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Abstract  

Residue Number System (RNS) incorporates 

several significant features that are indispensible in 

Digital Signal Processing (DSP) applications.  It 

includes higher operational speed, secured processing 

of data, carry free operations that reduces 

propagation of error among modules and so on.  

Multiplication process is the vital part of several DSP 

functions and hence design of such process using RNS 

system is gaining potential.  For further improving the 

processing speed and security level of RNS, 

Multilevel-Residue Number System (MRNS) is 

introduced. This paper deals about the 

implementation of Logarithmic Number System (LNS) 

in RNS to propose the multiplication design based on 

Residue Logarithmic Number System (RLNS). 

Multilevel-Residue Number System (M-RNS) is 

incorporated in this research work introducing 

Multilevel-Residue Logarithmic Number System (M-

RLNS) based multiplier design. Use of logarithmic 

numbers are restricted on accuracy constraints, hence 

improvement in accuracy is realized by employing 

error correction circuits.  Area, Total Power 

Dissipation (TPD), delay and Power Delay Product 

(PDP) of the multiplication design proposed are 

tabulated for number of bits, N=8, 16 and 32 and the 

same is compared with the existing design. 

 

Keywords - Residue Number System (RNS), 

Logarithmic Number System (LNS), Multilevel-

Residue Number System (M-RNS), Multilevel-Residue 
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I. INTRODUCTION  
 

     RNS involves in reducing the longer length input 

operands to shorter length modulo values.  This helps 

in producing high speed processing aspect in the 

system where it is involved.  Thus the scope of RNS is 

widened for filter design [1-4], cryptography [5-7] and 

several Digital Image Processing applications [8-10].  

RNS involves in converting the binary weighted value 

into its residues and vice versa with the predefined 

moduli set.  Therefore the intermediate residue values 

obtained cannot be processed further without knowing 

the exact moduli set values. 

 

 

DSP applications generally deal with consecutive 

multiplication and addition operations, therefore 

designing with reduced computational complexity is 

essential.  Introducing LNS into RNS proves to 

produce more compressed architectures compared to 

those designs including RNS features alone [11-13].  

The combination of these unusual number systems is 

proposed by Arnold [14] represented as Residue 

Logarithmic Number System (RLNS).  As addition 

and subtraction in LNS are difficult compared to 

multiplication and division operation, more research 

works are published for the efficient design of the 

former [15].   

The literature survey depicts the use of RLNS 

technique with the operands of format bq [16, 17], 

where b and q are integers >1. But for the operands 

which are not in exact power of logarithmic base (b), 

the multiplier design becomes complex and produces 

inaccurate results. It is due to logarithmic and 

antilogarithmic approximations made during the 

corresponding conversion process [18]. LNS is 

avoided due to this accuracy constraint, though it can 

provide promising results in terms of hardware 

utilization and power dissipation values [11]. In this 

paper the multiplication process with Residue 

Logarithmic Number System (RLNS) technique is 

implemented for all numbers with no consideration 

about the number format mentioned above. 

II. MATHEMATICAL OPERATION OF RNS 

AND LNS  
 

    The three major processes involved in RNS are 

forward conversion, residue arithmetic unit and 

reverse conversion. In forward conversion process the 

input operand is converted into its corresponding 

residues. The integer number representation based on 

RNS is defined by a set of „Q‟ relatively prime 

integers or moduli set given by 

 1 2
,  ,

L L Q L
m m m   . The suffix variable „L‟ 

denotes the type of logic used in the RNS processing 

which is represented as „b‟ or „t‟ for binary or ternary 

logic based circuits. Relatively prime integers taken as 

moduli set values is given by, gcd (miL, mjL) = 1 for i ≠ 

j. The weighted input operand is denoted as, 
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 1 2
 ,  , ,

L L L Q L
X x x x   where the value of xiL is 

calculated by the expression, 

 m o d  
iL L iL m iL

x X m X  0    
iL iL

x m 
                 (1)                                   

