𝐷𝑇𝐶

𝑘
 
ΔC

Δ𝑇
,    s the Dufour parameter, and 

𝑆𝑟 =  
𝐷𝐶𝑇

𝑘
 
ΔT

Δ𝐶
is the Soret  parameter .The non 

dimensional boundary conditions are 

 The nondimensional boundary conditions are 

𝑤 = 𝑇 = 𝐶 = 0 𝑎𝑡 𝑧 = 0, 𝑧 = 1                                    

(9) 

 

3. NORMAL MODES AND STABILITY 

ANALYSIS 

 

The disturbances of the mean flow is taken into 

account in term of  normal modes analysis which is 

well documented in the book of Drazin (1987).   

       𝑤,𝑇,𝐶 = [𝑊 𝑧 , Θ 𝑧 , Γ 𝑧 ] exp(𝑖𝑘𝑥𝑥 +
𝑖𝑘𝑦𝑦 + 𝑛𝑡)                                            (10) 

Where the parameters  𝑘𝑥  , 𝑘𝑦  are called as wave 

numbers along with different coordinate axis 𝑥 and 

𝑦 respectively, and 𝑛 is defined as growth rate of 

disturbances. By using eq  (10), (8) becomes 

 

  𝐷2 − 𝑎2 −𝑀 𝑊 +  1 + 𝐹𝑛  𝑎2𝑅𝑎Θ +

𝑎2RasΓ = 0  

𝑊 +  𝐷2 − 𝑎2 − 𝑛 − 𝑄  Θ +   𝐷𝑓 𝐷
2 − 𝑎2)Γ =

0  

𝑊 + 𝑆𝑟 𝐷
2 − 𝑎2 Θ +  

1

𝐿𝑒
 𝐷2 − 𝑎2 −

𝜀

𝜍
𝑛 Γ = 0  

 

Where 𝐷 =
𝑑

𝑑𝑧
 𝑎𝑛𝑑 𝑎 =  𝑘𝑥

2 + 𝑘𝑦
2   is define as 

dimensionless wave number. 

The corresponding free – free boundary conditions 

are 

 𝑊 = 0,𝐷2𝑊 = 0, Θ = 0, Γ = 0, 𝑎𝑡 𝑧 = 0 

𝑊 = 0,𝐷2𝑊 = 0, Θ = 0, Γ = 0, 𝑎𝑡 𝑧 = 1                            
(12) 
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We assume the solution to      𝑊, Θ, 𝑎𝑛𝑑  Γ     is of 

the form 

𝑊 = 𝑊0 sin𝜋𝑧 , Θ = Θ0 sin𝜋𝑧 , Γ = Γ0 sin𝜋𝑧,                     
(13) 

 

Those satisfy the  boundary conditions (12). 

 

Substituting solution (13) in (11), integrating each 

equation  from 𝑧 = 0 to 𝑧 = 1 by parts, we obtain 

the following matrix equation as 

 

 

 

𝐽 − 𝑀 −𝑎2(1 + 𝐹𝑛)𝑅𝑎 −𝑎2(1 + 𝐹𝑛)Ras

−1 (𝐽 + 𝑛 + 𝑄) 𝐷𝑓𝐽

−1   𝑆𝑟𝐽  
𝐽

𝐿𝑒
−  

𝜀𝑛

𝜍
 

   

𝑊0

Θ0

Γ0

 =

 
0
0
0
       (14) 

  

Where 𝐽 = 𝜋2 + 𝑎2 

  

The nontrivial solution corresponding to the matrix 

given in eq (14) 

 

𝑅𝑎 =

(𝐽−𝑀)(𝐽+𝑛+𝑄)( 
𝐽

𝐿𝑒
− 
𝜀𝑛

𝜍
 −𝑆𝑟𝐷𝑓𝐽

2)

𝑎2 1+𝐹𝑛 𝐽  
1

𝐿𝑒
 −𝐷𝑓 +(

𝜀𝑛

𝜍
)

+
(𝑆𝑟 𝐽− 𝐽+𝑛+𝑄 )

𝐽  
1

𝐿𝑒
 −𝐷𝑓 −(

𝜀𝑛

𝜍
)

Ras                 

(15) 

 

For neutral instability 𝑛 = 𝑖𝜔, (where 𝜔 is real and 

dimensionless frequency of oscillation) and 

equating real and imaginary parts of (15), we have 

 

(𝐽 + 𝑀)   
𝐽2

𝐿𝑒
+  

𝜀ω2

𝜍
+

𝑄𝐽

𝐿𝑒
+ 𝑄𝐾𝑟 − 𝑆𝑟𝐷𝑓𝐽

2 +

𝑎2𝑅𝑎(𝐽  𝐷𝑓 −
1

𝐿𝑒
 +

𝜀ω2𝐹

𝜍
) − 𝑎2𝑅𝑠 𝐽 + 𝑄 − 𝑆𝑟𝐽 −

ω2𝐹 = 0    

 
𝐽2

𝐿𝑒
J + 𝑎2𝑅𝑎  𝐹𝐽  𝐷𝑓 −

1

𝐿𝑒
 − 𝐹 − 𝑎2𝑅𝑠 𝐽𝐹 −

𝑆𝑟𝐽𝐹 + 𝐹𝑄 = 0            (16) 

