
SSRG International Journal of VLSI & Signal Processing (SSRG - IJVSP) – Volume 2 Issue 3 Sep to Dec 2015

ISSN: 2394 - 2584 www.internationaljournalssrg.org Page 18

RC Servo and Stepper Motor Control using

Verilog HDL
Kingshuk Chowdhury #1, Rumana Hossain*2, Saif Ahmed #3, Iqbal Rahman Rokon #4

1,2 Undergraduate Student, Department of Electrical and Computer Engineering, North South University,

Bashundhara, Dhaka , Bangladesh
3 Lab Officer, Department of Electrical and Computer Engineering, North South University, Bashundhara,

Dhaka , Bangladesh
4 Senior Lecturer, Department of Electrical and Computer Engineering, North South University, Bashundhara,

Dhaka , Bangladesh

Abstract

 In this paper, an FPGA model of RC servo

and Stepper motor control system was built. This

system consists of EP2C5T144C8 Cyclone II Mini

Board, 9 grams micro servo motor, 28BYJ-48 Stepper

Motor, ULN2003 motor driver. This system operates

3 functions parallelly, a simple binary count with the

3 LEDs on the board, from 0 to 7, controlling a RC

servo, where the position is dependent on the value in

the previous counter. The servo starts when the

counter value goes from 000 to 001 for the first time.

After counting from 0 to 7 for the first time, the servo

goes to its initial position when the counter goes to

000 for all the time and controlling a Stepper motor,

where the speed is dependent again on the previous

counter. The proposed model is built using Verilog

HDL, simulated using Modelsim Altera Starter

Edition 10.1d and synthesized using Xilinx ISE 9.2i

package, and will be implemented using Cyclone II

FPGA Mini Board kit. Implementation and

Simulation behavioral model results show that the

proposed model satisfies the specified operational

requirements.

Keywords— Servo motor, Stepper motor, Motor

Driver, RTL, Verilog

I. INTRODUCTION

The stepper motor is an electromechanical

device; it converts electrical power into mechanical

power. Also, it is a brushless, synchronous electric

motor that can divide a full rotation into an expansive

number of steps. The motor’s position can be

controlled accurately without any feedback

mechanism, as long as the motor is carefully sized for

the application. Stepper motors are similar to

switched reluctance motors.

Stepping motors, as discrete state devices,

are extremely valuable when precision position or

velocity is needed. Being discrete state devices, these

motors are particularly well suited to digital system

control. Although microcontrollers are suited for this

application, programmable logic devices (PLDs) hold

several advantages. Being a far more energy efficient

and flexible system, a PLD also provides easy on chip

integration of communication standards, parallel

performance, and high pin count for multiple motor

controls. Here, we cover some basic considerations

for programming a PLD with very high speed

integrated circuit hardware description language

(VHDL) to function as a stepping motor controller.

Servo motors (or servos) are self-contained

electric devices that rotate or push parts of a machine

with great precision. Servos are found in many places:

from toys to home electronics to cars and airplanes. If

you have a radio-controlled model car, airplane, or

helicopter, you are using at least a few servos. In a

model car or aircraft, servos move levers back and

forth to control steering or adjust wing surfaces. By

rotating a shaft connected to the engine throttle, a

servo regulates the speed of a fuel-powered car or

aircraft. Servos also appear behind the scenes in

devices we use every day. Electronic devices such as

DVD and Blu-ray DiscTM players use servos to

extend or retract the disc trays. In 21st-century

automobiles, servos manage the car's speed: The gas

pedal, similar to the volume control on a radio, sends

an electrical signal that tells the car's computer how

far down it is pressed. The car's computer calculates

that information and other data from other sensors

and sends a signal to the servo attached to the throttle

to adjust the engine speed. Commercial aircraft use

servos and a related hydraulic technology to push and

pull just about everything in the plane.

RC Servo Motor is a type of motor whose

position can be controlled externally. They are small,

compact and quite inexpensive. So they are mostly

used in robotic projects. The axis rotational angle is

limited to about 270 degrees.

The servo expects a pulse at every 20 ms in

order to gain correct information about the angle. [1]

The width of the pulse dictates the range of the

servo's angular motion. i.e we can set the servo to one

end position by sending 1 ms pulses and set it to the

other position sending 2 ms pulses. Sending 1.5 ms

pulse sets the servo motor to the center position. The

PWM module includes 4 inputs and 1 output.

