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Abstract  

 LDPC codes are originally invented by Robert 

G. Gallager. Later these codes are rediscovered by 

multiple groups has become the best known forward 

error correcting codes.We will discuss about density 

evolution of regular LDPC codes over Binary Erasure 

Channel(BEC) and Binary Symmetry channel(BSC) 

under message passing decoding algorithm in this 

paper. Density Evolution is a technic used to evaluate 

how good the LDPC codes are working on the given 

channel and to evaluate how far away the performance 

is from the Shannon limit.  
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I. INTRODUCTION 

LDPC codes are set of linear block codes that 

were initiallydiscovered by Robert G. Gallager in the 

year 1962[1] and after neglecting for almost 35 years 

these codes were rediscovered by D. J.C. Mackay and 

Neil in 1996[2]. Because these codes are working at 

near Shannon limit performance and decoding 

complexity of these codes is also less, so these codes 

are foundinmany standers such as WiMAX and DVB-

S2extensively [10]. Transmitting data reliably over a 

noisy channel is a general problem that attracted 

significant interest. In 1948, Shannon formalized the 

notions of information, noisy channel and other 

information theoretic concepts in his seminar paper, „A 

Mathematical Theory of Communication‟[3]. A 

communication channel can be represented as a tuple 

with input and output alphabets with and probabilities 

of transition from symbol in the input alphabet to a 

symbol in the output alphabet. In other words, the 

distribution specifies the receiving probability of an 

output symbol given that an input symbol was 

transmitted. A discrete memoryless channel can be 

described as a channel with discrete set of input and 

output alphabets and transition probabilities that only 

depend on the current input symbols being sent. 

LDPC codes in their regular manifestation, the working 

of the codes over the Binary-Input AWGN channel are 

only little menial to that of serially or parallel 

concatenated convolution codes. Let us consider an 

example with one-half (1/2) rate LDPC code with 

10000 as the block length, to achieve a bit error 

probability of 10-5 requires Eb/N0 of roughly 1.4dB, 

whereas in Turbo codes on par with the same 

complexity achieve theequal performance at, 

approximately Eb/N0 of 0.8dB[3]. Shannon capacity 

theorem states that in order to obtain a trustworthy 

transmission one-half (1/2) rate bit per channel used 

over continuous-input AWGN channel, a Eb/N0 of 

atleast 0dB is needed and it can increases to , if 

we limited to binary input. 

We knew that any linear equation can be 

represented with a set of solutions  of a parity check 

equation . Moreover, if a binary code is used 

then parity check matrix H takes elements in Galois 

Field(GF) which was GF(2) and the calculationsare also 

done  over the field. A regular-LDPC code, as 

originally described by R. G. Gallager[1], is a linear 

binary code deduced by the specification that 

eachcodeword bit involves in  parity-check 

equationsi.e in other words there are  number of ones 

in each column and there are  codeword bits in every 

such constraint equation participatedi.e in other words 

there are  number of ones in every row, where the 

parameters  and  can be chosen according to the 

design rate which will be explained in later section. The 

word „Low Density‟ describes that the number of 

nonzero elements in the  matrix is small compared to 

number of zeros. Number of one‟s is small for LDPC 

parity check matrix in particular it is in linear block 

length  as compared to random linear codes for which 

the expected number of ones increases like  

CITATION Ric01 \l 16393  [3] . In this paper we are 

not confining to one particular LDPC codes rather 

analyzing the performance of ensemble of codes. There 

are different ways to construct ensemble of LDPC 

codes, one such way is to consider  matrixof length 

and choose the parameters  so that they satisfy 

the above said column and row conditions and arrange 

this ensemble with a uniform probability distribution. A 

Bipartite graph is used to define an ensemble of LDPC 

codes and these graphs are also called Tanner graphs. In 
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section II tanner graphs are mentioned briefly, so that it 

is easier to analyze the resulting ensemble. There are 

many ways to construct LDPC codes that approach 

Shannon capacity using Gallager‟s original definition 

by applying many variations and extensions to the 

original codes. Here two important modifications are 

mentioned below:a) constructing irregular codes in 

contrary to regular codes [4], [5], [7], i.e. check 

equations may involve in different number of variables 

and variables may participate in different number of 

checks and b) permitting nodes to represent group bits 

instead of single bits [6], [1]. 