 The residue computation is limited for 

any integer XL, given the range  0 ,  ,
L

M where 
L

M is 

the dynamic range given 

as
1 2

 ..
L L L Q L

M m m m    . The arithmetic 

operations such as addition, subtraction, 

multiplication, division, exponentiation and squaring 

values can be computed by RNS in parallel channels 

[1]. The carry free propagation across the channels 

accounts for high speed computation in RNS. Let 

L
T denotes the required computation to be carried 

out, then   
L L L

T X Y  , where ◦ may be any of the 

operations mentioned above. Thus the corresponding 

residues of the final result can be represented as 

 

 

1 2

1 1 2 2 3 3
1 2 3

, , .,  

, , , ...,

L L Q L

L L L L L L Q L Q Lm m m mL L L Q L

t t t

x y x y x y x y

 

   

    

                                                               (2) 

 The value 
iL

t is calculated from 
iL

x and 

iL
y in a modulo channel with the corresponding 

modulus value given by
iL

m , i = 1,2,…..,Q. The 

residue values of a specific operation has to be 

converted back to its corresponding weighted number. 

This process is done by the reverse conversion 

method. The algorithm for the reverse conversion 

process is primarily based on the Chinese Remainder 

Theorem (CRT) [19-21], Mixed Radix Conversion 

(MRC) [21] and New Chinese Remainder Theorem 

(New CRT) [22]. In this research work smaller moduli 

set values are chosen, hence CRT is more suitable 

compared with other reverse conversion processes.  

 The logarithmic value of an integer „a‟ is 

given as,  

 ,  lo g
L N S

L
a s a 

                                                
(3) 

Where „s‟ denotes the sign of „a‟ and „L‟ represents 

the logarithmic base value that can be „2‟ (binary 

logic) or „3‟(ternary logic) based on the logic used. 

                                         (4) 

 In this work, analysis of only positive 

input operands is considered and the value of „s‟ is 

always „0‟. The multiplication and division operations 

using LNS on the operands say A and B is given by 

the following logarithmic rules, 

 lo g   lo g   lo g
L L L

A B A B  
                     (5) 

 lo g /   lo g – lo g   
L L L

A B A B
           (6) 

III.  THE PROPOSED MULTIPLIER DESIGN 

FOR RLNS BASED SYSTEM  

 The algorithm of RLNS based 

multiplication is as follows. Let the weighted input 

operands be represented as 
b

A and
b

B . The 

multiplication proposed for RLNS based design using 

binary logic for input operands with number of bits, 

b
N = 8, 16 and 32 produces the output with number of 

bits, 16, 32 and 64 respectively. The block diagram of 

the proposed Nb bit multiplication process for RLNS 

based is shown in Fig. 1. 

Ab Bb
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Acmnb
Bcmn b

B-LEC

logarithmic 

conversion 

process
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conversion 
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result ( Z b  )
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Bcb  mod mib

LSBs '0'
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Fig 1: Binary logic based multiplication process for 

RLNS based system 
 

A. First step of RLNS  

 The first step of the proposed technique 

involves in the logarithmic conversion of the input 

operands 
b

A and 
b

B producing the corresponding 

characteristics (
b

A c and 
b

B c ) and mantissa values 

(
b

A m n and 
b

B m n ) respectively. Logarithmic 

conversion process is accomplished by the Leading 
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One Detector circuit (LOD), 
2

log
b b

N N bit MOS 

ROM structure and 
b

N bit logarithmic shifter [23]. 

The logarithmic conversion of the input operand is 

shown in Fig. 2.  

Nb  bit LOD circuit

Nb -word * log 2Nb  bit MOS 

ROM 

Nb  bit Logarithmic shifter

Nb  bit input

log2Nb  bits

Nb  bits

Characteristic 

part  

log2Nb  bits 

mantissa part  

(10 bits)  

control 

word

B-LEC

 Amnb  or 

Bmnb  

Acmnb  or 

Bcmnb

Ab  or Bb

Acb  or Bcb

 

