
SSRG International Journal of VLSI & Signal Processing (SSRG – IJVSP) – Volume 2 Issue 3 Sep to Dec 2015

ISSN: 2394 - 2584 www.internationaljournalssrg.org Page 1

SPI Controller Core: Verification
Nidhi Gopal

Graduate Apprentice, Bharat Heavy Electricals Limited, Haridwar, Uttarakhand, India

Abstract

This paper mainly deals with the study of

Serial Peripheral Interface and logical Implementation

through RTL, Synthesis and Simulation by making Test

benches of various modules involved using Universal

Verification Methodology. It is done with the help of

Questasim 10.0b software. Further, output in both

Batch and GUI Mode has been observed and discussed.

Various test cases of SPI Protocol are taken into

consideration, functional coverage, code coverage, and

assertion coverage has been verified by synthesis of

various blocks involved in top level architecture of SPI.

Keywords: Questasim, RTL, SPI, Synthesis,

Simulation, Testcases.

I. INTRODUCTION

In this paper, SPI Controller Core Verification,

done using Questasim 10.0 b tool in Linux

Environment is discussed. Universal Verification

Methodology and System Verilog is used for analysis

and verification of this, and, RTL and Test bench

coding was done, and results were simulated as well as

analyzed. Also, in order to minimize the bugs, all the

possible scenarios/steps were taken care in the

programming.

II. THEORETICAL BACKGROUND

The Serial Peripheral Interface (SPI) bus is

a synchronous serial communication interface

specification used for short distance communication,

primarily in embedded systems. SPI devices

communicate in full duplex mode using a master-

slave architecture with a single master. The master

device originates the frame for reading and writing.

Multiple slave devices are supported through selection

with individual slave select (SS) lines.

Sometimes SPI is called a four-wire serial bus,

contrasting with three-, two-, and one-wire serial buses.

The SPI may be accurately described as a synchronous

serial interface, but it is different from the Synchronous

Serial Interface (SSI) protocol, which is also a four-

wire synchronous serial communication protocol, but

employs differential Signaling and provides only a

single simplex communication channel.

Synchronous Serial Interfaces are widely used

to provide economical board-level interfaces between

different devices such as microcontrollers, DAC’s and

ADC’s and other. Although there is no single standard

for synchronous serial bus, there are industry wide

accepted guidelines based on two popular

implementations:

 SPI(a trademark of Motorola semiconductors)

 Microwire Plus(a trademark of Motorola

semiconductors).

The SPI Master core is compatible with both

above mentioned protocols with some additional

functionality. At the hosts side, the core acts like a

WISHBONE complaint slave device.

Figure 1: SPI Device

A. Features of SPI

 Full duplex synchronous serial data transfer.

 Variable length data word up to 128 bits.

 MSB or LSB first data transfer.

 Rx and Tx on both rising and falling edge of

serial clock independently.

 8 slave select lines.

 Fully static synchronous design with one clock

domain.

 Technology independent Verilog.

 Fully synthesizable.

B. Interfaces of SPI :

The SPI bus specifies four logic signals:

 SCLK : Serial Clock (output from master).

 MOSI : Master Output, Slave Input (output

from master).

 MISO : Master Input, Slave Output (output

from slave).

 SS : Slave Select (active low, output from

master).

Alternative naming conventions are also widely

used, and SPI port pin names for particular IC

Wishbone complaint

slave device

https://en.wikipedia.org/wiki/Logic_level

SSRG International Journal of VLSI & Signal Processing (SSRG – IJVSP) – Volume 2 Issue 3 Sep to Dec 2015

ISSN: 2394 - 2584 www.internationaljournalssrg.org Page 2

products may differ from those depicted in these

illustrations:

Serial Clock:

 SCLK: SCK, CLK.

Master Output --> Slave Input.

 MOSI : SIMO, SDO (for master devices),

SDI(for slave devices), DI, DIN, SI, MTST.

Master Input <-- Slave Output.

 MISO: SOMI, SDO (for slave devices),

SDI(for master devices), DO, DOUT, SO,

MRSR.

Slave Select:

 SS: nCS, CS, CSB, CSN, EN, nSS, STE,

SYNC.

C. Advantages Of SPI:

 Full duplex communication in the default

version of this protocol.

 Push-pull drivers (as opposed to open drain)

provide good signal integrity and high speed.

 Higher throughput than I²C .

 Complete protocol flexibility for the bits

transferred

 Not limited to 8-bit words

D. Disadvantages Of SPI:

 Requires more pins on IC packages than I²C,

even in the three-wire variant.

 No in-band addressing; out-of-band chip select

signals are required on shared buses.