There are many decoding algorithms discussed 

by Gallagerthat can work efficiently and directly on the 

nodes and links of the Tanner graph (see section II) 

representing the LDPC codes. In this, one set of nodes 

called “variable” nodes corresponding to variables 

which represents the codewordbits , represents 

columns of , and the second set of nodes called 

“check” codes corresponding to constraints which 

represents the rows of parity check matrix . In a 

Tanner graph a bit node is connected to the check node 

if and only if the respective bit node involves in the 

equivalent check equation.In a Tanner graph the 

information is passed on the edges from bit node to 

check node and vice versa and the decoding algorithms 

work iteratively on the tanner graph. Every message 

can be correlated with the codeword bit corresponding 

to bit nodeto the link conveying the message. And the 

received messages can be explicated as the 

approximation of that bitalong with some reliability 

information. There is some hard decision associated 

with that message: one can look into the bit‟s most 

likely value deduced by the message. We can 

understand that,if the hard decision is correct then the 

message received is correct else the message is 

incorrect. 

In general, “threshold” is a critical channel 

parameter which depends on specific ensemble of 

codes, the type of channel and the decoding algorithm 

used. Therefore using these parameters we can calculate 

threshold. So, we can expect reliable transmission of 

the messages for any length code if the actual cross 

over probability is less than this threshold, if decoded 

by the given decoder for sufficiently large number of 

iterations. Conversely, if the actual cross over 

probability is greater than the threshold reliable 

transmission of the messagesis not possible over that 

channel with the codes chosen at random from long 

ensemble. Hence, we should keep in mind that 

threshold is identical to the random capacity for a given 

decoder and ensemble of codes. 

A short blueprint of the paper is as per the 

following:Section II gives brief clarification about class 

of codes utilized, channels and decoding algorithms 

taken for consideration in this paper. Section III 

concentrates on the calculation of threshold value. We 

can observe that an appropriate choice of the messages 

the obtained threshold value is almostnearer to the 

Shannon limit. We can say that the calculation of 

threshold is assured for many families of channels 

including the Binary Erasure Channel (BEC), Binary 

Symmetry Channel (BSC), Binary-Input AWGN and 

the Binary-Input Laplacian (BIL) channel if the channel 

family can be ordered by some physical degradation. 

Density Evolution and Threshold determination: Here 

 is defined „as expected portion of the erroneous 

messages forwarded in the  decoding iteration 

surmising that Tanner graph has no cycles of length  

or less‟ is calculated by the deterministic algorithm. 

There subsists a channel parameter , threshold has the 

properties mentioned below: if 

then , if  

then  does not tend to zero. 

II. BASIC TERMINOLOGY AND ASSUMPTIONS 

Here we will discuss some of the basic 

terminologies and assumption that are used in this paper 

in this section. Section- II starts with defining an 

ensemble, class of binary memoryless channels and 

later we will discuss about message passing decoders. 

Finally we will assume that the transmitted codeword 

was an all onecodeword. 

A. Ensembles:  

Assume a binary input code with a block 

length , represented as set of solutions  to the given 

parity equation . Let us construct a Tanner 

graph with bit nodes and  constraint nodes, 

where  . Each bit node specifies to 

onecodeword bit and every constraint node specifies 

one of the parity check equations. Each edge in the 

Tanner graph is connected between a bit node and a 

constraint node. The design rate of the code is  
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Since the check equations may not be all 

independent so the actual design rate may be heigher 

but we are neglecting this possibility. There 

are  number of links in a Tanner graph, on 

the left side of the graph number of links incident on 

the bit node and on the right side of the graph number 

of links incident on the constraint node. The Figure-

1llustrates (3, 6)-regular LDPC code of length 10. 