SSRG International Journal of VLSI & Signal Processing (SSRG - IJVSP) – Volume 2 Issue 3 Sep to Dec 2015

ISSN: 2394 - 2584 www.internationaljournalssrg.org Page 19

Fig 1: expected input for servo motor

II. INTERNAL DESIGN DETAILS

The following is a breakdown of the internal design

details of the hardware simulation

A. Block Diagram and Design

Y

Fig 2: Block Diagram of the System

First of all, the servo motor is connected to

the EP2C5T144C8 Cyclone II FPGA Mini Board.[2]

The positive (power) pin of the servo motor is

connected to the pin 40 of the FPGA, the control pin

or signal pin is connected to the pin 42 of the FPGA

and the ground pin is connected the pin 44 of the

FPGA. Then the motor driver ULN2003A connected

to the FPGA. IN1 pin of motor driver is connected to

the pin 69 of the FPGA, IN2 is connected to the pin

70, IN3 is connected to pin 71, IN4 is connected to

the pin 72 and the GND pin is grounded. After this

the connection between stepper motor and the motor

driver are given. OUT1, OUT2, OUT3, OUT4 pin of

the motor driver is connected respectively to the pin 4,

pin3, pin 2, and pin 1 of the stepper motor and COM

pin of the motor driver and Common pin of the

stepper motor is connected to the power supply. Pins

3, 7, 9 are for 3 LEDs, pin 144 is for reset, pin 17 for

clock and pin 135 for enable. Then the required

program is loaded to FPGA to do expected operations.

B. Inputs and Outputs

We have used to 4 inputs to the desired

outputs. The inputs are clock for clock pulses, reset

for taking the counter to its initial condition, enable

for enabling the counter for counting and start for

enabling the counter which is used for stepper motor

control. The outputs are, led for providing the output

for 3 bit counter, servoPin for the servo motor control

output, stepperPins for the stepper motor control

output.

C. Design Hierarchy

Fig 3: Design Hierarchy

From the figure it can be seen that we have

followed the top-down methodology. We first have

specified the functionality of the

Counter_Servo_Stepper, which is the top-level block.

Thus, we broke the bigger block into smaller building

sub-blocks. We implemented the LED operation

using a 3 bit counter, servo motor control using a 32

bit counter and a 12 bit counter and finally a 3 bit

counter for stepper motor control.

III. DETAILED REQUIREMENTS

All paragraphs must be indented. All

paragraphs must be justified, i.e. both left-

justified and right-justified.

A. List of Functions

Our system will able to perform 3 functions

in parallel-

•A simple binary count with the 3 LEDs on the board,

from 0 to 7.

•Controlling a RC Servo, where the position is

dependent on the value in the previous counter. The

servo starts when the counter value goes from 000 to

001 for the first time. After counting from 0 to 7 for

the first time, the servo goes to its initial position

when the counter goes to 000 for all the time.

•Controlling a Stepper motor, where the speed is

dependent again on the previous counter.

B. Hardware Requirements

•EP2C5T144C8 Cyclone II FPGA Mini Board

•9 Grams Micro Servo Motor

•28BYJ-48 Stepper Motor

•ULN2003 Motor Driver

C. Software Requirements

•Modelsim Altera Starter Edition 10.1d

•Xilinx 9.2i

SSRG International Journal of VLSI & Signal Processing (SSRG - IJVSP) – Volume 2 Issue 3 Sep to Dec 2015

ISSN: 2394 - 2584 www.internationaljournalssrg.org Page 20

IV. HARDWARE DESCRIPTION

A. EP2C5T144C8 Cyclone II FPGA Mini Board

The Altera EP2C5T144C8 Cyclone II FPGA

that the board accompanies is a more established

gadget, yet is still broadly utilized, and is prepared to

do some exceptional applications. It has 4068 logic

components, 26 4k RAM blocks giving a sum of

119,898 bits, 13 multipliers, two PLLs, and 89 I/Os.

Greatest clock frequency is 300 MHz. The board is

fitted with an EPCS4 flash design memory chip, and

a 50 MHz oscillator. A large portion of the I/Os are

conveyed out to four 2x14 way headers, which may

be associated with outer hardware by means of wire

jumpers, or PCBs fitted with coordinating

attachments. Three LEDs are associated with pins 3,

7 and 9, and a push-catch is joined with pin 144. You

may be confused by the absence of a pull-up resistor,

yet it is conceivable to empower a powerless pull-up

on any pin utilized as an input. The board has two 10-

way headers, one for JTAG and one for Advanced

Serial programming, to which the USB Blaster can be

joined.

