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Abstract: 

In this work, we propose an efficient 

architecture for BCG signal filtering using least 

means square adaptive filter.  To achieve the less 

delay for adaption, less power consumption, we have 

used optimized pipelining based scheme across the 

combinational blocks. This scheme uses a new 

scheme to reduce the delay by updating the weights of 

the input sample. Updated weights and input samples 

are passed to the next stage of the filtering before 

arrival of the next sample. This scheme is 

implemented for ,  and  

filtering scheme using Xilinx ISE simulator 

performance of the model is evaluated in terms of 

power delay and frequency. Results shows the 

efficient performance of the architecture in terms of 

frequency, for 2-tap, 3-tap and 4-tap filtering scheme, 

operating frequency is achieved 528.513 MHz  

 

I. INTRODUCTION 

During the recent advancements in the 

medical field, EEG and BCG signal are used for the 

continuous health monitoring system. Information 

extracted from the recording of EEG and BCG 

provides the efficient study of the brain activities. 

This information of brain activities is used by 

neuroscientists; the nature of this is nonreproducible 

which makes it difficult to study with separate EEG.  

EEG recording data is affected due to the patient 

body interaction, electrodes and magnetic field.  

Electromagnetic field is generated during the imaging 

due to the switching between magnetic fields.  Due to 

this, EEG signals are obscured with a regular artifact 

with an amplitude of 100 time greater compared to 

EEG amplitude [1].  

 

Another source of artifact is tilting-

movement of user’s head during the MR scanning. 

This type of artifacts can be classified into two 

categories:  first category of artifacts considers head 

movement, amplitudes etc.  Another group of artifact 

is called ballistocardiogram (BCG), which is caused 

by the micro movements of head which result of 

cardiac pulsation and affects the alpha frequency (8-

13 Hz) of EEG with amplitude of around .  

BCG is a technique to assess the information about 

myocardial and vascular health.  These signals results 

from the on body due to the reactions caused by 

cardiac ejection of blood through the vasculature.  

BCG signals gives the information about the 

contraction and relaxation of heart, hence, myocardial 

function can be analyzed by using BCG signal. 

 

Various approaches have been proposed in 

recent years for BCG measurement. These 

approaches include tables, beds, chairs, weighing 

scales and electromagnets [3]. These systems using 

weighing scales have various advantages in terms of 

ease of use, reliability etc. 

 

But these devices having some 

disadvantages for measurement of BCG due to the 

motion artifacts and vibrations of floor. The motion 

artifacts are induced due the subject’s movement 

during signal recording, similarly during recording 

the floor vibration also induces vibration in to the 

original signal.  During recent years several 

approaches have been proposed to remove the 

artifacts. A. Hoffmann et al [2] proposed a filtering 

scheme to remove the artifacts, according to this 

approach; the signal is filtered out whose frequencies 

related to the powerspectrum template.  

 

In an early attempt to remove the BCG 

artifact, a method based on average subtraction has 

been proposed in [1]. The QRS complexes of 

subject’s ECG are first detected. Then, a limited 

number of the EEG signal slices corresponding to the 

QRS timing are averaged to create a template for the 

BCG artifact to be reduced from each channel. This 

method, which is called average artifact subtraction 

(AAS), is very popular [2]. However, the assumption 

that all the waveforms are similar during the scans is 

not always valid [8]. In order to deal with the heart 

beat timing variations a weighted averaging approach 

is proposed in a subsequent study [12]. In [7], the 

problem of variability of the artifact is addressed 

using a clustering algorithm. For all the methods, 

which are based on averaging technique, a reference 

ECG channel is essential. However, in some cases, 

this channel is not present or the heart beats are not 

accurately detectable. A new type of multipath EEG 

cap is proposed in [13] that oversamples the electrode 

space to provide an overcomplete representation of 
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the data. Using the assumption that neural activity is 

Kirchhoffian and the BCG artifacts are not, the 

artifacts are removed by solving an overcomplete 

representation of the single trial EEG data. Adaptive 

filtering has also been used for BCG removal [9], 

[11], [14]. The reference signal comes from a 

movement detector, i.e., a piezoelectric sensor, 

attached to the body of the subject inside the scanner 

[9] and instead of a simple averaging, median 

filtering is used to create the BCG template [11]. The 

authors in [15] enhanced their work by exploiting 

both average subtraction and adaptive filtering. 

