
SSRG International Journal of VLSI & Signal Processing (SSRG – IJVSP) – Volume 3 Issue 1 Jan to April 2016

ISSN: 2394 - 2584 www.internationaljournalssrg.org Page 1

An Efficient Implementation of Multipliers for

ASIC Implementations
1K.Sucharitha,2P. Rahul Reddy,

1Assistant Professor, Dept of ECE, Ramanandatirtha Engineering College, Nalgonda, India
2 Associate Professor, Dept of ECE, Swami Ramananda Tirtha Institute of Science & Technology, Nalgonda,

India.

Abstract:

Nowadays modular multiplication of long

integers is a significant building block for

cryptographic algorithms. Even though numerous

FPGA accelerators have been proposed for large

modular multiplication, earlier systems have been

based on basically on O (N2) algorithms. In this

paper, we present a Montgomery multiplier that

includes the more effective Karatsuba algorithm

which is O (N (log 3/ log 2)). This system is

parameterizable to different bit widths and makes

exceptional use of both embedded multipliers and

fine-grained logic. The design has expressively lower

LUT-delay product and multiplier-delay product

related with former designs.

Keywords:Cryptograph, FPGA, Galois field,

Karatsuba Multiplier

I. INTRODUCTION
Multiplication is the most time consuming

process in various signal processing operations like

Convolution, Circular Convolution, Cross

Correlation, and autocorrelation, Image processing

applications such as edge detection, microprocessors

arithmetic and logical units etc. The performance of

microprocessor is determined by performance of the

multiplier. Multiplier operation is depends on the

speed of adder. Speed of adder is affected to its path

propagation delay. Thus the multiplier is usually

slowest and area consuming element in the system.

Our designs offer tradeoffs between Computational

time area, latency and throughput for performing

multiplication. Soto increase the speed of multiplier,

it is requiring improving the speed of addition. In this

approach it is required to find the longest critical

paths in the multi-bit adders and then shortening the

path to reduce the total critical path delay. A finite

field or Galois field is a field that contains only

finitely many elements. The finite fields are classified

by size. This classification specifies the order of the

field. Notations for the finite fields are GF (pm) or

Fpm, where the letters ”GF” stand for “Galois field”.

Modern cryptography intersects the disciplines of

mathematics, computer science and engineering. In

these applications, multiplication is the most common

arithmetic. Thus it is desirable to design hardware

efficient multiplier for GF (2m) to meet the real time

requirement with minimum hardware complexity.

There are three popular types of bases over finite

fields: polynomial basis (PB), normal basis (NB) and

dual basis(DB). Basis is a set of vectors that, in a

linear combination, can represent every vector in a

given vector space. Polynomialbasis is a

mathematical function that is the sum of a number of

terms. Normal basis in field theory is a special k ind

of basis for Galois extensions of finite degree,

characterized as aforming a single orbit for the Galois

group. Dual basis is a setof vectors that forms a basis

for the dual space of a vector space. One advantage of

the normal basis is that the squaring of an element is

computed by a cyclic shift of the binary

representation. The dual basis multipliers require less

chip area than other two types. Modular

multiplication consists of two steps: first aclassical

multiplication and then a modular reduction. The

straight forward multiplier is used to get speed

efficient design while a Karatsuba multiplier is used

to get an area efficient design. Merits are reduced

hardware complexity and high throughput.

II. LITERATURE SURVEY

C.Grabbe, M.Bednara,J.Teich, [1] presented

four high performance GF (2233) multipliers for an

FPGA realization and analysed the time and area

complexities. The finite field elements are

represented as polynomial basis and normal basis. In

polynomial basis, classical multiplier and Karatsuba

multipliers were designed. The advantage of classical

multiplier is regular structure and pipelined operation.

The disadvantage is high space complexity. In

Karatsuba multiplier the advantage is less number of

gates are required. The normal basis multipliers are

Massey- Omura and Sunar-Koc multiplier. The

advantage of Massey-Omura is high flexibility and

Sunar-Koc is total number of gates are reduced.

P.L.Montgomery, [2] presented Karatsuba Of man

algorithm for multiplying two polynomials. Here

multiplication of 5-term, 6-term and 7-term

polynomials are provided with scalar multiplication

of 13, 17 and 22.Using 6-term polynomial only leads

to better asymptotic performance than standard

karatsuba.

C.Paar, [3] presented a new bit parallel

structure for a multiplier with low space complexity

in Galois field is introduced. Finite field of GF(2n) is

considered and field extension of GF((2n)m). The

field elements are represented in the canonical base or

in standard basis. Field of the form GF((2n) m) are

SSRG International Journal of VLSI & Signal Processing (SSRG – IJVSP) – Volume 3 Issue 1 Jan to April 2016

ISSN: 2394 - 2584 www.internationaljournalssrg.org Page 2

referred as composite field. Karatsuba Of man

algorithm is used to multiply two polynomials

effectively. Advantages are complexity is reduced by

introducing the composite field. The main

disadvantage is security is less and does not have a

regular structure.