Fig 2 :  Logarithmic conversion process 

 The mantissa value is obtained from the 

Nb bit logarithmic shifter. The mantissa values can be 

approximated using several error correction 

techniques. The existing research works for reducing 

the error value can be summarized as LUT based 

approach [24, 25], improving the accuracy of 

Mitchell‟s approach using correction term based [18], 

Linear Approximation [26-29] etc. LUT based error 

correction method involves in storage of data which 

expands with the increase in number of bits of input 

operands [30-32]. As linear approximation provides 

reduced hardware implementation compared with 

LUT based approach, this method is used in this 

research work to reduce error value. Dividing the 

mantissa interval, m (0 ≤ m < 1) to 2, 4 or more 

improves the accuracy of the logarithmic value [26, 

29]. In this research work, the mantissa region is 

divided into eight equal intervals where each interval 

is estimated by a straight-line equation y=ajx + bj, 

where „j‟= 1 to 8, a and b are constant values chosen 

randomly based on several trial and error method. 

 The procedure explaining the 

logarithmic error correction for the mantissa values 

(
b

A m n and
b

B m n ) is explained as follows. 

  

1. Binary – logarithmic error correction (B-LEC) 

circuit 

     The procedure of logarithmic conversion is initially 

proposed by Mitchell Jr 1962. Let B be the binary 

number in the interval 1
2 2

jk
B


  , where j = 0, 

±1, ±2…….; k = 0, ±1, ±2… and k ≥ j. B can be 

represented as, 

 

1

 2

k

i

ib

i

B z



                                                     (7) 

zib is either „0‟ or „1‟ as the design is based on binary 

logic. Let zkb denote the Most Significant Bit (MSB) 

and is assumed as zkb = 1. If 2k  is factored out as per 

Mitchells approximation, the value of B becomes,  

 

1

1

 2 1 2

k

k i k

ib

i

B z







 
  

 
                       (8) 

Let the term
1

 2

k

i k

ib

i

B z




   is < 1 be the mantissa part 

represented as „m‟, then the equation (8) becomes, 

 
2 (1 )

k

B m                                   (9) 

The actual value of binary logarithm is given as, 

 
 

2 2
lo g lo g 1B k m  

                    
(10) 

Mitchell approximation for the logarithmic value of B 

is represented as  
2

lo g B
  and is given by,  

 
 

2
lo g B k m




                                
(11) 

 The error value (E) in the approximation 

procedure followed by Mitchell is calculated from the 

equation given below,
 

 
 

2 2
lo g lo gE B B


                          (12)

 

      
 

2
lo g (1 ) -m m 

                      
(13) 

 The proposed error correction procedure 

following linear approximation technique is explained 

as follows. 

 The equations of the resulting piecewise 

linear approximations for  
2

lo g 1 m  are given 

below, where „cm‟ denotes the corrected value and „m‟ 

represents the actual mantissa input. 

 

1 3 1
,   0

3 2 8
cm m m fo r m            (14) 
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2 3 1 1
,   

6 4 8 4
cm m m fo r m             (15) 

 

7 3 1 3
,   

1 0 2 4 4 8
cm m fo r m   

        
(16) 

 

4 3 3 1
,   

5 1 2 8 2
cm m fo r m   

        
(17)

 

 
7

1 3 1 5
,   

8 1 2 8 2 8
M S B

cm m m fo r m                                                                 

                                                                  (18) 

 
7

1 1 5 5 6
,   

8 5 1 2 8 8
M S B

cm m m fo r m    

 

                                                                                 
(19) 

 
5

1 7 6 7
,  

6 4 8 8
M S B

cm m m fo r m   

  
(20) 

 
5

5 7
,  1

3 2 8
M S B

cm m m fo r m        (21) 

The expansion of the coefficient values are given 

below, 

-2 -3 -51 3
2 2 2

3 2
   ; 2 4 5 62 3

2 2 2 2
6 4

   
    ;

4 7 1 07 3
2 2 2

1 0 2 4

  
   ; 4 6 8 94 3

2 2 2 2
5 1 2

   
    ;

6 83
2 2

1 2 8

 
 

6 7 8 91 5
2 2 2 2

5 1 2

   
    ;

2 61 7
2 2

6 4

 
  ; 3 55

2 2
3 2

 
  ; 

paragraphs The value of 7 M SB
m and 5 M SB

m  denote 

the inversion of first 7 and 5 Most Significant Bits 

(MSBs) of the mantissa part respectively. The error 

correction circuit proposed uses 10 MSBs of the 

mantissa part and produces 10 bit result. The proposed 

Binary- Logarithmic Error Correction (B-LEC) is 

shown in Fig. (3 – 6). Sequence of Full Adder (FA) 

and Half Adder (HA) circuits are used in the error 

correction circuit. The carry value generated at each 

adder is propagated to the consecutive adder from the 

LSB of the mantissa value (m-10).  The carry value 

from the most significant mantissa bit value (m-1) is 

neglected, as it is always „0‟. 