Different independent component analysis (ICA)-

based methods have also been used for BCG removal 

[2], [16]–[18]. These methods assume that the brain 

neural activity including evoked potentials, 

oscillatory waves, artifacts caused by muscles, and 

noise are all mixed linearly and are independent or at 

least can be categorized in groups of independent 

components. As aforementioned, three phenomena 

with different characteristics generate the BCG 

artifact. It implies that BCG consists of more than one 

independent component added linearly to the EEG 

data [1], [10]. Hence, the artifact can still be 

separated using ICA methods. The advantage of these 

methods is that they do not require ECG channel. 

More importantly, they do not assume that the BCG 

artifacts are reproducible. Infomax  [17] is used in [19] 

to extract the BCG sources. In [16], fastICA [20], [21] 

is utilized to remove imaging, BCG, and occular 

artifacts. In a comparative work, the performance of 

Infomax, fastICA, second-order blind identification 

(SOBI) [22], and complexity pursuit [23] are 

evaluated and compared to the AAS in [2]. A 

sequential blind extraction method [24] is used in [18] 

to extract the BCG artifacts and a simple peak 

detector is utilized to track the time varying period. 

Based on the assumption that each occurrence of the 

BCG artifact in any EEG channel is independent of 

the previous observations, principal component 

analysis is employed in the optimal basis set (OBS) 

method [8]. In the next step, for each EEG channel 

few of the principal components are chosen as the 

basis set, which is then fitted (scaled in time and 

amplitude) and subtracted from each BCG instance. 

To remove any possible BCG residuals, it is proposed 

in [4] to apply Infomax to the OBS output. 

 

An important issue of concern in BCG 

artifact removal is selecting the correct number of 

BCG components. In ICA-based methods, an 

incorrect assumption about the number of BCGs may 

influence the independence assumption. It is assumed 

in [2] that the BCG artifacts are caused only by head 

movements inside the scanner. In this case, it is 

mathematically and experimentally shown that the 

number of independent BCG components is three. 

Their experiments also show that assuming three 

BCG components provides reliable results. In another 

attempt, the number of components is not set fixed 

and three to six independent components are chosen 

for different subjects by thresholding the correlation 

of the estimated independent components (ICs) with 

the ECG channel [16]. The authors in [8] opted a 

conservative approach and fixed the number of 

components to three. In [13], only the strongest 

component (in terms of power) from the ICA 

decomposition of the EEG data is labeled as BCG. In 

this paper, we propose an ICA-based blind source 

extraction method for extracting the sources with 

periodic statistics. Similar to other ICA methods, it is 

assumed that the original sources and the mixing 

medium are generally unknown; however, a priori 

knowledge about the periodicities helps to improve 

the extraction performance [25]. This method, called 

Cyclostationary source extraction (CSE), is used to 

remove the BCG artifacts from the EEG data 

recorded inside the MR scanner. The period of the 

second-order statistics is obtained directly from the 

EEG data (availability of the ECG channel, necessary 

to some of the other removal methods is not essential 

here). In order to find the appropriate number of BCG 

components, we analyze the outputs of different 

methods using the defined performance indices. 

Moreover, we show that the proposed method 

preserves the remaining data better than the other 

methods. 

 

In this work we propose a new approach for 

BCG signal filtering by using modified LMS scheme. 

The proposed scheme is implemented using 

MATLAB tool and simulated using Xilinx ISE 

simulator to evaluate the performance of the proposed 

filtering architecture. Comparative study is presented 

to show the efficiency of the proposed model in terms 

of delay, slices-LUTs and power.  

 

Remaining paper is organized as follows: 

Section II discuss about the related work for BCG 

filtering. Proposed model is described in section III, 

results and discussion is mentioned in section IV and 

finally the work is concluded in section V. 

