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Abstract: 

Nowadays modular multiplication of long 

integers is a significant building block for 

cryptographic algorithms. Even though numerous 

FPGA accelerators have been proposed for large 

modular multiplication, earlier systems have been 

based on basically on O (N2) algorithms. In this 

paper, we present a Montgomery multiplier that 

includes the more effective Karatsuba algorithm 

which is O (N (log 3/ log 2)). This system is 

parameterizable to different bit widths and makes 

exceptional use of both embedded multipliers and 

fine-grained logic. The design has expressively lower 

LUT-delay product and multiplier-delay product 

related with former designs. 
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I. INTRODUCTION 
Multiplication is the most time consuming 

process in various signal processing operations like 

Convolution, Circular Convolution, Cross 

Correlation, and autocorrelation, Image processing 

applications such as edge detection, microprocessors 

arithmetic and logical units etc. The performance of 

microprocessor is determined by performance of the 

multiplier. Multiplier operation is depends on the 

speed of adder. Speed of adder is affected to its path 

propagation delay. Thus the multiplier is usually 

slowest and area consuming element in the system. 

Our designs offer tradeoffs between Computational 

time area, latency and throughput for performing 

multiplication. Soto increase the speed of multiplier, 

it is requiring improving the speed of addition. In this 

approach it is required to find the longest critical 

paths in the multi-bit adders and then shortening the 

path to reduce the total critical path delay. A finite 

field or Galois field is a field that contains only 

finitely many elements. The finite fields are classified 

by size. This classification specifies the order of the 

field. Notations for the finite fields are GF (pm) or 

Fpm, where the letters ”GF” stand for “Galois field”. 

Modern cryptography intersects the disciplines of 

mathematics, computer science and engineering. In 

these applications, multiplication is the most common 

arithmetic. Thus it is desirable to design hardware 

efficient multiplier for GF (2m) to meet the real time 

requirement with minimum hardware complexity. 

There are three popular types of bases over finite 

fields: polynomial basis (PB), normal basis (NB) and 

dual basis(DB). Basis is a set of vectors that, in a 

linear combination, can represent every vector in a 

given vector space. Polynomialbasis is a 

mathematical function that is the sum  of a number of 

terms. Normal basis in field theory is a special k ind 

of basis for Galois extensions of finite degree, 

characterized as aforming a single orbit for the Galois 

group. Dual basis is a setof vectors that forms a basis 

for the dual space of a vector space. One advantage of 

the normal basis is that the squaring of an element is 

computed by a cyclic shift of the binary 

representation. The dual basis multipliers require less 

chip area than other two types. Modular 

multiplication consists of two steps: first aclassical 

multiplication and then a modular reduction. The 

straight forward multiplier is used to get speed 

efficient design while a Karatsuba multiplier is used 

to get an area efficient design. Merits are reduced 

hardware complexity and high throughput. 

 

II. LITERATURE SURVEY 

C.Grabbe, M.Bednara,J.Teich, [1] presented 

four high performance GF (2233) multipliers for an 

FPGA realization and analysed the time and area 

complexities. The finite field elements are 

represented as polynomial basis and normal basis. In 

polynomial basis, classical multiplier and Karatsuba 

multipliers were designed. The advantage of classical 

multiplier is regular structure and pipelined operation. 

The disadvantage is high space complexity. In 

Karatsuba multiplier the advantage is less number of 

gates are required. The normal basis multipliers are 

Massey- Omura and Sunar-Koc multiplier. The 

advantage of Massey-Omura is high flexibility and 

Sunar-Koc is total number of gates are reduced. 

P.L.Montgomery, [2] presented Karatsuba Of man 

algorithm for multiplying two polynomials. Here 

multiplication of 5-term, 6-term and 7-term 

polynomials are provided with scalar multiplication 

of 13, 17 and 22.Using 6-term polynomial only leads 

to better asymptotic performance than standard 

karatsuba. 