C.Rebeirno and D.Mukhopadhyay, [4]

presented a hybridtechnique which has a better area

delay product. Masking strategies are introduced to

prevent power based side channel attacks on the

multiplier. SCAs are the biggest threat to modern

cryptography systems. In basic recursive KM, the

number LUTs required to combine the partial

products ismuch lower but it cannot applied directly

to ECC. The hybrid KM requires least resources as

compared to other KMs used for elliptic curve

arithmetic; also it has a unique architecture. Demerits

are it is not efficient for FPGA platform as the

number of utilized LUTs is 65%.

A.Reyhani-Masoleh and A.Hasan, [5]

presented a new bit parallel structure for the

polynomial basis multiplication which is applicable to

all type of irreducible binary polynomial. The main

advantage of this new formulation is that it can be

used with any field defining irreducible polynomial.

Then a bit parallel hardware architecture

generalization is provided. The architecture consists

of two parts IP network and Q network. The space

and time complexities are analysed as a function of

reduction matrix Q. the main advantage is only fewer

number of lines are require don the bus.

III. PROPOSED ALGORITHM

The basic to our Montgomery multiplier

design is there cursive Karatsuba algorithm. This

permits us to calculate modular multiplication with a

complexity approaching O(N (log 3/ log 2)).

Background on the Karatsuba algorithmis

provided in Section A. Our design uses multiple-

precision arithmetic techniques so that the critical

path delay is independent of the multiplier’s bit-

width. Except stated otherwise, we assume we are

multiplying two 2k-bit unsigned integers and the

limb-widths of all components are w. The number of

limbs in a 2k-bit word is (2s =[2k/w]). We use either a

coarse-grained carry-save technique or a pipelined

multiple-precision technique in all

of our adders and subtractor. The critical path of the

circuit primarily depends upon the limb-width w.

A. Karatsuba Algorithm

The Karatsuba multiplication algorithm was

proposed by Karatsuba and Of man in 1962 [13].To

illustrate the algorithm, we let X and Y be two 2k-bit

unsigned integers and split them both in half.

X = 2kX1 + X0 and Y = 2kY1 + Y0

In conventional long multiplication, the product XY

is computed with four k-bit multiplications and three

additions as shown Equation 1.

XY = 22kz2 + 2kz1 + z0

z2 = X1Y1, z1 = X0Y1 + X1Y0, z0 = X0Y0……….. (1)

As shown in Equation 2, Karatsuba noticed that the

middle term z1 can be computed reusing the terms z2

and z0. Reusing these terms allow us to replace two of

the multiplication sand one addition with four

additions/subtractions and one multiplication.

z1 = X0Y1 + X1Y0

= X1Y1 + X0Y0 − (X1 − X0) (Y1 − Y0)

= z2 + z0 − (X1 − X0) (Y1 − Y0)

XY = T1 − T2

T1= 22kz2 + z0 + 2k (z2 + z0)

T2= 2k(X1 − X0) (Y1 − Y0) …………….. (2)

B. High-Level Architecture

We designed a parameterizable Karatsuba

layer and apply it recursively. In our prototype

architecture, we achieve high performance by fully

parallelizing and pipelining all Karatsubalayers.

We also optimized the original Karatsuba

algorithm to suit our hardware implementation. First,

instead of computing the product of two 2’s

complement numbers (T2) in Equation 2,we compute

the absolute value of (X1 − X0) and (Y1 − Y0).These

absolute values are then added to or subtracted from

thefirst term (T1). Second, we take advantage of the

fact that thesum (lower half z2 + upper half z0)

actually appears twice andrearrange T1as Equation 3.

This allows us to remove somelogic required for the

addition.

T1= z00 + (22k + 2k) (z01 + z20)

+ 2kz00 + 22kz20 + 23kz21

z0 = 2kz01 + z00…………………………………… (3)

Figure 1 shows the block diagram of a single

level of our recursive Karatsuba multiplier for 2k-bit

inputs. It is constructed from three k-bit Karatsuba

multipliers (or embedded multipliers if k is equal to

or smaller than the native multiplier bit-width).

SSRG International Journal of VLSI & Signal Processing (SSRG – IJVSP) – Volume 3 Issue 1 Jan to April 2016

ISSN: 2394 - 2584 www.internationaljournalssrg.org Page 3

Fig. 1. Block Diagram of Recursive Karatsuba

Multiplier.

We use a coarse-grained carry-save

adder(CGCSA) for the first three additions in the

middle 2k-bits.Pipelined multiple-precision adders

are used in the 3-inputadder, the final adder logic and

the absolute value units. They are carefully pipelined

to minimize latency while achieving high clock

frequency.

