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Abstract 
  To reduce the area of partial product array size 

and improve the speed which is generated by a radix-

4Modified Booth Encoded Multiplier is used. This 

reduction is possible without any increase in the delay of 

the partialproduct generation stage. This reduction 

provides faster compression of the partial product array 

and regular layoutsin two’s complement multiplier. The 

proposed method is that the Radix-4 (Fixed-Width) 

Modified Booth Multipliersare used to achieve the low 

power and increase the speed by modifying the partial 

product matrix size. The Multiplierdesign implemented 

using Xilinx. The results based on a rough theoretical 

analysis and on logic synthesis showed itsefficiency in 

terms of both area and delay. It is compared with Radix-4 

(short bit-width) Modified booth encoded Multiplier. 
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I. INTRODUCTION 

The speed of multiplication operation is of 

prodigioussignificance in digital signal processing 

also in the general purpose processors today. In the 

past multiplication was generally implemented via a 

sequence of addition, subtraction, and shift 

operations. Multiplication can be considered as a 

series of repeated additions. The number to be added 

is the multiplicand, the number of times that it is 

added is the multiplier, and the result is the product. 

Each step of addition produces a partial product. In 

utmost computers, the operand generallycomprises 

the same number of bits. Modified Booth Encoding 

(MBE) is a technique that has been introduced to 

reduce the number of PP rows, still keeping the 

generation process of each row both simple and fast 

enough. One of the most regularly used schemes is 

radix- 4 MBE, for a number of whys and wherefores, 

the most important actuality that it allows for the 

reduction of the size of the partial product array by 

almost half, and it is very simple to produce the 

multiples of the multiplicand. More explicitly, the 

classic two’s complement n×n bit multiplier using the 

radix- 4 MBE scheme, generates a PP array with a 

maximum height of [n/2]+1rows, each row before the 

last one being one of the succeeding possible values: 

all zeros, ±X; ±2X. 

Digital multiplication comprises of three basic steps 

these are:- 

1. Generation of Partial Product Array 

2. Reduction of Partial Product Array 

3. Final Addition 

Fig 1. Multiplication Flow 

II. LITERATURE SURVEY 

The mainmoto of a good multiplier is to 

deliver a physically compact, good speed and low 

power consuming chip. Previously lot of research 

doings has been stated on the multiplier. Each and 

every multiplier technique has their exceptional 

methodologies and implementations. Among them 

some of the multiplier techniques and their 

implementations are discussed in this literature 

survey.In High-Speed Multiplier Design, an 

algorithm to accomplish fast multiplication in two’s 

complement representation is presented. Fewer partial 

products rows generate rather than concentrating on 

reducing the partial products rows down to final sums 

and carries. Consecutively, this influences the speed 

of the multiplication, even before applying partial 

products reduction techniques. Fewer partial products 

rows are produced, thereby lowering the overall 

operation time. Furthermore to the speed 

improvement, the algorithm results in a real diamond-

shape for the partial product tree, which is more 

resourceful in terms of implementation. [1]. 

 

The multiplier of an S/390 CMOS 

microprocessor is defined.  It  is  implemented  in  an  

critical static  CMOS  technology  with  0.20  pm  

effective  channel  length.  The multiplier has been 

proved in a single-image shared-memory 

multiprocessor atfrequencies up to 400 MHz. The 

multiplier requires three machine cycles for a total 

latency of 7.5 ns.  However, the design can 

sustenance a latency of 4.0 ns if the latches are 

removed.  The  design  goal  was  to implement  a  

versa- tile S/390  multiplier with sensible  

performance  at  a very  aggressive cycle  time.  The 

multiplier implements a radix-8 Booth algorithm and 
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is capable of supporting S/390 floating-point and 

fixed-point multiplications and also division and 

square root. Logic design and physical design issues 

are debated relating to the Booth decode and counter 

tree implementations. [2]. 

 

In high speed Booth encoded parallel 

multiplier, for partial product generation, a new 

modified Booth encoding (MBE) scheme is proposed 

to improve the performance of outdated MBE 

schemes. For final addition, a new algorithm is 

established to construct multiple-level conditional-

sum adder (MLCSMA). The proposed algorithm can 

optimize final adder according to the given cell 

properties and input delay profile. Related with a 

binary tree based conditional- sum adder, the speed 

performance improvement is up to 25percent. On 

average, the design developed here in reduces the 

total delay by 8 percent for parallel multiplier. The 

whole design has been verified by gate level 

simulation. [3] 

 

A high-performance low-power design of 

linear array multipliers is based on a combination of 

the following techniques: signal flow optimization in 

[3:2] adder array for partial product reduction, left-to-

right leap frog (LRLF) signal flow, and splitting of 

the reduction array in to upper/lower parts. The 

resulting upper/lower LRLF (ULLRLF) multiplier is 

compared with tree multipliers. The automatic layout 

experiments results ULLRLF multipliers having 

similar power, delay, and area as tree multipliers for 

n<=32. With more regularity and inherently shorter 

interconnects, the ULLRLF structure grants a 

inexpensive alternative to tree structures in the design 

of fast low-power multipliers implemented in deep 

submicron VLSI technology.[4] 

 

In the data path synthesis from RTL, data 

paths are extracted into largest possible sum-of-

product (SOP) blocks, thus making extensive use of 

carry-save intermediate results and reducing the 

number of expensive carry-Propagations to a 

minimum. The sum-of-product blocks are then 

implemented by constraint- and technology driven 

generation of partial products, carry-save adder tree 

and carry-propagate adder. 