 

II. RELATED WORK 

In this section we discuss about the most 

recent works, proposed for the artifact removal from 

BCG signal using various filtering techniques. As we 

have discussed in previous section BCG signal is 

important signal for extracting the information about 

human brain and activities but artifacts are very 

strong in this signal. These artifacts are caused by 

electromagnetic induction from heart-beat related 

movement and flow-related movements in a subject 

[12]. Several methods have been proposed for 

removing BCG artifacts from EEG. These include 

averaging [2], independent component analysis (ICA) 

[3], adaptive filtering [4], and PCA ―optimal basis 

sets‖ (OBSs) [5]. These methods can provide cleaner 

looking EEG with reduced power at the BCG 

frequencies; however, in our hands, they reduce 
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single-trial EEG classification performance when 

compared to not removing BCG at all, i.e., these 

methods attenuate or distort that part of the 

underlying neural signal that is informative for 

single-trial classification. This finding may be 

specific to situations where the number of trials is 

extremely limited. However, for such cases, single-

trial classification methods are appealing because 

they are supervised and multivariate (e.g., can 

integrate spatially), and are hence applicable to 

recordings with very low SNR [6], [7]. Template- or 

regression-based BCG removal approaches assume 

that the BCG artifact is reproducible and that a 

reference ECG recording is available. ICA 

approaches, on the other hand, are appealing because 

they do not rely on an ECG regressor signal and do 

not assume that the artifact is exactly reproducible. 

However, for ICA, the artifact is extracted by linear 

unmixing using matrices that are estimated blindly 

from the data. Hence, the ICA approach can unmix 

only to the extent that the mixture model is valid in 

combination with the independence assumption. 

Continuous measurement of BCG signals using a 

wearable device would greatly enhance the 

capabilities of the technique for assessing 

cardiovascular health at home. If BCG signals were 

continuously obtained throughout the day and night, 

then specific responses of cardiac output and 

contractility to perturbations such as ambient 

temperature [19], posture [20], activity [21], and 

sleep [22] could be gathered, and a more 

comprehensive picture of the person’s cardiovascular 

health could be obtained. Accordingly, researchers 

have developed wearable systems based on miniature 

accelerometers to attempt to measure BCG signals 

continuously [23], [24]. However, since the 

morphology and timing of these signals are 

significantly different from BCG signals measured 

using the weighing scale [25], or other historical 

techniques such as the Starr Table [11], the analysis 

and interpretation techniques developed for BCG 

signals should not directly be applied to these 

wearable acceleration measurements. For example, 

while the time interval between the electrocardiogram 

(ECG) R-wave peak and the BCG J-wave peak—the 

R–J interval—was typically 250 ms for a healthy 

adult [17] measured with the static-charge-sensitive 

bed apparatus, and ranged from 203–290 ms for 92 

healthy subjects participating in a study with the 

weighing scale system [26], for the accelerometer-

based wearable system the R–J interval was found to 

be between 150–180 ms [23]. Similar results were 

found by Wiard et al., with an accelerometer-based 

BCG system where the R–J interval was 133 ms [27]. 

Cardiac timing measurements such as the R–J 

interval are clinically important for a number of 

reasons. Calcium ions regulate contractility and 

relaxation of the heart, and recycling of these ions 

controls the timing of cardiac events. Regulation of 

calcium ions is thus critically important in 

mechanical dysfunction and arrhythmia. 

 

III.  PROPOSED MODEL 

In this section we discuss about the LMS 

algorithm for filtering.  According to this approach 

the estimated signal’s interval is computed and 

subtracted from the desired output signal. This 

computed error is used to perform the updation of tap 

coefficients before arrival of the next sample. 

However, in the existing approach of LMS filtering, 

the disadvantage is resultant delay from the decision 

making process. Similar issues arises in the parallel 

architectures i.e. pipeline structure or a systolic 

architecture which causes delay in to the architecture. 

Due to these issues we propose a new architecture of 

signal filtering by using weight update process. 

Weight update is done by using following equation 1. 

