
SSRG International Journal of VLSI & Signal Processing (SSRG – IJVSP) – Volume 2 Issue 3 Sep to Dec 2015

ISSN: 2394 - 2584 www.internationaljournalssrg.org Page 13

Reducing the Computation Time in Two’s

Complement Multipliers
A. Hari Priya1

1Assistant Professor, Dept. of ECE,

Indur Institute of Engineering. And Technology, Siddipet, Medak (D)India.

Abstract
 To reduce the area of partial product array size

and improve the speed which is generated by a radix-

4Modified Booth Encoded Multiplier is used. This

reduction is possible without any increase in the delay of

the partialproduct generation stage. This reduction

provides faster compression of the partial product array

and regular layoutsin two’s complement multiplier. The

proposed method is that the Radix-4 (Fixed-Width)

Modified Booth Multipliersare used to achieve the low

power and increase the speed by modifying the partial

product matrix size. The Multiplierdesign implemented

using Xilinx. The results based on a rough theoretical

analysis and on logic synthesis showed itsefficiency in

terms of both area and delay. It is compared with Radix-4

(short bit-width) Modified booth encoded Multiplier.

Keywords: Multiplication, Modified Booth encoding,

partial product array.

I. INTRODUCTION

The speed of multiplication operation is of

prodigioussignificance in digital signal processing

also in the general purpose processors today. In the

past multiplication was generally implemented via a

sequence of addition, subtraction, and shift

operations. Multiplication can be considered as a

series of repeated additions. The number to be added

is the multiplicand, the number of times that it is

added is the multiplier, and the result is the product.

Each step of addition produces a partial product. In

utmost computers, the operand generallycomprises

the same number of bits. Modified Booth Encoding

(MBE) is a technique that has been introduced to

reduce the number of PP rows, still keeping the

generation process of each row both simple and fast

enough. One of the most regularly used schemes is

radix- 4 MBE, for a number of whys and wherefores,

the most important actuality that it allows for the

reduction of the size of the partial product array by

almost half, and it is very simple to produce the

multiples of the multiplicand. More explicitly, the

classic two’s complement n×n bit multiplier using the

radix- 4 MBE scheme, generates a PP array with a

maximum height of [n/2]+1rows, each row before the

last one being one of the succeeding possible values:

all zeros, ±X; ±2X.

Digital multiplication comprises of three basic steps

these are:-

1. Generation of Partial Product Array

2. Reduction of Partial Product Array

3. Final Addition

Fig 1. Multiplication Flow

II. LITERATURE SURVEY

The mainmoto of a good multiplier is to

deliver a physically compact, good speed and low

power consuming chip. Previously lot of research

doings has been stated on the multiplier. Each and

every multiplier technique has their exceptional

methodologies and implementations. Among them

some of the multiplier techniques and their

implementations are discussed in this literature

survey.In High-Speed Multiplier Design, an

algorithm to accomplish fast multiplication in two’s

complement representation is presented. Fewer partial

products rows generate rather than concentrating on

reducing the partial products rows down to final sums

and carries. Consecutively, this influences the speed

of the multiplication, even before applying partial

products reduction techniques. Fewer partial products

rows are produced, thereby lowering the overall

operation time. Furthermore to the speed

improvement, the algorithm results in a real diamond-

shape for the partial product tree, which is more

resourceful in terms of implementation. [1].

The multiplier of an S/390 CMOS

microprocessor is defined. It is implemented in an

critical static CMOS technology with 0.20 pm

effective channel length. The multiplier has been

proved in a single-image shared-memory

multiprocessor atfrequencies up to 400 MHz. The

multiplier requires three machine cycles for a total

latency of 7.5 ns. However, the design can

sustenance a latency of 4.0 ns if the latches are

removed. The design goal was to implement a

versa- tile S/390 multiplier with sensible

performance at a very aggressive cycle time. The

multiplier implements a radix-8 Booth algorithm and

SSRG International Journal of VLSI & Signal Processing (SSRG – IJVSP) – Volume 2 Issue 3 Sep to Dec 2015

ISSN: 2394 - 2584 www.internationaljournalssrg.org Page 14

is capable of supporting S/390 floating-point and

fixed-point multiplications and also division and

square root. Logic design and physical design issues

are debated relating to the Booth decode and counter

tree implementations. [2].