 

For stationary convection 𝜔=0 (n=0), we have 
 

𝑅𝑎 =
 𝐽+𝑀  𝑆𝑟𝐷𝑓𝐽

2−𝐽−𝑄 (
𝐽

𝐿𝑒
)

𝑎2 𝐷𝑓𝐽−
𝐽

𝐿𝑒
 

+
𝑎2[𝐽+𝑄−𝑆𝑟 ] 

 𝐷𝑓𝐽−(
𝐽

𝐿𝑒
)𝑎2

Ras                             

(17) 

 

Her the onset instability is measured in form of 

stationary convection. The different parameter is 

defined as , the Rayleigh number Ra is a function 

of dimensionless wave number 𝑎, Dufour 

parameter 𝐷𝑓 , Soret parameter 𝑆𝑟 , Lewis number 

Le and solutal Rayleigh number Ras,internal heat 

source 𝑄, and the magnetic number M. Thus for 

stationary convection of   viscoelastic Maxwell 

fluid is work as an ordinary Newtonian fluid.  

 

The critical cell size at the onset of instability is 

calculated from. 

 
𝜕𝑅𝑎

𝜕𝑎
 
𝑎=𝑎𝑐

= 0    which gives  𝑎𝑐 = 𝜋 

 

The corresponding critical Rayleigh number 𝑅𝑎𝑇   
for the steady onset is  

 

𝑅𝑎𝑇 = 4𝜋2  
𝑆𝑟𝐷𝑓𝐿𝑒−1

𝐷𝑓𝐿𝑒−1
 +

 𝑆𝑟−1 𝐿𝑒

1−𝐷𝑓𝐿𝑒
Ras                                       

(18) 

If  𝑆𝑟 = 𝐷𝑓 = Ras = 0  then  𝑅𝑎𝑇 = 4𝜋2                                 

(19) 

 

4. RESULT AND DISCUSSION 

 

 

The onset of double diffusive convection in a 

horizontal layer of Maxwell viscoelastic fluid in the 

presence of magnetic , heating effect ,Soret and 

Dufour in a porous medium is investigated 

analytically. The expressions for both the stationary 

and  oscillatory convection is obtained using 

normal mode analysis in terms of critical rayleigh 

numbers, which characterize the stability of the 

system, are obtained analytically. It has been 

observed that the stationary critical Rayleigh 

number is found to be independent from 

viscoelastic parameter F, In this continuation we 

found that the Maxwell viscoelastic binary  fluid 

behaves like ordinary Newtonian binary fluid 

during stationary convection. It is also important 

that the stationary critical Rayleigh number and 

critical wave number are independent of 

viscoelastic parameter because of the absence of 

base flow in the present case.  

 

The expressions for the stationary and oscillatory 

Rayleigh numbers for different values of the 

parameters such as internal Rayleigh number, soret 

number , dufour number , lewis number , magnetic 

and heat parameter  are computed and the results 

are depicted in figures. 

 

The neutral stability curves in 𝑅𝑎𝑇−∝  plane is 

plotted in different physical condition to analysis 

the linear stability of the system , for different 

values of parameters. In Figuress. 1–6 the stability 

curve in a different plan is depicated.The wide 

range of physical parameter is taken into account 

during the study. Figure 1 shows the stability curve 

between 𝑅𝑎𝑇−∝ for different value of Dufore 

parameter   𝑫𝒇 while fixing the other parameter at 

𝑺𝒓 = 𝟎.𝟎𝟎𝟏 ,𝑳𝒆 = 𝟏.𝟎,𝐑𝐚𝐬 = 𝟏𝟎.𝟎,𝐌 =
𝟎.𝟎𝟏,𝐚𝐧𝐝  𝐐 = 𝟏𝟎. The Figure 2 shows the 

variation of 𝑅𝑎𝑇  with respect to ∝ for the different 

values of Magnetic number (M) while fixing the  

values of the other physical parameters at 𝑺𝒓 =
𝟎.𝟎𝟎𝟏, 𝑫𝒇 = 𝟎.𝟐 ,𝑳𝒆 = 𝟏.𝟎, 𝐑𝐚𝐬 = 𝟏𝟎.𝟎,𝐐 =
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𝟏𝟎 with variation in one of the parameters. It is 

clear from these figures that the neutral curves are 

connected in a topological sense.  This 

connectedness allows the linear stability criteria to 

be expressed in terms of the critical Rayleigh 

number, 𝑅𝑎𝑇 , below which the system is stable and 

unstable above . From these figures we can easily 

identified the points where the over stable solutions 

branch off  from the stationary convection. Also we 

observe that for smaller values of the wave number, 

each curve is a margin of the oscillatory instability, 

and at some fixed wave number a depending on the 

other parameters, the overstability disappears and 

the curve forms the margin of stationary 

convection. The characteristic curves for different 

value of 𝐷𝑓  and M have been presented in Fig. 