 

 (1)   

Error computed is given as: 

 (2)  

And the filtered output is given as 

 (3)  

 is the input vector which can be denoted as 

 (4)  

Coefficient vectors are given as 

 (5)  

 is desired signal,  represents the error vector 

 
For the optimization of the mean square error 

we use averaging on the output signal, this is achieved 

by performing on the input signal and error signal. 

Equation (2) and (3) represents the conventional LMS 

algorithm, by using equation (1) we achieve the optimal 

solution for the weights which is given as  and can 

be computed as 

 
(6)  

 

Where and 

 

 
Figure.1. shows the architecture of the LMS 

algorithm for signal filtering. This architecture 

contains FIR filtering block, and weight update block. 

Weight updation of LMS adaptive filter takes place 
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during each iteration. This process in  iteration can 

be defined as: 

 
(7)  

Where  is the computed error,  denotes the step-

size ,  is the input vector. 

In other way,  can be written as: 

 (8)  

Where  is the desired response of the 

signal,  is the filtered output signal which is 

computed by using equation (3)  

 
(9)  

 is the weight vector in iteration 

 and  are given as  

 (10)  

 

 (11)  

 

In pipelined architecture, error is achieved 

after the m delay cycles,  is denoted as the adaption 

delay of the architecture. In the proposed DLMS 

algorithm delayed error is used for updating the 

current weight. 

This process of weight update is given by  

 

 (12)  

 

According to this proposed design, the 

architecture is divided in to two parts: (i) reducing the 

delay using pipeline architecture and (ii) weight 

updation  

Weight updation of proposed LMS algorithm can be 

written as 

 (13)  

 

Where  

And  

 
(14)  

 

The proposed modified LMS algorithm 

performs the computation of error-blocks and weight-

updating blocks. This process allows to utilize the 

pipelining operation by using feed-forward method 

and results into the pipeline stages and reduces the 

adaption delay. 

 

A. Weight Updation 

During the weight updation process  

operation of multiply and accumulate are performed 

to update the weight of each data. In order to update 

the weight, the step size  is considered as a negative 

power by performing the shift operation. This process 

is continued on each input sample which follows the 

addition corresponding to the previous weights. 

 

B. Delay Adaption 

Delayed error generated by the error-

computation block at each cycle is given to the weigh 

update block which is scaled by .  This process 

results in the delay of  cycle and then total delay , 

introduced by  FIR filters  is computed. 

 

C. Error Computation 

Proposed architecture of  LMS 

filtercontains error-computation block which consist 

of product generator, multplier, adder , substractor etc. 

Product generator block recives the input from the 

original signal and performs the multiplication with 

the defined step size to achieve the product output. 

Adder-substractor blocks utilizes the outputs which 

are produced by the previous taps of the filter 

architecture.  Similarily multipler blocks uses the 

delayed response and and the updated weights for the 

the filter stage. 

 

D. Fixed Point Implementation 

In the proposed architecture we use fixed 

point implementation and optimization of the 

architecture of the proposed filtering technique. 

During the implementation of the fixed-point 

implementation we choose word-length, radix–point, 

weights and internal signals. 

 

IV. RESULTS AND DISCUSSION 

In this section we discuss the results of the 

proposed approach for BCG signal filtering. This 

scheme is implemented using IEEE standards VHDL. 

Xilinx ISE is used for the synthesis and simulation. 

Proposed LMS filter architecture is simulated using 

Xilinx ISE 14.3. for the simulation study Virtex –V 

family is used  which contains the device 

XC5VSX95T, package FF1136 and speed grade of -2. 

 

The entire implementation of the approach 

for filtering contains three stages which are 2-Tap 

filtering implementation, 3-Tap and 4-Tap filtering 

architecture implementation. Initially the architecture 

for reading the data and adding AWGN noise is 

performed using MATLAB tool. The generated 

signal which are raw signal and noisy signal are given 

in figure 3. 