In high speed Booth encoded parallel

multiplier, for partial product generation, a new

modified Booth encoding (MBE) scheme is proposed

to improve the performance of outdated MBE

schemes. For final addition, a new algorithm is

established to construct multiple-level conditional-

sum adder (MLCSMA). The proposed algorithm can

optimize final adder according to the given cell

properties and input delay profile. Related with a

binary tree based conditional- sum adder, the speed

performance improvement is up to 25percent. On

average, the design developed here in reduces the

total delay by 8 percent for parallel multiplier. The

whole design has been verified by gate level

simulation. [3]

A high-performance low-power design of

linear array multipliers is based on a combination of

the following techniques: signal flow optimization in

[3:2] adder array for partial product reduction, left-to-

right leap frog (LRLF) signal flow, and splitting of

the reduction array in to upper/lower parts. The

resulting upper/lower LRLF (ULLRLF) multiplier is

compared with tree multipliers. The automatic layout

experiments results ULLRLF multipliers having

similar power, delay, and area as tree multipliers for

n<=32. With more regularity and inherently shorter

interconnects, the ULLRLF structure grants a

inexpensive alternative to tree structures in the design

of fast low-power multipliers implemented in deep

submicron VLSI technology.[4]

In the data path synthesis from RTL, data

paths are extracted into largest possible sum-of-

product (SOP) blocks, thus making extensive use of

carry-save intermediate results and reducing the

number of expensive carry-Propagations to a

minimum. The sum-of-product blocks are then

implemented by constraint- and technology driven

generation of partial products, carry-save adder tree

and carry-propagate adder.

 A smart generation feature selects the best

among alternative implementation variants. Special

data path library cells are used where available and

beneficial. All these measures translate into better

performing circuits for simple and complex data

paths in cell-based design. [5].A parallel multiplier,

which is optimized for speed is valid to any multiplier

size and adjustable to any technology for which speed

parameters are known. Most significantly, it is easy to

include this method in silicon compilation or logic

synthesis tools. The parallel multiplier produced by

the proposed method outdoes other schemes used for.

It uses the minimal number of cells in the partial

product reduction tree. These findings are tested on

design examples simulated in LP CMOS ASIC

technology. [6].

III. PROPOSED ALGORITHM

A. Modified Booth Multiplier

Modified Booth Encoding (MBE) is a

technique that has been introduced to reduce the

number of PP rows, still keeping the generation

process of each row both simple and fast sufficient. In

this the bits can be encoded by looking at three bits at

a time. One of the most normally used schemes is

radix-4 MBE, for a number of reasons, the most

important being that it allows for the reduction of the

size of the partial product array by almost half, and it

is very modest to generate the multiples of the

multiplicand. Further specifically, the classic two’s

complement n * n bit multiplier using the radix-4

MBE scheme, generates a PP array with a maximum

height of [n/2]+1 rows, each row before the last one

being one of the following possible values: all zeros,

+-X;+-2X. The last row is due to the negative

encoding.

In Modified Booth technique, Booth

Recording table is used. By this we can be able to add

multiplicands -2, -1, 0, 1 and 2 times and have got rid

of 3’s hence generating partial products is simple.

i+1 i i-1 Partial product

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0*M

1*M

1*M

2*M

–2*M

–1*M

–1*M

0*M

Table 1. Modified Booth Encoding Table

The steps involved in the generation of partial

products using Modified Booth algorithm are given

below:

1. Pad the LSB with one zero.

2. Pad the MSB with 2 zeros if n is even and 1

zero if n is odd.

3. Divide the multiplier into overlapping

groups of 3-bits.

4. Determine partial product scale factor from

modified booth 2 encoding table.

5. Compute the Multiplicand Multiples

6. Sum Partial Products

SSRG International Journal of VLSI & Signal Processing (SSRG – IJVSP) – Volume 2 Issue 3 Sep to Dec 2015

ISSN: 2394 - 2584 www.internationaljournalssrg.org Page 15

MBE is efficient technique in reducing the partial

products. However, it is important to note that there

are two unavoidable consequences when using MBE:

sign extension prevention and negative encoding. The

combination of these two unavoidable consequences

results in the formation of one additional partial

product row and of course, this additional partial

product row requires more hardware but more

importantly increases delay. To overhead the

formation of one additional partial product row a

technique called short bit width two’s complement

multiplier is designed.