 The input mantissa bit is taken as 

j
m


with the corresponding output value as 

j
c m


, 

where the value of „j‟ ranges from 1 to 10  representing 

the 10 bits of result of the correction circuit (B-LEC). 

The corrected logarithmic value obtained is used for 

the proposed multiplication. 

 
Fig 3: Binary-Logarithmic Error Correction (B-LEC) 

circuit 
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Fig 6 : Block C 
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The corrected mantissa values evaluated from the 

proposed B-LEC circuit (cm) are denoted as 

b
A cm n and 

b
B cm n respectively in Fig. 1. 

 After the logarithmic conversion, the 

steps of typical RNS processing are followed. Based 

on the application of the multiplier design for a RLNS 

based system the moduli set values are selected. The 

dynamic range provided by the moduli set values 

chosen must cover the possible output values of the 

multiplication operation. The moduli set values chosen 

for the proposed binary logic based RLNS design is 

{2 - 1, 2 1}
N Nb b  . Substituting 

b
N = 3 the values of the 

moduli set is given by, {m1b, m2b} = {7, 9}. The 

dynamic range value provided by these values is given 

by [0, 2 1bM

 ], where 7 9 6 3
b

M    . This moduli set 

values cover the multiplication result for input 

operands with bit length, Nb = 8, 16 and 32. 

 In forward conversion process, the 

characteristic values 
b

A c and 
b

B c
 
are converted into 

its corresponding residues with respect to the moduli 

set {7, 9} by direct conversion method [33, 34] and is 

given by, 

 
 m od  

ib b ib
A c A c m

                                        
(22) 

  m o d  
ib b ib

B c B c m
                           

(23) 

Two moduli values are taken for the process therefore 

„i‟ takes the value of 1 and 2 respectively.  

B. Second step of RLNS 

 As multiplication operation is the idea of 

research, the residues are calculated based on the 

logarithmic rule in equation (5). The residue 

arithmetic unit is the second step of RLNS processing. 

The addition operation on the residues along with the 

corrected mantissa part is performed by ripple carry 

addition, where „+‟ in Fig. 1 denotes the addition 

operation. As area and power efficient design is the 

main aim of this research work, ripple carry addition 

method is used. The modulo operation on the added 

result is given by the equations (24) and (25). 

1 1 1
 1

. . .
b b b b b b m

b

t c m n A c A c m n B c B c m n                 (24) 

2 2  2
2

. . .
b b b b b b m

b

t c m n A c A c m n B c B c m n 
              

(25) 

The bracket  represents the modulo operation 

performed with the corresponding modulo value 

 The added operands are represented as 

1
.

b b
t cm n and 

2
.

b b
t cm n  in equations (24) and (25), where 

ib
t is the characteristic part and 

b
c m n the added 

mantissa value.  

C. THIRD STEP OF RLNS  

 The third step includes the reverse 

conversion and antilogarithmic conversion. The result 

of reverse conversion is given as the control input to 

the antilogarithmic conversion.  

 The entire process of RLNS is carried 

out using small range of logarithmic values and hence 

the reverse conversion operation is done by Chinese 

Remainder Theorem (CRT). CRT method of reverse 

conversion process is explained using the following 

equations. 