 

In this work BCG signals are considered for 

heart contraction.  Each signal contains various peaks 

and valleys corresponding to the specific event. These 

datasets were collected with approval from the 

Institutional Review Board ( IRB) at the Georgia 

Institute of Technology, and with written informed 

consent obtained [26]. 
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Figure.3. Raw Data Signal 

 

 
Figure.4. Noisy data 

 

In order to generate the data we have 

considered various simulation parameters which are 

given in table. I 

 

Parameter Considered Values Considered 

No. of Beats  
Peak Detection Threshold  
Left Side Window BCG 

segmentation 
 

Right Side Window BCG 

segmentation 
 

Sampling Frequency  
Stop Band Freq. 1  
Pass band freq. 1  

Table.1. Simulation Parameters 

 

A. FPGA Implementation of 2-Tap Filtering 

The noisy and raw signal is processed 

through the Xilinx System Generator to perform the 

filtering by using proposed filtering scheme. Initially 

this operation is performed for 2 –tap filtering and 

architecture is simulated using Xilinx ISE simulator. 

 

Performance of the proposed scheme for 2-

tap architecture is evaluated by considering maximum 

operating frequency, delay, slice logic utilization and 

total power consumption. The estimated results for 2-

tap filtering scheme are given in the table 2, table 3 

and table 4. 

B. FPGA Synthesis Results for 2-tap Filter 

 
Table.2.Timing Summary of 2-Tap Filter Using FPGA 

Performance Parameter  Achieved Results 

Maximum Frequency 528.513 MHz 

Input Arrival time before clock 3.702 ns 

Maximum output required time 

after clock 

0.682 ns 

Maximum Combinational path 

delay 

7.286 ns 

 
Table.3.Device Utilization Summary 

Slice Logic Utilization  Logic Utilized 

Slice Registers 60 

Flip-Flops 60 

Slice LUTs 150 

Number used as Logic 145 

 
Table.IV. Power Consumption Results for 2-tap Filter 

         Total Dynamic Static 

Power 

Supply 

Power(mW) 

1481.66 5.04 1476.62 

 

C. FPGA Implementation of 3-Tap Filtering 

Next stage is to implement the proposed 

filtering architecture for 3-tap filter scheme. The 

synthesis results achieved for the 3 tap filter are 

shown in the table V, VI and VII. 

 
Table.V. Timing summary of 3-Tap filter using FPGA 

Performance Parameter  Achieved Results 

Maximum Frequency 528.513 MHz 

Input Arrival time before 

clock 

3.702 ns 

Maximum output required 

time after clock 

0.682 ns 

Maximum Combinational 

path delay 

8.366 ns 

 
Table.VI. Device Utilization Summary 

Slice Logic Utilization  Logic Utilized 

Slice Registers 86 

Flip-Flops 86 

Slice LUTs 200 

Number used as Logic 194 

 
Table.VII.Power Consumption Results for 3-tap filter 

         Total Dynamic Static 

Power 

Supply 

Power(mW) 

1481.68 5.05 1476.62 

 

D. FPGA Synthesis Results for 4-Tap Filter 

Synthesis results for this are given in the 

table I 
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Table.VIII.Timing Summary of 4-Tap Filter using 

FPGA 

Performance Parameter  Achieved Results 

Maximum Frequency 528.513 MHz 

Input Arrival time before 

clock 

3.702 ns 

Maximum output required 

time after clock 

0.682 ns 

Maximum Combinational 

path delay 

9.446 ns 

 
Table.IX.Device Utilization Summary 

Slice Logic Utilization  Logic Utilized 

Slice Registers 113 

Flip-Flops 113 

Slice LUTs 267 

Number used as Logic 259 

 
Table.X.Power Consumption Results for 4-tap Filter 

         Total Dynamic Static Power 

Supply 

Power(mW) 

1482.44 5.80 1476.64 

 

 
Figure.5. Simulation Waveform for Proposed Filter 

Architecture 

The proposed design mainly concentrates on 

the weight updation process for the given noisy data 

in order to achieve the filtered data. Weight update 

procedure for the 4-tap filter is shown in the below 

given figure 6. 

 
6.(a). Update weight 1 

 

 
6.(b). Update weight 2 

 
6.(c) .Weight update 3 

 
6.(d). Weight Update 4  

Figure. 6. Weight Updated Process for the Given Noisy 

Input Data 

During the next stage proposed model is 

simulated using Xilinx System Generator which gives 

the filtered data and weight updated during the 

filtering. These stages are given in the below given 

figure. 