First of all pad a bit 0 in LSB and 0 or 1 in

MSB depending upon the n*n multiplier. If n is even

pad two 0’s otherwise pad one 0. In this project 8*8

multiplier is used, so pad two 0’s in MSB. For the

generation of partial products using MBE signals we

take 3 bits (y2i+1, y2i, y2i+1) at a time and stride two

bits each time.In the partial product generation,

except for the first row all the three rows are

generated in same way. This is done due to two

reasons. One is to reduce a row for sign handling

(neg3 added to first row) and other is the y-1 bit used

by the MBE is always equal to zero.

The first row is split into two parts, one

containing partial product bits from pp00 to pp80 bar

and the second one with two bits set at “one” in

positions 9 and 8 as shown in below fig.2. This is

done so that the bit neg3 related to fourth partial

product row can be moved to become a part of the

second sub row and by this computation time can be

reduced.In these way four partial products rows can

be generated.

Fig.2 Representation of partial products and neg bits.

The detailed view of these partial product generations

is given below.

B. Partial Products Generation

The partial products are generated using gate

level logic unlike in previous techniques. Though this

increase the area, it reduces the computation time.

The partial products are generated in the following

way.

Step 1: Generation of the three most significant bit

weights of the first row, plus addition of the last neg

bit

Step 2: Generation of the other bits of the first row

Step 3: Generation of the bits of the other rows

The above three steps are explained in detail:

STEP 1: The three most significant bits are generated

by using gate level diagram shown in fig.3. Here x j,x

j-1, y 0 and neg 0 bit are given as inputsand the output

pp 0j is obtained. By using this gate level diagram bits

pp06, pp07, pp08 bar are individually generated in three

iterations.

Fig 3. Gate-level diagram for generation of three MSB’s

The addition of last neg bit to the second sub

part of first row is shown in the fig.4. The bit neg3

related to the fourth partial product row, is moved to

become a part of the second sub row. The second sub

row can be easily added to the first sub row, with a

constant short carry propagation of three. In fact, with

reference to the notation of fig.5 it can be given as:

𝑞𝑞90𝑞𝑞90 𝑞𝑞80 𝑞𝑞70 𝑞𝑞60

= 00 𝑝𝑝80 𝑝𝑝70 𝑝𝑝60 + 𝑛𝑒𝑔3

As introduced above, due to the particular

value of the second operand, i.e., 0 1 1 0 neg3

requires a carry propagation only across the least-

significant three positions. By this the five most

significant bits of resulting array in the first row are

obtained

Fig.4 Gate-level diagram for adding last neg bit in the

first row

SSRG International Journal of VLSI & Signal Processing (SSRG – IJVSP) – Volume 2 Issue 3 Sep to Dec 2015

ISSN: 2394 - 2584 www.internationaljournalssrg.org Page 16

The graphical transformation is that the second sub

row containing also the bit neg3 is shown in fig 5 (a)

and the resulting array of partial product is shown in

fig 5 (b).

Fig.5 Partial product array after adding last neg bit to

the first row (a) Basic idea (b) resulting array

3.1.2 STEP 2: The other bits of the first row are

generated by using fig 6.By using fig 6 (a) one, two,

neg signals can be generated. These signals are then

exploited by the logic in fig 6 (b) along with

appropriate bits of multiplicand, in order to generate

whole partial product array. Hence by this partial

product bits from pp00 to pp50 are produced

Fig 6 Gate-level diagram for first row partial product

generation (a) MBE signal generation (b) partial

product generation

STEP 3: In order not to have delay penalizations, it is

necessary that the generation of the other rows is

done in parallel with the generation of the first row

cascaded by the computation of the

bits𝑞𝑞90 𝑞𝑞90 𝑞𝑞80 𝑞𝑞70 𝑞𝑞60.In order to achieve

this, we must simplify and differentiate the generation

of the first row with respect to the other rows. This

can be done by using fig 7.For each of the partial

product row, fig 7(a) produces the one, two, and neg

signals. These signals are then exploited by the logic

in fig 7(b), along with the appropriate bits of the

multiplicand, in order to generate the whole partial

product array.