1and2, respectively .The characteristic curves 

exhibit one or two minima corresponding to the 

oscillatory or stationary points ,where the 

oscillating solutions branch off from the stationary 

solution .At these points both stationary and 

oscillatory convection occur simultaneously 

.Although stationary convection does not depend 

on 𝐷𝑓  and M, however, oscillatory Rayleigh 

number decreases on increasing both 𝐷𝑓  and M, 

thus advancing the onset of convection. In both 

curve it can be clearly seen that the slope is 

changing rapidly w,r,t the different parametric 

values.  

 

 
Figure 1Variation of 𝑹𝒂𝑻−∝  for different values of  𝑫𝒇  

 

 

 
Figure 2 Variation of 𝑹𝒂𝑻−∝  for different values of 𝑴 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3 Variation of 𝑹𝒂𝑻−∝  for different values of 𝑸 

 

 

 
Figure 4 Variation of 𝑹𝒂𝑻−∝  for different values of  𝐑𝐚𝐬 
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Figure 5 Variation of 𝑹𝒂𝑻−∝  for different values of 𝑳𝒆 

 

 
Figure 6 Variation of 𝑹𝒂𝑻−∝  for different values of 𝑺𝒓 

 

 

Figure.3 depicts the effect of heat source intensity 

(Q) on the neutral stability curve. Here we fixed the 

other Physicial paramate   
𝑺𝒓 = 𝟎.𝟎𝟎𝟏, 𝑫𝒇 = 𝟎.𝟐 ,𝑳𝒆 = 𝟏.𝟎,𝐑𝐚𝐬 =

𝟏𝟎.𝟎,𝐌 = 𝟎.𝟎𝟏,  . Now we can see that the effect 

of increasing Q is to increase the critical value of 

Rayleigh number and  the corresponding wave 

number ,implying that Q has a stabilizing effect on 

the double diffusive convection in porous medium 

.This figure also indicates that for small Q, the 

instability manifests as stationary convection, while 

as Q is increased, the instability sets in as 

oscillatory convection. Fig. 4 indicates the effect of 

scales solute Rayleigh number on neutral stability 

curve .We find that the effect to increasing Ras  is 

to increase the critical value of Rayleigh number 

and the corresponding wave number ,indicating 

that the effect of solute Rayleigh number Ras is to 

inhibit the onset of convection .Similarly Figure 5 

is plotted for the different values of Lewis number 

(Le), respectively, for fixed values of other 

parameters at 𝑆𝑟 = 0.001, 𝐷𝑓 = 0.2 , Ras =

10.0, M = 0.001, Q = 10. Here we can see that 

quantitatively that the heat source intensity is 

increases as we inceared the value of Le it means 

that the lewis number play an important role of 

flow stability to stabilize it.  Finally in Fiureg. 6, 

we investigate the effect of Soret parameter on the 

neutral stability for fixed values of other 

parameters at . at 𝐿𝑒 = 02, = 0.2 , Ras = 10.0, M =
0.001, Q = 10. It can be observed that an 

increment in Sr decreases the minimum of 

RaTcRayleigh number for oscillatory state , 

however ,it increases the minimum value of 

Rayleigh number for stationary state. Here we can 

also see that the soret parameter is stabilizing the 

flow strength. 

 

 

 

5. CONCLUSIONS 

A linear stability analysis of hydromegnetic double 

diffusive convection in a horizontal layer of 

Maxwell viscoelastic fluid in the presence of Soret 

and Dufour in a porous medium is performed 

analytically .The stationary and oscillatory 

convection is analyzed in detail during study. 

The main conclusions are as follows. 

(i) In stationary convection Maxwell 

viscoelastic fluid behaves like ordinary 

Newtonian fluid.  

(ii)  Dufour parameter, Soret parameter, and 

Lewis parameter have both stabilizing 

and destabilizing effects on the stationary 

convection. 

(iii) The Heat source parameter (Q) is shows 

the stabilizing character 

(iv)  Solutal Rayleigh number destabilizes the 

stationary convection. 

(v)  In limiting case when 𝑆𝑟 = 𝐷𝑓 = 𝑅𝑠 = 0   

the critical thermal Rayleigh number 

obtained is the same as repoted by Nield 

(vi)  Effect of increasing Q, Ras, 𝐿𝑒 is found 

to increase the onset of stationary and  

oscillatory convection.  

(vii) .On increasing the value of  𝐷𝑓 , M, the 

value of Rayleigh number corresponding 

to stationary, and  oscillatory convection 

decrease ,thus it advances the onset of 

convection.       
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