 

 1

Q

b i ib ib
mi M

b

b
ib

T t N M


            (26) 

 

b

ib

ib

M
M

m
                                (27) 

 

-1

ib ib
m

ib

N M                                (28) 

 Tb is the reverse conversion result 

calculated from the residue values t1b and t2b obtained 

from equations (18) and (19). Nib is the multiplicative 

inverse of Mib modulus mib. The dynamic range Mb is 

calculated from the equation given below,

 

 
  1

Q

b ib
i

M m


                                 (29) 

 

Where i = 1,2,...,Q denotes the number of moduli set 

values chosen. From the moduli set values chosen, the 

constant values
b

M ,
1 b

N ,
2 b

N , 
1 b

M and 
2 b

M are 

calculated as per the equations (20) – (23) and are 

6310, 410, 410, 910 and 710 respectively.  

 Antilogarithmic conversion includes the 

antilogarithmic error correction circuit and the 

logarithmic shifter. Several works are reported in 

literature to design antilogarithmic converters with or 

without using ROM, LUT etc., [34 and 35]. Limiting 

the deviations of the result from the actual 

antilogarithmic curve by linear approximations, the 

proposed method using 12 MSBs of the mantissa part 

shows considerable increase in the accuracy of the 

final antilogarithmic value when compared with the 

existing work [34]. In the proposed error correction 

method, improvement is made in the piecewise linear 

approximation procedure by designing 8-region 

correction circuit using 10 MSBs of the mantissa part. 
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The added mantissa value (cmnb) is corrected by the 

error correction procedures proposed and is denoted as 

mnb in Fig. 1.  

1.Binary-antilogarithmic error correction (B-ALEC) 

circuit 

 Let the characteristic part of the 

logarithmic value be „k‟ and the mantissa part be „m‟. 

The improvement of antilogarithmic approximation is 

as follows [18], 

 Let  
2

lo gA B k m


  
                  

(30) 

The antilogarithm of A is given as, 

 
2

 
log 2

A

an ti A                                                  (31) 

 
2  2 2 .2

A k m k m
 

                                  (32) 

The antilogarithmic approximation is given as, 

 
 

2
( lo g ) '   2 1            

k

a n ti A m 
    

(33) 

The error value (E) due to the above approximation is, 

 
 2 2 - 1

k m

E m  
 

                        (34) 

 The proposed 8-region antilogarithmic 

approximation equations with the approximated value 

denoted as  2
m 

 are given below, 

 2  

7 5 1 1
( 1 2 3) ( 1)  ( 2 )

8 5 1 2 1 2 8

1 7 1
( 3 ) ( 4 ) ,   0  

6 4 1 0 2 4 8

m

m c c c c c

c c fo r m




    

   

     (35) 

 
-6 -8 -9 -1 0

1 5
2  2 2 2 2 ,  

1 6

1 1
  

8 4

m

m

fo r m


     

 

                   (36)  

 
-6 -7

2 9 1 3
2  2 2 ,    

3 2 4 8

m

m fo r m

                  (37)  

 
-7 -9

2 9 3 4
2  2 2 ,    

3 2 8 8

m

m fo r m

     

            
(38)  

 
-7 -8 -1 0

2 9 4 5
2  2 2 2 ,    

3 2 8 8

m

m fo r m

      

    
(39)  

 
-6 -9 -1 0

2 9 5 6
2  2 2 2 ,    

3 2 8 8

m

m fo r m

      

    
(40)  

 
-8 -1 0

1 5 6 7
2  2 2 ,    

1 6 8 8

m

m fo r m

     

          
(41)  

 
-6 -7 -8 -9 -1 0

1 5 7
2  2 2 2 2 2 ,    1

1 6 8

m

m fo r m

        

             
                                                                    (42)  

The expansion of the coefficient values used are given 

as,

1 2 3 -1 -2 -3 4

1 2 3 5

-4 -5 -8 9 -8 -9 -1 0

7 1 5
2 2 2 ; 2 2 2 2 ;

8 1 6

2 9
2 2 2 2 ;

3 2

5 1 7
2 2 2 2 ; 2 2 2

5 1 2 1 0 2 4

   

   



      

   

      

 

 The block diagram of B-ALEC proposed 

is shown in Fig. 7, 8. 10 MSBs denoted by
i

m


, are 

input to B-ALEC where i ranges from 1 to 10.  B-LEC 

produces 11 bit approximated mantissa value  2
m 

 as 

output denoted by „cm-j‟, where „j‟ ranges from 0 to 

10. 11 bit output is thus obtained by keeping the MSB 

of the output as „1‟ as shown in Fig. 7 and the circuit 

diagram of block D used in B-ALEC circuit is shown 

in Fig. 8. 