If power is applied to the board the power

LED should come on, and the three LEDs should

flash at 1 Hz. A simple design has been saved in the

configuration flash memory, and is loaded into the

FPGA when power is applied. Typically, designs are

loaded directly into the FPGA during development

via JTAG, and only saved to configuration memory

when they are working properly, using Advanced

Serial programming.

Specifications:

•Number of Logic Elements: 4608

•Number of Logic Array Blocks - LABs: 288

•Number of I/Os: 89 I/O

•Operating Supply Voltage: 1.15 V to 1.25 V

•Maximum Operating Temperature: + 70 C

•Mounting Style: SMD/SMT

•Package / Case: TQFP-144

•Brand: Altera Corporation

•Maximum Operating Frequency: 260 MHz

•Minimum Operating Temperature: 0◦C

•Packaging: Tray

•Series: Cyclone II EP2C5

B. 9 Grams Micro Servo Motor

Servo motors (or servos) are independent

electric gadgets that rotate or push parts of a machine

with awesome accuracy. Servos are found in

numerous spots: from toys to home hardware to autos

and planes. A servo engine is a dc, air conditioning,

or brushless dc engine joined with a position

detecting gadget (e.g. a computerized decoder). A

three-wire DC servo engine joins a DC engine, an

apparatus train; breaking point stops past which the

pole can't turn a potentiometer for position input and

a coordinated circuit for position control. Of the three

wires jutting from the motor packaging, one is for

power, one is for ground, and one is a control input

where a pulse-width signals to what position the

motor ought to servo. The 9 grams servo engine is a

small scale type. It is impractical to quantify the

motor resistance in light of the fact that it is joined

with the driver however we can measure the servo

current while it's running. It has plastic bushing,

25cm wire, core-less motor, Servo arms and screw

included.[3][8]

Specifications:

•Size: 21x12x22 mm / 0.74x0.42x0.78 in

•Voltage: 3v ~ 6v

•Weight: 9g / 0.39oz

•Speed: 0.12 sec/60(4.8V)

•Torque : 1.6kg-cm

•Working Temp : -30C~60C

•Gears: Nylon White type

C. 28BYJ-48 Stepper Motor

Stepper motors are DC motors that move in

discrete steps. They have numerous loops that are

sorted out in gatherings called "phases". By

invigorating every phase in grouping, the motor will

pivot with extra special care. The 28BYJ-48 is a little,

cheap, 5 volt geared stepping motors. These stepping

motors are clearly generally used to control things

like computerized blinds, A/C units and are mass

created. Because of the gear reduction proportion of

approximately 64:1 it offers good torque for its size

at rates of around 15 rotations per minute (RPM).

"28BYJ-48" does not distinguish a particular model.

There are a few unique adaptations connected with

this part number. Some portion of the refinement is

made by the voltage rating connected with the engine,

either "5V" or "12V". In any case, notwithstanding

for specific voltage ratings, there are diverse models

accessible with, for instance, distinctive winding

resistances. There may likewise be models with

distinctive gearing. The engine has 4 coils of wire

that are controlled in a grouping to make the

magnetic motor shaft turn. At the point when utilizing

the full-step system, 2 of the 4 coils are powered at

every step. The 28BYH-48 datasheet determines that

the favored technique for driving this stepper is

utilizing the half-step strategy, where we first power

coil 1 only, then coil 1 and 2 together, then coil 2 just

so on… With 4 curls, this implies 8 distinct

signals.[4][7]

Fig 4: Stepper Motor Circuit

SSRG International Journal of VLSI & Signal Processing (SSRG - IJVSP) – Volume 2 Issue 3 Sep to Dec 2015

ISSN: 2394 - 2584 www.internationaljournalssrg.org Page 21

Specifications

•Rated voltage: 5VDC

•Number of Phase: 4

•Speed Variation Ratio: 1/64

•Stride Angle: 5.625° /64

•Frequency: 100Hz

•DC resistance: 50Ω±7%(25℃)

•Idle In-traction Frequency: > 600Hz

•Idle Out-traction Frequency: > 1000Hz

•In-traction Torque: >34.3mN.m(120Hz)