Fig 7 Gate-level diagram for partial product generation

using MBE (a) MBE signal generation (b) partial

product generation

By direct comparison of figs 7 and 6, the generation

of the MBE signals for the first row is simpler, and

theoretically allows for the saving of the delay of one

NAND3 gate. The above three step are independent

to each other and implemented in parallel. By this

way computation time can be reduced to a great

extent.

IV. RESULT AND DISCUSSION

RTL SCHEMATIC: The RTL Diagram of the two’s

compliment multiplier was given in fig8.The inputs

Mr and Md are the multiplier and the multiplicand

with input data of 8 bits. k1, k2, k3, k4 are partial

product arrays and km is final output.

Fig8 RTL Diagram of the two’s compliment multiplier

Fig 9 RTL Schematic

The final output of short bit width multiplier

is Km and k1, k2, k3 and k4 partial product rows.

SSRG International Journal of VLSI & Signal Processing (SSRG – IJVSP) – Volume 2 Issue 3 Sep to Dec 2015

ISSN: 2394 - 2584 www.internationaljournalssrg.org Page 17

Simulation result of short bit width two’s

complement multiplier is shown in fig 10.

Fig 10Simulation result of short bit width multiplier

A. Final synthesis report

Device utilization summary

Selected Device: 3s500ecp132-5

Number of Slices 59 out of 4656 1%

Number of 4 input LUTs 104 out of 9312 1%

Number of IOs 96

Number of bonded IOBs 96 out of 92 104% (*)

Timing Summary

Speed Grade: -5

Minimum period: No path found

Minimum input arrival time before clock: No path

found

Maximum output required time after clock: No path

found

Maximum combinational path delay: 14.939ns

Cell usage

Total memory usage is 188976 kilobytes.

V. CONCLUSION

Two’s complement n×n multipliers using

radix-4 Modified Booth Encoding produce [n/2]

partial products but due to the sign handling, the

partial product array has a maximum height of [n/2] +

1. To evade this and yield a partial product array with

a maximum height of [n/2], without introducing any

extra delay in the partial product generation stage

short bit width technique is employed. With the

additional hardware of a (short) 3-bit addition, and

the simpler generation of the first partial product row,

the delay is reduced which is within the bound of the

delay of a standard partial product row generation.

The outcome of the above is that the reduction of the

maximum height of the partial product array by one

unit may simplify the partial product reduction tree,

both in terms of delay and uniformity of the layout.

REFERENCES

[1] J.-Y. Kang and J.-L. Gaudiot, “A Simple High-Speed

Multiplier Design,” IEEE Trans. Computers, vol. 55, no. 10,

pp. 1253-1258, Oct.2006.

[2] E.M. Schwarz, R.M. Averill III, and L.J. Sigal, “A Radix-8

CMOS S/390 Multiplier,” Proc. 13th IEEE Symp. Computer

Arithmetic, pp. 2-9, 1997.

[3] W.-C. Yeh and C.-W. Jen, “High-Speed Booth Encoded

Parallel Multiplier Design,” IEEE Trans. Computers, vol.

49, no. 7, pp. 692-701, July 2000.

[4] Z. Huang and M.D. Ercegovac, “High-Performance Low-

Power Left-to-Right Array Multiplier Design,” IEEE Trans.

Computers, vol. 54, no. 3, pp. 272-283, Mar. 2005.

[5] R. Zimmermann and D.Q. Tran, “Optimized Synthesis of

Sum-of-Products,” Proc. Conf. Record of the 37th Asilomar

Conf. Signals, Systems and Computers, vol. 1, pp. 867-872,

2003.

[6] V.G. Oklobdzija, D. Villeger, and S.S. Liu, “A Method for

Speed Optimized Partial Product Reduction and Generation

of Fast Parallel Multipliers Using an Algorithmic

Approach,” IEEE Trans. Computers, vol. 45, no. 3, pp. 294-

306, Mar. 1996.

[7] P.F. Stelling, C.U. Martel, V.G. Oklobdzija, and R. Ravi,

“Optimal Circuits for Parallel Multipliers,” IEEE Trans.

Computers, vol. 47, no. 3, pp. 273-285, Mar. 1998.

[8] R. Hashemian and C.P. Chen, “A New Parallel Technique

for Design of Decrement/Increment and Two’s Complement

Circuits,” Proc. 34th Midwest Symp. Circuits and Systems,

vol. 2, pp. 887-890, 1991.