 

C.Paar, [3] presented a new bit parallel 

structure for a multiplier with low space complexity 

in Galois field is introduced. Finite field of GF(2n) is 

considered and field extension of GF((2n)m). The 

field elements are represented in the canonical base or 

in standard basis. Field of the form GF((2n) m) are 
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referred as composite field. Karatsuba Of man 

algorithm is used to multiply two polynomials 

effectively. Advantages are complexity is reduced by 

introducing the composite field. The main 

disadvantage is security is less and does not have a 

regular structure. 

 

C.Rebeirno and D.Mukhopadhyay, [4] 

presented a hybridtechnique which has a better area 

delay product. Masking strategies are introduced to 

prevent power based side channel attacks on the 

multiplier. SCAs are the biggest threat to modern 

cryptography systems. In basic recursive KM, the 

number LUTs required to combine the partial 

products ismuch lower but it cannot applied directly 

to ECC. The hybrid KM requires least resources as 

compared to other KMs used for elliptic curve 

arithmetic; also it has a unique architecture. Demerits 

are it is not efficient for FPGA platform as the 

number of utilized LUTs is 65%. 

 

A.Reyhani-Masoleh and A.Hasan, [5] 

presented a new bit parallel structure for the 

polynomial basis multiplication which is applicable to 

all type of irreducible binary polynomial. The main 

advantage of this new formulation is that it can be 

used with any field defining irreducible polynomial. 

Then a bit parallel hardware architecture 

generalization is provided. The architecture consists 

of two parts IP network and Q network. The space 

and time complexities are analysed as a function of 

reduction matrix Q. the main advantage is only fewer 

number of lines are require don the bus. 

 

III. PROPOSED ALGORITHM 

The basic to our Montgomery multiplier 

design is there cursive Karatsuba algorithm. This 

permits us to calculate modular multiplication with a 

complexity approaching O(N (log 3/ log 2)). 

Background on the Karatsuba algorithmis 

provided in Section A. Our design uses multiple-

precision arithmetic techniques so that the critical 

path delay is independent of the multiplier’s bit-

width. Except stated otherwise, we assume we are 

multiplying two 2k-bit unsigned integers and the 

limb-widths of all components are w. The number of 

limbs in a 2k-bit word is (2s =[2k/w]). We use either a 

coarse-grained carry-save technique or a pipelined 

multiple-precision technique in all 

of our adders and subtractor. The critical path of the 

circuit primarily depends upon the limb-width w. 

A. Karatsuba Algorithm 

The Karatsuba multiplication algorithm was 

proposed by Karatsuba and Of man in 1962 [13].To 

illustrate the algorithm, we let X and Y be two 2k-bit 

unsigned integers and split them both in half. 

X = 2kX1 + X0 and Y = 2kY1 + Y0 

In conventional long multiplication, the product XY 

is computed with four k-bit multiplications and three 

additions as shown Equation 1. 

XY = 22kz2 + 2kz1 + z0 

z2 = X1Y1, z1 = X0Y1 + X1Y0, z0 = X0Y0……….. (1) 

As shown in Equation 2, Karatsuba noticed that the 

middle term z1 can be computed reusing the terms z2 

and z0. Reusing these terms allow us to replace two of 

the multiplication sand one addition with four 

additions/subtractions and one multiplication. 

z1 = X0Y1 + X1Y0 

= X1Y1 + X0Y0 − (X1 − X0) (Y1 − Y0) 

= z2 + z0 − (X1 − X0) (Y1 − Y0) 

XY = T1 − T2 

T1= 22kz2 + z0 + 2k (z2 + z0) 

T2= 2k(X1 − X0) (Y1 − Y0) …………….. (2) 

B.  High-Level Architecture 

We designed a parameterizable Karatsuba 

layer and apply it recursively. In our prototype 

architecture, we achieve high performance by fully 

parallelizing and pipelining all Karatsubalayers. 

We also optimized the original Karatsuba 

algorithm to suit our hardware implementation. First, 

instead of computing the product of two 2’s 

complement numbers (T2) in Equation 2,we compute 

the absolute value of (X1 − X0) and (Y1 − Y0).These 

absolute values are then added to or subtracted from 

thefirst term (T1). Second, we take advantage of the 

fact that thesum (lower half z2 + upper half z0) 

actually appears twice andrearrange T1as Equation 3. 