 No hardware flow control by the slave (but the

master can delay the next clock edge to slow

the transfer rate).

 No hardware slave acknowledgment (the

master could be transmitting to nowhere and

not know it).

 Supports only one master device.

E. Applications of SPI :

SPI is used to talk to a variety of peripherals,

such as:

 Sensors: temperature, pressure, ADC,

touch screens, video game controllers,

 Control devices: audio codecs, digital

potentiometers, DAC.

 Camera lenses: Canon EF lens mount,

 Communications: Ethernet, USB, USART

, CAN, IEEE 802.15.4, IEEE 802.11,

handheld video games,

 Memory: flash and EEPROM,

 Real-time clocks,

 LCD, sometimes even for managing

image data,

 Any MMC or SD card

(including SDIO variant).

For high performance

systems, FPGAs sometimes use SPI to interface as a

slave to a host, as a master to sensors, or for flash

memory used to bootstrap if they are SRAM-based.

III. DATA TRANSMISSION IN SPI

Figure 2 : A typical hardware setup using two shift

registers to form an inter-chip circular buffer

To begin communication, the bus master

configures the clock, using a frequency supported by

the slave device, typically up to a few MHz. The master

then selects the slave device with a logic level 0 on the

select line. If a waiting period is required, such as for

analog-to-digital conversion, the master must wait for at

least that period of time before issuing clock cycles.

During each SPI clock cycle, a full duplex data

transmission occurs. The master sends a bit on the

MOSI line and the slave reads it, while the slave sends

a bit on the MISO line and the master reads it. This

sequence is maintained even when only one-directional

data transfer is intended.

Transmissions normally involve two shift

registers of some given word size, such as eight bits,

one in the master and one in the slave; they are

connected in a virtual ring topology. Data is usually

shifted out with the most-significant bit first, while

shifting a new least-significant bit into the same

register. After that register has been shifted out, the

master and slave have exchanged register values. If

more data needs to be exchanged, the shift registers are

reloaded and the process repeats. Transmission may

continue for any number of clock cycles. When

complete, the master stops toggling the clock signal,

and typically deselects the slave.

Transmissions often consist of 8-bit words. However,

other word sizes are also common, for example, 16-bit

words for touch screen controllers or audio codec, such

as the TSC2101 by Texas Instruments, or 12-bit words

for many digital-to-analog or analog-to-digital

converters.

https://en.wikipedia.org/wiki/File:SPI_8-bit_circular_transfer.svg

SSRG International Journal of VLSI & Signal Processing (SSRG – IJVSP) – Volume 2 Issue 3 Sep to Dec 2015

ISSN: 2394 - 2584 www.internationaljournalssrg.org Page 3

Every slave on the bus that has not been activated using

its chip select line must disregard the input clock and

MOSI signals, and must not drive MISO. The master

must select only one slave at a time.

IV. TRANSCATION DETAILS, VERIFICATION

PLAN AND TESTCASES OF SPI PROTOCOL

Following are the SPI interface signals, internal

connections and registers used in SPI device.

A. WISHBONE Interface Signals

S.N

o

PORT WIDT

H

DIRECTI

ON

DESCRIPTIO

N

1 wb_clk_i 1 input Master clock

2 wb_rst_i 1 input Synchronous

reset, active

high

3 wb_add_

i

5 input Lower address

bits

4 wb_data

_i

32 input Data towards the

core

5 wb_stb_i 1 input Strobe

signal/core

select input

6 wb_cyc_

i

1 input Valid bus cycle

input

7 wb_we_i 1 input Write enable

input

8 wb_data

_o

32 output Data from the

core

9 wb_ack_

o

1 output Bus cycle

acknowledge

output

10 wb_err_

o

1 output Bus cycle error

output

11 wb_int_o 1 output Interrupt signal

output

12 wb_sel_i 1 input Byte select

signal

All WISHBONE signals will be registered, driven and

latched on rising edge of wb_clk_i.

B. SPI External Connections

SR

NO

PORT WIDTH DIRECTION DESCRIPTI

ON

1 ss_pad_

o

8 output Slave select

output

signals

2 sclk_pa

d_o

1 output Serial Clock

Output

3 mosi_p

ad_o

1 output Master out

slave in data

signal output

4 miso_p

ad_i

1 input Master in

slave out

data signal

input

C. Registers

1) Core Registers List

Sr.

No.