 

 A smart generation feature selects the best 

among alternative implementation variants. Special 

data path library cells are used where available and 

beneficial. All these measures translate into better 

performing circuits for simple and complex data 

paths in cell-based design. [5].A parallel multiplier, 

which is optimized for speed is valid to any multiplier 

size and adjustable to any technology for which speed 

parameters are known. Most significantly, it is easy to 

include this method in silicon compilation or logic 

synthesis tools. The parallel multiplier produced by 

the proposed method outdoes other schemes used for. 

It uses the minimal number of cells in the partial 

product reduction tree. These findings are tested on 

design examples simulated in LP CMOS ASIC 

technology. [6]. 

 

III. PROPOSED ALGORITHM 

 

A. Modified Booth Multiplier 

Modified Booth Encoding (MBE) is a 

technique that has been introduced to reduce the 

number of PP rows, still keeping the generation 

process of each row both simple and fast sufficient. In 

this the bits can be encoded by looking at three bits at 

a time. One of the most normally used schemes is 

radix-4 MBE, for a number of reasons, the most 

important being that it allows for the reduction of the 

size of the partial product array by almost half, and it 

is very modest to generate the multiples of the 

multiplicand. Further specifically, the classic two’s 

complement n * n bit multiplier using the radix-4 

MBE scheme, generates a PP array with a maximum 

height of [n/2]+1 rows, each row before the last one 

being one of the following possible values: all zeros, 

+-X;+-2X. The last row is due to the negative 

encoding. 

In Modified Booth technique, Booth 

Recording table is used. By this we can be able to add 

multiplicands -2, -1, 0, 1 and 2 times and have got rid 

of 3’s hence generating partial products is simple. 

 

i+1 i i-1 Partial product 

0 

0 

0 

0 

1 

1 

1 

1 

0 

0 

1 

1 

0 

0 

1 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0*M 

1*M 

1*M 

2*M 

–2*M 

–1*M 

–1*M 

0*M 

Table 1. Modified Booth Encoding Table 

 

The steps involved in the generation of partial 

products using Modified Booth algorithm are given 

below: 

1. Pad the LSB with one zero. 

2. Pad the MSB with 2 zeros if n is even and 1 

zero if n is odd. 

3. Divide the multiplier into overlapping 

groups of 3-bits. 

4. Determine partial product scale factor from 

modified booth 2 encoding table. 

5. Compute the Multiplicand Multiples 

6. Sum Partial Products 
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MBE is efficient technique in reducing the partial 

products. However, it is important to note that there 

are two unavoidable consequences when using MBE: 

sign extension prevention and negative encoding. The 

combination of these two unavoidable consequences 

results in the formation of one additional partial 

product row and of course, this additional partial 

product row requires more hardware but more 

importantly increases delay. To overhead the 

formation of one additional partial product row a 

technique called short bit width two’s complement 

multiplier is designed. 

First of all pad a bit 0 in LSB and 0 or 1 in 

MSB depending upon the n*n multiplier. If n is even 

pad two 0’s otherwise pad one 0. In this project 8*8 

multiplier is used, so pad two 0’s in MSB. For the 

generation of partial products using MBE signals we 

take 3 bits (y2i+1, y2i, y2i+1) at a time and stride two 

bits each time.In the partial product generation, 

except for the first row all the three rows are 

generated in same way. This is done due to two 

reasons. One is to reduce a row for sign handling 

(neg3 added to first row) and other is the y-1 bit used 

by the MBE is always equal to zero. 

The first row is split into two parts, one 

containing partial product bits from pp00 to pp80 bar 

and the second one with two bits set at “one” in 

positions 9 and 8 as shown in below fig.2. This is 

done so that the bit neg3 related to fourth partial 

product row can be moved to become a part of the 

second sub row and by this computation time can be 

reduced.In these way four partial products rows can 

be generated.  

 

Fig.2 Representation of partial products and neg bits. 

The detailed view of these partial product generations 

is given below. 

B. Partial Products Generation 

The partial products are generated using gate 

level logic unlike in previous techniques. Though this 

increase the area, it reduces the computation time. 

The partial products are generated in the following 

way. 

Step 1: Generation of the three most significant bit 

weights of the first row, plus addition of the last neg 

bit 

Step 2: Generation of the other bits of the first row 

Step 3: Generation of the bits of the other rows 

The above three steps are explained in detail: 

STEP 1: The three most significant bits are generated 

by using gate level diagram shown in fig.3. Here x j,x 

j-1, y 0 and neg 0 bit are given as inputsand the output 

pp 0j is obtained. By using this gate level diagram bits 

pp06, pp07, pp08 bar are individually generated in three 

iterations.