•Self-positioning Torque: >34.3mN.m

•Friction torque: 600-1200 gf.cm

•Pull in torque: 300 gf.cm

•Insulated resistance: >10MΩ(500V)

•Insulated electricity power: 600VAC/1mA/1s

•Rise in Temperature: <40K(120Hz)

•Noise: <35dB(120Hz,No load,10cm)

Table I : Half Step Switching Sequence of the Stepper

Motor

Lead

Wire

Colour

Clockwise Direction (1-2 Phase)

1 2 3 4 5 6 7 8

4

Orange

- - -

3

Yellow

 - - -

2 Pink

 - - -

1 Blue

 - - -

D. ULN2003 Motor Driver
The ULN2003 is a solid high voltage and

high current Darlington transistor arrays. It comprises

of seven NPN Darlington sets that component high-

voltage output with common-cathode clamp diode for

exchanging inductive burdens. The authority current

rating of a solitary Darlington pair is 500mA. The

Darlington sets may be paralleled for higher current

ability. Applications incorporate relay drivers,

hammer drivers, lamp drivers, show drivers (LED gas

release), line drivers, and logic buffers. The

ULN2003 has a 2.7kΩ series base resistor for each

Darlington pair for operation straightforwardly with

TTL or 5V CMOS gadgets.[5]

Specifications

 500mA rated collector current (Single output)

 High-voltage outputs: 50V

 Inputs compatible with various types of

logic.

 Relay driver application

V. SIMULATION AND SYNTHESIS

A. Test Environment
Firstly, we compiled the RTL code and the

test bench together and found no error. After the

successful compilation the RTL code is simulated

using test bench. The compilation and simulation is

done successfully using Modelism Altera Starter

Edition 10.1d. The RTL code is then synthesized

using Xilinx 9.2i and the desired output is obtained

successfully without any error.

Fig 5: Waveform of output simulation

Fig 6: RTL schematic

B. Simulation Code

Transcript

vlog -reportprogress 300 -work work

{C:/altera/13.0sp1/modelsim_ase/win32aloem/RC_S

ervo & Stepper/SERVO_STEPPER.v}

{C:/altera/13.0sp1/modelsim_ase/win32aloem/RC_S

ervo & Stepper/SERVO_STEPPER_TB.v}

Model Technology ModelSim ALTERA vlog

10.1d Compiler 2012.11 Nov 2 2012

-- Compiling module Counter_Servo_Stepper

-- Compiling module css_test

Top level modules:

css_test

vsim -gui work.css_test

SSRG International Journal of VLSI & Signal Processing (SSRG - IJVSP) – Volume 2 Issue 3 Sep to Dec 2015

ISSN: 2394 - 2584 www.internationaljournalssrg.org Page 22

vsim -gui work.css_test

Loading work.css_test

Loading work.Counter_Servo_Stepper

add wave sim:/css_test/*

** Warning: (vsim-WLF-5000) WLF file

currently in use: vsim.wlf

File in use by: Engr. Kingshuk Hostname:

CYBERTRON ProcessID: 4600

Attempting to use alternate WLF file

"./wlftm33k47".