NA

ME

ADD

RESS

W

ID

T

H

AC

CE

SS

DESCRIPTION

1. Rx0 0x00 32 R Data receive reg 0

2. Rx1 0x04 32 R Data receive reg 1

3. Rx2 0x08 32 R Data receive reg 2

4. Rx3 0x0c 32 R Data receive reg 3

5. Tx0 0x00 32 R/

W

Data transmit reg 0

6. Tx1 0x04 32 R/

W

Data transmit reg 1

7. Tx2 0x08 32 R/

W

Data transmit reg 2

8. Tx3 0x0c 32 R/

W

Data transmit reg 3

9. CTR

L

0x10 32 R/

W

Control & status

10. DIVI

DER

0x14 32 R/

W

Clock divider

register

11. SS 0x18 32 R/

W

Slave select

register

All registers are 32-bit wide and

accessible only with 32 bits (all wb_sel_i

signals must be active).

2) Data Receive registers [RxX]

Bit# 31:0

Access R

Name Rx

 Reset Value : 0x00000000

RxX : The data receive registers hold the value of

received data of the last executed transfer. Valid bits

depend on the character length field in the CTRL

register(i.e. if CTRL[6:0] is set to 0x08, bit RxL [7:0]

holds the received data). If character length is less or

equal to 32 bits, Rx1, Rx2, and Rx3 are not used, if

character length is less than 64 bits, Rx2 and Rx3 are

not used and so on.

SSRG International Journal of VLSI & Signal Processing (SSRG – IJVSP) – Volume 2 Issue 3 Sep to Dec 2015

ISSN: 2394 - 2584 www.internationaljournalssrg.org Page 4

3) Data Transmit register [TxX]

Bit# 31:0

Access R

Name Rx

 Reset Value : 0x00000000

TxX: The data receive registers hold the data

to be transmitted in the next transfer. Valid bits depend

on the character length field in the CTRL register (i.e. if

CTRL[6:0] is set to 0x08, the bit Tx0 [7:0] will be

transmitted in next transfer). If character length is less

or equal to 32 bits, Tx1, Tx2, and Tx3 are not used, if

character length is less than 64 bits, Tx2 and Tx3 are

not used and so on.

4) Control and Status register[CTRL]

Bi

t#

31

:1

4

1

3

1

2

1

1

10 9 8 7 6:0

Ac

ces

s

R R

/

W

R

/

W

R

/

W

R/

W

R/

W

R

/

W

R R/W

Na

me

Re

ser

ve

d

A

S

S

I

E

L

S

B

Tx_

NE

G

Rx_

NE

G

G

O

_

B

S

Y

Res

erv

ed

CHA

R_LE

N

 Reset Value : 0x00000000

ASS: If this bit is set, ss_pad_o signals are generated

automatically. This means that slave select signal,

which is selected in SS Register is asserted by SPI

Controller, when transfer is started by setting

CTRL[GO_BSY] and is de-asserted after transfer is

finished. If this bit is cleared, slave select signals are

asserted and deasserted by writing and clearing bits in

SS Register.

IE: If this bit is set, the interrupt output Is set

active after a transfer is finished. The interrupt signal is

deasserted after a Read or Write to any register.

LSB: If this bit is set, the LSB is sent first on

the line (bit TxL[0]), and the first bit received from the

line will be put in the LSB position in the Rx register

(bit RxL[0]). If this bit is cleared, the MSB is

transmitted/received first (which bit in TxX/ RxX

register that s depends on the CHAR_LEN field in the

CTRL register).

Tx_NEG: If this bit is set, the mosi_pad_o

signal is changed on the falling edge of a sclk_pad_o

clock signal, or otherwise the mosi_pad_o signal is

changed on the rising edge of sclk_pad_o.

Rx_NEG: If this bit is set, the miso_pad_i

signal is latched on the falling edge of a sclk_pad_o

clock signal, or otherwise the miso_pad_i signal is

latched on the rising edge of sclk_pad_o.

GO_BSY: Writing 1 to this bit starts the

transfer. This bit remains set during the transfer and is

automatically cleared after the transfer finished.

Writing 0 to this bit has no effect.

CHAR_LEN: This field specifies how many

bits are transmitted in one transfer. UPto 64 bits can be

transmitted.

CHAR_LEN =0x01…1 bit

CHAR_LEN=0X02…2 bit

.

.

.