B. Binary memoryless channels: 

In this paper the class of channels we have 

considered are memoryless channels.Let  be 

the binary input alphabet which represents +1 as binary 

0 and -1 as binary 1 and continuos or discrete output 

alphabet . 

1. Binary Symmetry Channel (BSC): Consider  

and  as the input to the channel at time , 

. Also consider  as the output of the 

channel at time . The parameter  in the BSC is 

characterised by the relation , where  

is a sequence of i.i.d Bernouli random variables. It has 

the following probabilities  and 

.  

 
Figure 2  Binary Symmetry Channel with Parameter  

The channel model is shown in figure 2. The Shannon 

capacity of this channel [8] is 

   1BSCC h ò ò  

Where  is a 

entropy function in binary [8, p13]. 

2. Binary Erasure Channel: Let  and 

 be the channel input at time , . 

Let ,  be the output at time . In this 

model the receiver receiver either correct bit else the bit 

was not received i.e. erased if the probability is . 

The channel model is shown in figure 3. The Shannon  

capacity of this channel is  

( ) 1
BECC     

 

 
Figure 3  Binary Erasure Channel with parameter ε 

C. Message passing Decoders: 

Without loosing the abstraction, assume that 

output alphabet of the channel is equal to the input 

alphabet of the decoder. There are many reasonable 

decoding algorithms for a given code and channel 

model rooted on message passing which are the set of 

algorithms we considered. These message passing 

algorithms will behaves as follows. At the initial time 

i.e at zero time, every bit node , has an 

corresponding receiver message , a random variable 

abstracting values in output alphabet . Messages are 

switched between the nodes in the Tanner graph 

through the links in discrete steps. Initially ech bit node 

 transmits back to every nieghbouring constraint 

node  a message abstractingthe values in message 

alphabet Ϻ. A bit node  sends as its first message, 

typically at time zero ( this needs ). Every check 

node  analyzes the messages it received and they send 

back to their neighbouring bit nodes  a message 

abstracting values in Ϻ. Now every bit node  analyses 

(1) 

  

Figure 1 Tanner graph for  ensemble regular 

LDPC code with a block length 10. 
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the messages it received from constraint nodes 

inconjuction with its corresponding received value  to 

constrcuct new messages which it transmits back to the 

neighboring constraint nodes. For each iteration Ɩ, 
, a message passing continues with constraint 

nodes analyzing  and sending, followed by the bit nodes 

nodes analyzing  and sending messages. 

A significant requirement on the processing is 

that a message transmitted from a node through a 

neighboring edge  may not depend on the message it 

received aforetime along edge . In determining the 

outgoing message through edge , there is a significant 

reason for omitting the incoming message through edge 

. Excluding incoming messagearrures that only 

extrinsic information [10] is passed through, as in 

Turbo coding terminology. This is one of the important 

properties of message passing decoders. Analyzing a 

decoder is possible by using this restriction. 

Let ,  describes the bit 

node message map and ,  

describes the constraint node message map as a 

function of  . The above mentioned functions 

represents processing done at the bit nodes and check 

nodes. Due to the above mentioned limitation on the 

dependency of messages, the outgoing message 

depends on   incoming messages only at the bit 

node and  incoming messages at constraint 

node.These message maps depends on the numberof 

iterations of the decoding process. Assume each node 

of the identical degree supplicates the identical message 

map for every edge attached to such a node are treated 

the same. For absoluteness, , denotes the first 

message map i.e. node  sends the message  to 

its neighbors initially. 

D.Assumptions: 

To find density evolution, it is assumed that all 

one codeword was transmitted i.e  which represents 

binary zero in BSC and all zero codeword i.e. binary 

zero in BEC. 

III. DENSITY EVOLUTION AND THRESHOLD 

DERTERMINATION 

In this section density evolution and threshold 

determination is done on BSC and BEC channels 

assuming that we are using regular LDPC codes. We 

are also assuming that the tanner graph used was cycle 

free. We will analyse densities of LDPC codes as a 

function of number of iteration. In the case of BSC if 

the sign of the message received along the edge 

matches with the transmitted message then it is correct 

else the message is incorrect and in the case of BEC the 

message sent along the edge is correct if it is received 

as binary zero else the message is erroneous. In section 

II-D, we assumed that all one i.e binary zero codeword 

was transmitted over BSC and all zero codeword were 

transmitted over BEC. 