 
Fig 3. Gate-level diagram for generation of three MSB’s 

  

The addition of last neg bit to the second sub 

part of first row is shown in the fig.4. The bit neg3 

related to the fourth partial product row, is moved to 

become a part of the second sub row. The second sub 

row can be easily added to the first sub row, with a 

constant short carry propagation of three. In fact, with 

reference to the notation of fig.5 it can be given as: 

𝑞𝑞90𝑞𝑞90 𝑞𝑞80 𝑞𝑞70 𝑞𝑞60

= 00 𝑝𝑝80 𝑝𝑝70 𝑝𝑝60 + 𝑛𝑒𝑔3 

As introduced above, due to the particular 

value of the second operand, i.e., 0 1 1 0 neg3 

requires a carry propagation only across the least-

significant three positions. By this the five most 

significant bits of resulting array in the first row are 

obtained 

 
Fig.4 Gate-level diagram for adding last neg bit in the 

first row 
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The graphical transformation is that the second sub 

row containing also the bit neg3 is shown in fig 5 (a) 

and the resulting array of partial product is shown in 

fig 5 (b). 

 
Fig.5 Partial product array after adding last neg bit to 

the first row (a) Basic idea (b) resulting array 

 

3.1.2 STEP 2: The other bits of the first row are 

generated by using fig 6.By using fig 6 (a) one, two, 

neg signals can be generated. These signals are then 

exploited by the logic in fig 6 (b) along with 

appropriate bits of multiplicand, in order to generate 

whole partial product array. Hence by this partial 

product bits from pp00 to pp50 are produced 

 

Fig 6 Gate-level diagram for first row partial product 

generation (a) MBE signal generation (b) partial 

product generation 

STEP 3: In order not to have delay penalizations, it is 

necessary that the generation of the other rows is 

done in parallel with the generation of the first row 

cascaded by the computation of the 

bits𝑞𝑞90 𝑞𝑞90 𝑞𝑞80 𝑞𝑞70 𝑞𝑞60.In order to achieve 

this, we must simplify and differentiate the generation 

of the first row with respect to the other rows. This 

can be done by using fig 7.For each of the partial 

product row, fig 7(a) produces the one, two, and neg 

signals. These signals are then exploited by the logic 

in fig 7(b), along with the appropriate bits of the 

multiplicand, in order to generate the whole partial 

product array.  

 

Fig 7 Gate-level diagram for partial product generation 

using MBE (a) MBE signal generation (b) partial 

product generation 

By direct comparison of figs 7 and 6, the generation 

of the MBE signals for the first row is simpler, and 

theoretically allows for the saving of the delay of one 

NAND3 gate. The above three step are independent 

to each other and implemented in parallel. By this 

way computation time can be reduced to a great 

extent. 

IV. RESULT AND DISCUSSION 

RTL SCHEMATIC: The RTL Diagram of the two’s 

compliment multiplier was given in fig8.The inputs 

Mr and Md are the multiplier and the multiplicand 

with input data of 8 bits. k1, k2, k3, k4 are partial 

product arrays and km is final output. 

 
Fig8 RTL Diagram of the two’s compliment multiplier 

 

 
Fig 9 RTL Schematic 

 

The final output of short bit width multiplier 

is Km and k1, k2, k3 and k4 partial product rows. 
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Simulation result of short bit width two’s 

complement multiplier is shown in fig 10.  

 
Fig 10Simulation result of short bit width multiplier 

A. Final synthesis report 

Device utilization summary 

Selected Device: 3s500ecp132-5  

Number of Slices  59 out of   4656     1%   

Number of 4 input LUTs 104 out of   9312     1%   

Number of IOs  96 

Number of bonded IOBs 96 out of     92   104% (*)  

Timing Summary 

Speed Grade: -5 

Minimum period: No path found 

Minimum input arrival time before clock: No path 

found 

Maximum output required time after clock: No path 

found 

Maximum combinational path delay: 14.939ns 

Cell usage  

Total memory usage is 188976 kilobytes. 

 

V. CONCLUSION 

Two’s complement n×n multipliers using 

radix-4 Modified Booth Encoding produce [n/2] 

partial products but due to the sign handling, the 

partial product array has a maximum height of [n/2] + 

1. To evade this and yield a partial product array with 

a maximum height of [n/2], without introducing any 

extra delay in the partial product generation stage 

short bit width technique is employed. With the 

additional hardware of a (short) 3-bit addition, and 

the simpler generation of the first partial product row, 

the delay is reduced which is within the bound of the 

delay of a standard partial product row generation. 

The outcome of the above is that the reduction of the 

maximum height of the partial product array by one 

unit may simplify the partial product reduction tree, 

both in terms of delay and uniformity of the layout. 
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