CHAR_LEN=0x7f…127 bits

CHAR_LEN=0x00…128 bits

5) Divider Register

Bit# 31:16 15:0

Access R R/W

Name Reserved DIVIDER

Reset Value: 0x0000ffff

DIVIDER: The value in this field is the

frequency divider of the system clock wb_clk_i to

generate the serial clock on the output sclk_pad_o. The

desired frequency is obtained according to the

following equation:

Fsclk= fwb_clk/(DIVIDER+1)*2

6) Slave Select Register[SS]:

Bit# 31:8 7:0

Access R R/W

Name Reserved SS

Reset Value: 0x00000000

SS: If CTRL[ASS] bit is cleared, writing 1 to

any bit location of this field sets the proper ss_pad_o

line to an active state and writing 0 sets the line back to

inactive state. If CTRL[ASS] bit is set, writing 1 to any

bit location of this field will select appropriate

ss_pad_o line to be automatically driven to active state

for the duration of the transfer, and will be driven to

inactive state for the rest of the time.

SSRG International Journal of VLSI & Signal Processing (SSRG – IJVSP) – Volume 2 Issue 3 Sep to Dec 2015

ISSN: 2394 - 2584 www.internationaljournalssrg.org Page 5

D. Verification Plan

A verification plan has been made for SPI

Protocol, which included various components like

Environment, Top module, Test module, Virtual

sequence, Virtual Sequencer, Scoreboard, Read agent ,

Write agent, connected to DUT(Design Under Test).

 Following figure shows the connection

between them.

All the sub-modules of the SPI are written

using UVM. TB coding was done, and verified by

Questasim 10.0b software, for all the components

involved in SPI Architecture.

TOP

TEST

V_Sequence

m_sqr
v_seqr

ENV

v_sequencer
m_seqr

w_agent

SCOREBOARD

r_agent

DUT

wr_sqr

wr_sequencer

rd_sqr

rd_sequencer

w_seqr

r_seqr

w_config

r_config

w_sqr w_cfg

w_mon w_drv

r_sqr r_cfg

r_mon r_drv

SSRG International Journal of VLSI & Signal Processing (SSRG – IJVSP) – Volume 2 Issue 3 Sep to Dec 2015

ISSN: 2394 - 2584 www.internationaljournalssrg.org Page 6

E. Testcases Of SPI Protocol

Following are the testcases of SPI Protocol

which can be considered:

a) To check different transaction through character

length as :

1) 32 bits

2) 8 bits

3) 16 bits

4) 64 bits, etc.

 b) Check Reset condition.

 c) Transaction through MSB Bit first

 d) Transaction through LSB Bit first.

 e) Transitions through posedge and receiving at

negedge

 f) Transitions through negedge and receiving at

posedge.

g) By setting ASS Condition and checking.

h) Checking functionality with or without Interrupt.

III. CONCLUSION

Having few disadvantages like less number of

pins, SPI Protocol is found to be very advantageous as

it provides full duplex communication, good signal

integrity and high speed., higher throughput than I²C ,

complete protocol flexibility for the bits transferred and

is not limited to 8-bit words. It is having wide range of

applications , for example, Sensors: temperature,

pressure, ADC, touch screens, video game controllers,

Control devices: audio codecs, digital

potentiometers, DAC, Camera lenses,

Communications: Ethernet, USB, USART, CAN, IEEE

802.15.4, IEEE 802.11, handheld video games,

Memory: flash and EEPROM, Real-time clocks, LCD,

sometimes even for managing image data,

Any MMC or SD card (including SDIO variant). In this

paper, advantages, applications, limitations and internal

architecture of SPI Protocol has been discussed, and

RTL was done after study, in order to simulate ,

synthesize and verify the design of SPI Protocol.

ACKNOWLEDGEMENTS

Author would like to thank the faculty

members of Maven Silicon Softech Pvt. Ltd., who

provided their time to time guidance, study material and

helped me to complete this project. Specifically, I

would like to thank Mrs. Shanti Rao, UVM Faculty,

and interns, of Maven Silicon. Author would also like

to thank her parents, who provided me the opportunity

to work upon this project deeply.

REFERENCES
[1] Prof Jai Karan Singh, prof Mukesh Tiwari, Karan

Sharma;”Implementation of SPI SLAVE on FPGA”;

International Journal of Advanced Engineering and

technology; Volume :20

[2] T. Durga Prasad, B. Ramesh Babu; Design and Simulation of

SPI Master / Slave UsingVerilog HDL; International Journal

of Science and Research.; Volume:03, Issue:08, August

2014.

[3] Google; Wikipedia.

[4] Maven Silicon Study Material.

[5] Arunadevi A. ,Chitra K., GunaNandhini S., Raghupathi T.,

Rejusha M; “A Review on Area Efficient Parallel FIR Digital

Filter Implementation”;Volume:02, Issue:02, SSRG-IJVSP,

March-April 2015.

[6] Shilpi Thawait, Jagveer Verma;” FPGA Implementation of

Simple and High Speed Vedic Multiplier”; Volume:02;

Issue:03, SSRG-IJVSP,May-June 2015.