C. Detailed Implementation

We indicate (d = L(z2),U(z0)) as the first

input to the coarsegrained carry-save adder, (e =

U(z0),L(z2)) as the secondand (f = U(z2),L(z0)) as the

third. Figure 2 shows a block diagram of an example

3-input CGCSA with 4 limbs. In the first cycle, the

lower half of inputs d and e are summed limb wise,

producing a k-bit partial sum and an s-bit coarse-

grained carry. These sums and carries are then

duplicated and added to a registered version of input

f. The 3-input adder generatesa 2k-bit partial sums

(s), coarse-grained carries (c1[2s− 2...0])and two

MSB carries (c0 and c1[2s − 1]). Shown in Figure

1,the partial sum and coarse-grained carries are fed

into the 3-input multiple-precision adder/subtracter,

while the two MSB carries are pipelined and fed into

the final adder.

Fig. 2. An Example 3-Input Coarse Grained Carry-Save

Adder with 4 Limbs.

As shown in Figure 1, the 3-input pipelined

ripple-carry adder / subtracter is used to combine the

partial sum and coarse-grained carries from the

CGCSA and add or subtract the third partial product

(X1−X0) (Y1−Y0), depending on the signs from the

absolute value units. Figure 3 shows an example3-

input adder/ subtracter with 4 limbs. g, s, and C1[i]

represent the partial product from the third multiplier,

and the partialsum and coarse-grained carries from

the GCCSA, respectively. The absolute value units

and the final adder have a similar construction as the

ripple-carry adder. A special circuit is used to reduce

the four 1-bit carries to a 2-bits sum before it is fed

into a k-bit adder.

Fig. 3. Multiple-Precision 3-Input Adder / Subtracter.

Although our recursive Karatsuba multiplier

provides integer multiplication with low complexity,

its input to output latency grows quickly with the

number of bits. To solve this problem, we propose a

batch-pipelined architecture that can hide the long

latency with data level parallelism. A universal data

path is constructed using the Karatsuba multiplier,

ripple adder / subtracter and shifter to compute step 1,

2, (3 and 4)of Algorithm 1 in three passes.

IV. RESULT AND DISCUSSION

Figure 4 shows the resource utilization of

batch-pipelined Montgomery multipliers with

different bitwidths. We found the designs’ clock

frequencies are lower than the theoretical 400 MHz

limit. A major contributor to this is likely increased

routing delay in large designs as the average

separation between components increases. We could

reduce this routing delay by inserting additional

pipelining registers.

Fig. 4. Result of our Batch-Pipelined Montgomery

Multipliers.

SSRG International Journal of VLSI & Signal Processing (SSRG – IJVSP) – Volume 3 Issue 1 Jan to April 2016

ISSN: 2394 - 2584 www.internationaljournalssrg.org Page 4

V. CONCLUSION

In this paper, we offered a Karatsuba-based

Montgomery multiplier for cryptography applications

using long integers. The multipliers have expressively

lower area-delay products related with earlier

designs. They also be responsible for exceptional

performance and energy efficiency related with

software implementations.

REFERENCES
[1] C.Grabbe,M.Bednara,J.Teich,J.von zur Gathen, and

J.Shokrollahi,” FPGA designs of parallel high

performanceGF(2233) multipliers,” in

Proc.Int.Symp.Circuits Syst.(ISCAS),May 2003,pp.268-271.

[2] P.L.Montgomery,” Five, six, and seven-term Karatsuba like

formulae,” IEEE Trans.Comput., vol.54, no.3, pp.362-369,

Mar.2005.

[3] C.Paar, A new architecture for a parallel finite field

multiplier with low complexity based on composite

fields,IEEE Trans.Comput.,vol.45,no.7,pp.856-861,1996.

[4] C.Rebeiro and D.Mukhopadhyay,” Power attack

resistantefficient FPGA architecture for Karatsuba

multiplier,” in Proc.Int.Conf.VLSI Des.,2008,pp.706-711

N.S.Kim, T.Mudge, and R.Brown, “A 2.3 Gb/s fully

integrated and synthesizable AES rinjdael core,” in proc.

IEEE Custom Integrated Circuits Conf., 2003, pp.193-196.

[5] A.Reyhani-Masoleh and A.Hasan,”Low complexity bit

parallel architecture for polynomial basis multiplication over

GF (2m),” IEEE Trans.Comput., vol.53, no.8, pp.945- 995,

Aug.2004.

[6] A. Daly and W. Marnane, “Efficient architectures for

implementing Montgomery modular multiplication and RSA

modular exponentiation on reconfigurable logic,” in Proc.

FPGA. New York, NY, USA: ACM, 2002, pp. 40–49.

[7] D. Narh Amanor, C. Paar, J. Pelzl, V. Bunimov, and M.

Schimmler, “Efficient hardware architectures for modular

multiplication on FPGAs,” in Proc. FPL, Aug. 2005, pp. 539

– 542.

[8] S. Ors, L. Batina, B. Preneel, and J. Vandewalle, “Hardware

implementation of a Montgomery modular multiplier in a

systolic array,” in in Proc. International Parallel and

Distributed Processing Symposium, April 2003, p. 8 pp.