This allows us to remove somelogic required for the 

addition. 

T1= z00 + (22k + 2k) (z01 + z20) 

+ 2kz00 + 22kz20 + 23kz21 

z0 = 2kz01 + z00…………………………………… (3) 

Figure 1 shows the block diagram of a single 

level of our recursive Karatsuba multiplier for 2k-bit 

inputs. It is constructed from three k-bit Karatsuba 

multipliers (or embedded multipliers if k is equal to 

or smaller than the native multiplier bit-width).  
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Fig. 1. Block Diagram of Recursive Karatsuba 

Multiplier. 

We use a coarse-grained carry-save 

adder(CGCSA) for the first three additions in the 

middle 2k-bits.Pipelined multiple-precision adders 

are used in the 3-inputadder, the final adder logic and 

the absolute value units. They are carefully pipelined 

to minimize latency while achieving high clock 

frequency. 

C.  Detailed Implementation 

We indicate (d = L(z2),U(z0)) as the first 

input to the coarsegrained carry-save adder, (e = 

U(z0),L(z2)) as the secondand (f = U(z2),L(z0)) as the 

third. Figure 2 shows a block diagram of an example 

3-input CGCSA with 4 limbs. In the first cycle, the 

lower half of inputs d and e are summed limb wise, 

producing a k-bit partial sum and an s-bit coarse-

grained carry. These sums and carries are then 

duplicated and added to a registered version of input 

f. The 3-input adder generatesa 2k-bit partial sums 

(s), coarse-grained carries (c1[2s− 2...0])and two 

MSB carries (c0 and c1[2s − 1]). Shown in Figure 

1,the partial sum and coarse-grained carries are fed 

into the 3-input multiple-precision adder/subtracter, 

while the two MSB carries are pipelined and fed into 

the final adder. 

 
Fig. 2. An Example 3-Input Coarse Grained Carry-Save 

Adder with 4 Limbs. 

As shown in Figure 1, the 3-input pipelined 

ripple-carry adder / subtracter is used to combine the 

partial sum and coarse-grained carries from the 

CGCSA and add or subtract the third partial product 

(X1−X0) (Y1−Y0), depending on the signs from the 

absolute value units. Figure 3 shows an example3-

input adder/ subtracter with 4 limbs. g, s, and C1[i] 

represent the partial product from the third multiplier, 

and the partialsum and coarse-grained carries from 

the GCCSA, respectively. The absolute value units 

and the final adder have a similar construction as the 

ripple-carry adder. A special circuit is used to reduce 

the four 1-bit carries to a 2-bits sum before it is fed 

into a k-bit adder. 

 
Fig. 3. Multiple-Precision 3-Input Adder / Subtracter. 

 

Although our recursive Karatsuba multiplier 

provides integer multiplication with low complexity, 

its input to output latency grows quickly with the 

number of bits. To solve this problem, we propose a 

batch-pipelined architecture that can hide the long 

latency with data level parallelism. A universal data 

path is constructed using the Karatsuba multiplier, 

ripple adder / subtracter and shifter to compute step 1, 

2, (3 and 4)of Algorithm 1 in three passes. 

 

IV. RESULT AND DISCUSSION 

Figure 4 shows the resource utilization of 

batch-pipelined Montgomery multipliers with 

different bitwidths. We found the designs’ clock 

frequencies are lower than the theoretical 400 MHz 

limit. A major contributor to this is likely increased 

routing delay in large designs as the average 

separation between components increases. We could 

reduce this routing delay by inserting additional 

pipelining registers. 

Fig. 4. Result of our Batch-Pipelined Montgomery 

Multipliers. 
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V. CONCLUSION 

In this paper, we offered a Karatsuba-based 

Montgomery multiplier for cryptography applications 

using long integers. The multipliers have expressively 

lower area-delay products related with earlier 

designs. They also be responsible for exceptional 

performance and energy efficiency related with 

software implementations. 
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