 
Figure.7. Input, Filtered and Unfiltered Data 

 

CONCLUSION 

In this work an efficient architecture is 

proposed to achieve the low power and high 

operating frequency results for the LMS filter. We 

have used a new approach to update the weights to 

remove the noise. The proposed architecture uses 

pipelining architecture to reduce the adaption delay.  

We have proposed a fixed-point implementation for 

the LMS filtering scheme. The proposed architecture 

is implemented and simulated using Xilinx ISE 

simulator to measure the performance of the 

architecture in terms of operating frequency, slice 

logic used and power consumption. This architecture 

contains three stages of implementation i.e. 2-tap, 3 

tap- and 4-tap filter. This scheme of signal filtering is 

used to filter the BCG signal. Results shows the 

efficient performance of the architecture in terms of 

frequency, for 2-tap, 3-tap and 4-tap filtering scheme, 

operating frequency is achieved 528.513 MHz  

 

REFERENCES 
[1] W. Nakamura, K. Anami, T. Mori, O. Saitoh, A. 

Cichocki, and S. Amari, ―Removal of 

ballistocardiogram artifacts from simultaneously 

recorded EEG and fMRI data using independent 

component analysis,‖ IEEE Trans. Biomed. Eng., vol. 

53, no. 7, pp. 1294–1308, Jul. 2006. 

[2] A. Hoffmann, L. J¨ager, K. Werhahn, M. Jaschke, S. 

Noachtar, and M. Reiser, ―Electroencephalography 

during functional echo-planar imaging: Detection of 

epileptic spikes using post-processing methods,‖ Mag. 

Res. Med., vol. 44, no. 5, pp. 791–798, 2000. 

[3] O. T. Inan , M. Etemadi , B. Widrow and G. Kovacs, 

"Adaptive cancellation of floor vibrations in standing 

BCG measurements using a seismic sensor as a noise 

reference", IEEE Trans. Biomed. Eng., vol. 57, no. 3, 

pp. 722-727, 2010 



SSRG International Journal of VLSI & Signal Processing ( SSRG – IJVSP ) – Volume 3 Issue 3 Sep to Dec 2016 

ISSN: 2394 - 2584                      www.internationaljournalssrg.org                            Page 7 

[4] G. Bonmassar, P. L. Purdon, I. P. J¨a¨askel¨ainen, K. 

Chiappa, V. Solo, E. N. Brown, and J. W. Belliveau, 

―Motion and ballistocardiogram artifact removal for 

interleaved recording of EEG and EPs during MRI,‖ 

NeuroImage, vol. 16, no. 4, pp. 1127–1141, 2002. 

[5] R. E. Wendt, R. Rokey, G. W. Vick, and D. L. Johnston, 

―Electrocardiographic gating and monitoring 

inNMRimaging,‖ Mag. Res. Imag., vol. 6, no. 1, pp. 

89–95, 1988. 

[6] J. Sijbers, J. V. Audekerke, M. Verhoye, A. V. der 

Linden, and D. V. Dyck, ―Reduction of ECG and 

gradient related artifacts in simultaneously recorded 

human EEG/MRI data,‖ Mag. Res. Imag., vol. 18, no. 7, 

pp. 881– 886, 2000. 

[7] R. I. Goldman, J. M. Stern, J. Engel, and M. S. Cohen, 

―Acquiring simultaneous EEG and functional MRI,‖ 

Clin. Neurophysiol., vol. 111, no. 11, pp. 1974–1980, 

2000. 

[8] M. Dyrholm, R. Goldman, P. Sajda, and T. Brown, 

―Removal of BCG artifacts using a non-Kirchhoffian 

overcomplete representation,‖ IEEE Trans. Biomed. 

Eng., vol. 56, no. 2, pp. 200–204, Feb. 2009. 

[9] X. Wan, K. Iwata, J. Riera, T. Ozaki, M. Kitamura, and 

R. Kawashima, ―Artifact reduction for EEG/fMRI 

recording: Nonlinear reduction of ballistocardiogram 

artifacts,‖ Clin. Neurophysiol., vol. 117, no. 3, pp. 668– 

680, 2006. 