** Warning: (vsim-WLF-5001) Could not open

WLF file: vsim.wlf

Using alternate file: ./wlftm33k47

run -all

0c=0,r=1, e=1,l=000, servo=x, strt=0,

stepper=1000

5c=1,r=1, e=1,l=000, servo=1, strt=0,

stepper=1000

10c=0,r=0, e=1,l=000, servo=1,

strt=1, stepper=1000

15c=1,r=0, e=1,l=001, servo=1,

strt=1, stepper=1100

20c=0,r=0, e=1,l=001, servo=1,

strt=1, stepper=1100

25c=1,r=0, e=1,l=010, servo=1,

strt=1, stepper=0100

30c=0,r=0, e=1,l=010, servo=1,

strt=1, stepper=0100

35c=1,r=0, e=1,l=011, servo=1,

strt=1, stepper=0110

40c=0,r=0, e=1,l=011, servo=1,

strt=1, stepper=0110

45c=1,r=0, e=1,l=100, servo=1,

strt=1, stepper=0010

50c=0,r=0, e=1,l=100, servo=1,

strt=1, stepper=0010

55c=1,r=0, e=1,l=101, servo=1,

strt=1, stepper=0011

60c=0,r=0, e=1,l=101, servo=1,

strt=1, stepper=0011

65c=1,r=0, e=1,l=110, servo=1,

strt=1, stepper=0001

70c=0,r=0, e=1,l=110, servo=1,

strt=1, stepper=0001

75c=1,r=0, e=1,l=111, servo=1,

strt=1, stepper=1001

80c=0,r=0, e=1,l=111, servo=1,

strt=1, stepper=1001

85c=1,r=0, e=1,l=000, servo=0,

strt=1, stepper=1000

90c=0,r=0, e=1,l=000, servo=0,

strt=1, stepper=1000

95c=1,r=0, e=1,l=001, servo=1,

strt=1, stepper=1100

100c=0,r=0, e=1,l=001, servo=1,

strt=1, stepper=1100

105c=1,r=0, e=1,l=010, servo=1,

strt=1, stepper=0100

110c=0,r=0, e=1,l=010, servo=1,

strt=1, stepper=0100

115c=1,r=0, e=1,l=011, servo=1,

strt=1, stepper=0110

120c=0,r=0, e=1,l=011, servo=1,

strt=1, stepper=0110

125c=1,r=0, e=1,l=100, servo=1,

strt=1, stepper=0010

130c=0,r=0, e=1,l=100, servo=1,

strt=1, stepper=0010

135c=1,r=0, e=1,l=101, servo=1,

strt=1, stepper=0011

140c=0,r=0, e=1,l=101, servo=1,

strt=1, stepper=0011

145c=1,r=0, e=1,l=110, servo=1,

strt=1, stepper=0001

150c=0,r=0, e=1,l=110, servo=1,

strt=1, stepper=0001

155c=1,r=0, e=1,l=111, servo=1,

strt=1, stepper=1001

160c=0,r=0, e=1,l=111, servo=1,

strt=1, stepper=1001

165c=1,r=0, e=1,l=000, servo=0,

strt=1, stepper=1000

170c=0,r=0, e=1,l=000, servo=0,

strt=1, stepper=1000

175c=1,r=0, e=1,l=001, servo=1,

strt=1, stepper=1100

180c=0,r=0, e=1,l=001, servo=1,

strt=1, stepper=1100

185c=1,r=0, e=1,l=010, servo=1,

strt=1, stepper=0100

190c=0,r=0, e=1,l=010, servo=1,

strt=1, stepper=0100

195c=1,r=0, e=1,l=011, servo=1,

strt=1, stepper=0110

** Note: $finish :

C:/altera/13.0sp1/modelsim_ase/win32aloem/RC_Ser

vo & Stepper/SERVO_STEPPER_TB.v(53)

Time: 200 ps Iteration: 0 Instance: /css_test

1

Break in Module css_test at

C:/altera/13.0sp1/modelsim_ase/win32aloem/RC_Ser

vo & Stepper/SERVO_STEPPER_TB.v line 53[6]

C. RTL Code
module Counter_Servo_Stepper(clock, reset, enable, led,

Pin_servo, start, Pins_stepper);

/////////// 3 bit LED counter ////////////

input clock, reset, enable, start;

output [2:0] led;

reg [2:0] count;

always @ (posedge clock or posedge reset)

 if (reset) begin

 count <= 0;

 end

SSRG International Journal of VLSI & Signal Processing (SSRG - IJVSP) – Volume 2 Issue 3 Sep to Dec 2015

ISSN: 2394 - 2584 www.internationaljournalssrg.org Page 23

 else

 begin: COUNT

 while (enable) begin

 count <= count + 1;

 disable COUNT;

 end

 end

assign led = count;

 /////////// RC Servo ///////////////

///Using a 25MHz clock (40ns period), the first step is to

divide the clock to generate a "tick" of period as close as

possible to 3.9µs.

parameter CLOCK_DIVIDER = 98; //

25000000/1000/256 = 97.56

 output Pin_servo;

reg Pin_servo;

//Using the "ClkTick", we instantiate a 12-bits counter

that increments at every tick.

//Each tick lasts 3.9µs, so 256 ticks lasts 1ms, and the 12

bits counter "ClkTick" rolls-over every 16ms.