In section III-A, weare focussing on discrete message 

alphabets in message passing decoders. As stated 

previously, in the Ɩth iteration the assumedfraction of 

erroneous messages transmitted can be characterized by 

a system of recursive function which depends on 

 and the channel parameter. The existence of a 

Threshold is determined by analyzing this system of 

recursive function. 

A. Discrete message alphabets: 

We begin with discrete alphabets in message 

passing decoders. Consider , 

 as the probability that a 

message transmitted at zeroth time is equal to . 

Let , denote that the probability of messages 

transmitted from bit node to constraint node at iteration 

Ɩ. Similarly  denotes the probability of messages 

transmitted from constraint node to bit node in the Ɩth 

iteration. Gallager shown that the recursions function 

can be expressed using  as a function of 

and , the ensemble  and the channel 

parameter. 

B. Density evolution on BSC: 

Consider a  –regular code ensemble on 

the BSC with input alphabet , the channel 

parameter or the cross over probability  and the output 

alphabet {-1, +1}. This clearly shows that 

and . is the message 

symbol. Message maps do not depend on number of 

iterations as they are time invariant. They are given 

by ,  if 

 and 

 otherwise 

 
1

1 2 1
1

, , ,
c

cc d i
i

d
m m m m






    

The above equation can be expressed in words 

as modulo two sum of the neighbouring bits at the 

constraint nodes. The bit nodes transmit their incoming 

values unless all the received messages are same.Then, 
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By substituting  in place of  we obtain, 

 
1
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1
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1 1 1
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2
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From equation 3 we can get threshold values for 

different pairs of ensembles , these threshold 

values are tabulated in Table-1. Threshold value  is 

the maximum of all values of  such 

that .From  the above statement for the 

values of  less than , , otherwise 

 does not tends to zero. 

 

 
Figure 4  Gives A Threshold Value of 0.04 For (3, 6) 

Regular Code.  

 
Table 1 Shows Channel Parameter for Different 

Ensembles over Binary Symmetry Channel 

  rate  

3 6 0.5 0.039 

4 8 0.5 0.047 

5 10 0.5 0.026 

4 6 0.333 0.066 
 

C. Density evolution on BEC: 

Consider a  –regular code ensemble on 

the BEC with input alphabet , the channel 

parameter or the cross over probability  and the output 

alphabet {0, ?, 1}[8]. Similarly over BEC, let  be the 

probability of being erasure (?) from constraint node to 

bit node in iteration  and  be the probability of being 

erasure from bit node to constraint node in iteration . 

Then 

 
 1

1 1
c

l l

d
q p



    

And 

 
1

1

v

l l

d
p q




   

Substitute  in the above equation, then  

 
 

1

1

1
1 1

dv

c

l l

d
p p







 
    

 
 

(3) 

(4) 
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The above equation represents the recursive equation to 

calculate threshold value over BEC. Threshold value  

is the maximum of all value of   such that 

. 

 
Figure 5 Gives A Threshold Value of 0.4293 For (3, 6) 

Regular Code 

 

Table 2 Shows Threshold Value For Different Ensembles 

Over Binary Erasure Channel 

  rate  
3 4 0.25 0.6474 

3 5 0.4 0.5176 

3 6 0.5 0.4293 

4 6 0.333 0.5061 

V. CONCLUSION 

  In this paper, we analyzed LDPC codes over 

message passing decoders over the channels BSC and 

BEC and we also discussed about the ensemble of 

LDPC codes. We calculated threshold value for 

different ensembles of codes over the two channels 

mentioned. From the calculations we observed that 

Binary Erasure Channel has more threshold value from 

the Tabulated values in tables-1 and 2. If the channel 

parameter is large enough then the channel can retain 

the correct information even there is more noise effect 

over the channel during the transmission. 
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