[10] K. H. Kim, H.W. Yoon, and H.W. Park, ―Improved 

ballistocardiac artifact removal from the 

electroencephalogram recorded in fMRI,‖ J. Neurosci. 

Methods, vol. 135, no. 1–2, pp. 193–203, 2004. 

[11] D. Mantini, M. Perrucci, S. Cugini, A. Ferretti, G. 

Romani, and C. D. Gratta, ―Complete artifact removal 

for EEG recorded during continuous fMRI using 

independent component analysis,‖ NeuroImage, vol. 34, 

no. 2, pp. 598–607, 2007. 

[12] A. J. Bell and T. J. Sejnowski, ―An information-

maximization approach to blind separation and blind 

deconvolution,‖ Neural Comput., vol. 7, no. 6, pp. 

1129–1159, 1995. 

[13] A. Kosma, K. Nazarpour, and S. Sanei, ―Removal of 

ballistocardiogram artifact from electroencephalograms 

exploiting heart rate variability,‖ in Proc. 16th Int. Conf. 

Digital Signal Process., Jul. 2009, pp. 1–4.  

[14] G. Srivastava, S. Crottaz-Herbette, K. Lau, G. Glover, 

and V. Menon, ―ICA-based procedures for removing 

ballistocardiogram artifacts from EEG data acquired in 

the MRI scanner,‖ NeuroImage, vol. 24, no. 1, pp. 50–

60, 2005. 

[15] J. K. A. Hyv¨arinen and E. Oja, Independent 

Component Analysis. New York: Wiley Interscience, 

2001. 

[16] A. Hyv¨arinen and E. Oja, ―A fast fixed-point algorithm 

for independent component analysis,‖ Neur. Comput., 

vol. 9, pp. 1483–1492, 1997. 

[17] A. Belouchrani, K. Abed-Meraim, J.-F. Cardoso, and E. 

Moulines, ―A blind source separation technique using 

second-order statistics,‖ IEEE Trans. Sig. Process., vol. 

45, no. 2, pp. 434–444, Feb. 1997. 

[18] A. Hyv¨arinen, ―Complexity pursuit: Separating 

interesting components from time series,‖ Neural 

Comput., vol. 13, no. 4, pp. 883–898, 2001. 

[19] X. Li and X. Zhang, ―Sequential blind extraction 

adopting second-order statistics,‖ IEEE Sig. Process. 

Lett., vol. 14, no. 1, pp. 58–61, Jan. 2007. 

[20] S. Debener, K. J. Mullinger, R. K. Niazy, and R. W. 

Bowtell, ―Properties of the ballistocardiogram artefact 

as revealed by EEG recordings at 1.5, 3 and 7 T static 

magnetic field strength,‖ Int. J. Psychophysiol., vol. 67, 

no. 3, pp. 189–199, 2008. 

[21] O. T. Inan et al., "Ballistocardiography and 

Seismocardiography: A Review of Recent Advances," 

in IEEE Journal of Biomedical and Health Informatics, 

vol. 19, no. 4, pp. 1414-1427, July 2015. 

[22] M. Dyrholm  R. Goldman, P. Sajda and T. R. Brown, 

"Removal of BCG Artifacts Using a Non-Kirchhoffian 

Overcomplete Representation," in IEEE Transactions 

on Biomedical Engineering, vol. 56, no. 2, pp. 200-204, 

Feb. 2009. 

[23] Mr. Chetan G. Thote,Mr.Abhay R. Kasetwar‖ 
Adaptive Interference Canceller for ECG Signal 

Processing, SSRG International Journal of  Medical 

Science (SSRG -IJMS)–volume1 issue1 August 2014 

[24] P.S.Radhika, N.Porutchelvam ‖Architecture Design for 

an Adaptive Equalizer using LMS 2Tap filters , SSRG 

International Journal of VLSI & Signal Processing 

(SSRG-IJVSP)–olume2,Issue 1 Jan-Feb 2014 
 

 

 
 

 