//Just what we need to generate a new pulse regularly.

reg [31:0] clockCount;

reg [11:0] ClkTick = 0;

always @ (posedge clock)

begin

 if(clockCount == CLOCK_DIVIDER-2) // a "tick" has

happened

 begin

 ClkTick <= ClkTick + 1;

 clockCount <= 0;

 end

 else

 clockCount <= clockCount + 1;

end

// Finally, we compare 12 bits to "ClkTick" to generate

the pulse

always @ (posedge clock) Pin_servo <= (ClkTick <

{~count, 5'b00000});

/////////// Stepper Motor - Half step method (using 28BYJ-

48) ///////////////

output [3:0] Pins_stepper ;

reg [3:0] Pins_stepper ;

reg [2:0] step ;

initial

step = 0; //8 positions for half step//

always @ (posedge clock)

begin

 if (start)

 step <= step + 1;

end

always @ (step) begin

 case (step)

 0: Pins_stepper <= 4'b1000;

 1: Pins_stepper <= 4'b1100;

 2: Pins_stepper <= 4'b0100;

 3: Pins_stepper <= 4'b0110;

 4: Pins_stepper <= 4'b0010;

 5: Pins_stepper <= 4'b0011;

 6: Pins_stepper <= 4'b0001;

 7: Pins_stepper <= 4'b1001;

 endcase

end

endmodule

D. Test Bench
module css_test;

 reg clock, reset, enable, start;

 wire [2:0] led;

 wire Pin_servo;

 wire [3:0] Pins_stepper;

 Counter_Servo_Stepper css1(clock, reset, enable, led,

Pin_servo, start, Pins_stepper);

 initial

 begin

 $monitor($time,"c=%b,r=%b, e=%b,l=%b, servo=%b,

strt=%b, stepper=%b",clock, reset, enable, led, Pin_servo,

start, Pins_stepper);

 end

initial

begin

#0 clock = 1'b0;

#10 clock = 1'b1;

end

initial

begin

#0 reset = 1'b1;

#10 reset = 1'b0;

end

initial

begin

#0 start = 1'b0;

SSRG International Journal of VLSI & Signal Processing (SSRG - IJVSP) – Volume 2 Issue 3 Sep to Dec 2015

ISSN: 2394 - 2584 www.internationaljournalssrg.org Page 24

#10 start = 1'b1;

end

initial

begin

 #0 enable = 1'b1;

end

 always #5 clock=~clock;

 initial

 #200 $finish;

 ENDMODULE

VI. CONCLUSION

As the final output of the test bench shows,

the stepper motor works just like the expected output.

The use of FPGA implements this servo motor will

allow less resources required to operate such devices

and will ensure mobility in the module. A

controllable system for the servo motor shall allow

this to work on multiple platforms with applications

of robotics, mechanical devices and many other

options.

ACKNOWLEDGMENT

With the name of The Almighty, The Most

Gracious and Merciful. Praise to Him for giving us

the will and strength to go through the entire project

and for giving us the opportunity to complete this

project report successfully.

First and foremost, we would like to express

our deepest gratitude and appreciation to our

respected supervisor, Mr. Iqbalur Rahman Rokon for

his guidance, advices, supervision and

encouragement in making the project. The valuable

and useful ideas that he had shared with us during the

project period are very much appreciated.

Special thanks to our beloved parents,

family members and friends for their help and

supports in producing this report. Lastly, we would

like to convey our gratitude to our team members and

other people who directly or indirectly help us in the

process of finishing this report.

REFERENCES
[1] [Kariyappa B. S; Dr. M. Uttara Kumari (2008). FPGA

Based Speed Control of AC Servomotor

Using Sinusoidal PWM. IJCSNS International Journal of

Computer Science and Network Security. Available at:

http:// paper.ijcsns.org/07_book/200810/20081053.pdf

[2] EP2C5T144C8 Cyclone II FPGA,

https://www.altera.com/literature/hb/cyc2/cyc2_cii5v1.pdf

accessed on 12th November, 2015

[3] 9 grams micro servo, https://solarbotics.com/product/25500/

accessed on 14th November, 2015

[4] 28-BYJ-48 stepper motor,

https://robocraft.ru/files/datasheet/28BYJ-48.pdf accessed

on 17th November, 2015

[5] ULN2003 Stepper Motor Driver,

http://www.elecrow.com/wiki/index.php?title=ULN2003_St

epper_Motor_Driver accessed on 17th November, 2015

[6] http://forum.allaboutcircuits.com/threads/3-bit-up-counter-

verilog-code.93600/ accessed on 22nd November, 2015

[7] http://verilogbynaresh.blogspot.com/2013/07/design-of-

stepper-motor-driver-full.html accessed on 25th November,

2015

[8] http://www.fpga4fun.com/RCServos.html accessed on 29th

November, 2015