 

Fig 7 : Binary-Antilogarithmic Error Correction (B-

ALEC) circuit 
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0

1

0

1
0

m-3

m-1m-2

a

b output

 

Fig 8 : Block D of B-ALEC circuit 

Additional condition variables c1, c2, c3, c4 and c5 are 

used for the error correction given by equation (29), 

for the mantissa part in the interval 0 ≤ m <0.125. At 

this region of mantissa part, the value of 1‟s that occur 

in the positions from 
4

m


to 
1 0

m


are taken for the error 

correction process as shown in equation (29). For the 

linear approximation in the region 0 ≤ m <0.125, the 

value of „1‟ present from the positions 
4

m


to 
1 0

m


are 

detected using LOD circuit. Based on the leading 

position the corresponding output
j

a m


, where ‘j‟ 

ranges from 4 to 10 are obtained as shown in Fig. 9.  

0

1

0

1

0

1

Vdd

m-4 m-5 m-6

................

................

m-10

am-4
am -5 am -6

am-10

................

c5
c5 c5 c5

MUX MUX MUX

 

Fig 9 : Altered mantissa value (am-j) 

 Based on several trial and error method 

for the input operands in this interval, the conditional 

variables c1, c2, c3 and c4 are realized using equations 

(37) - (41). These equations are used to add the 

corresponding constant coefficients with the 

approximated mantissa value given in equation (36) to 

get corrected output in this region. 

       
4 5 6 7

1               c a m a m a m a m
   

    (43) 

   
5 7

2    c a m a m
 

 
                                         

(44) 

    
6 7

3    c a m a m
 

 
                                        

(45)  

     
8 9 1 0

4      c a m a m a m
  

  
                       

(46)       

1 2 3
5c m m m

  
  

                                                
(47)  

 Thus the corrected mantissa part 

obtained from the proposed  

B-ALEC circuit, denoted as mnb in Fig. 1 is given as 

input to the 2Nb bit logarithmic shifter [34] of the 

antilogarithmic conversion. The antilogarithmic 

conversion process is shown in Fig. 10. 

Final sum mantissa value 

(cmnb )

2Nb -bit logarithmic shifter

remaining 

LSBs '0'

2Nb -bit 

result

B-ALEC

10 MSBs 

11  bits

T(0-5)b

mnb

control 

input

 

Fig 10 : Antilogarithmic conversion process  

The logarithmic shifter provides the shifted result 

based on the value of the control word, „
b

T „ 

calculated by the equation (20). As the reverse 

conversion result is the output modulo 63, the 

maximum bit length is 6 as shown in Fig. 10. The 

control input decides the number of shifts required to 

get the final multiplication result denoted as  „
b

Z „, in 

Fig. 1. 
 

IV. PROPOSED BINARY LOGIC 

MULTIPLICATION PROCESS USING MRNS 

CONCEPT IN RLNS  DESIGN  
 

   To improve the data encryption feature of the 

proposed RLNS based multiplication structure, MRNS 

concept is incorporated proposing a new idea of 

Multi-level Residue Logarithmic Number System 

(MRLNS). The feature of MRNS include choosing 

moduli set values at different levels of RNS until the 

residue values becomes simple. The condition in 

MRNS technique is to check the dynamic range of the 

moduli set values. The dynamic range in 1st level 

should be greater or equal to that of the next level 

[36,37], and the process is continued further until 

lower values of moduli set is achieved. Reducing the 

moduli values further reduces the complexity of the 

conversion circuits and its operations [36, 38].  

 In MRLNS based multiplier design, two 

level RNS is considered. As the characteristic values 

of smaller range are involved in RLNS, simple values 

of residues are obtained in the second level of 

MRLNS technique. In the proposed design of 

MRLNS, the moduli set chosen for the first level is 

given as  
1 2

,  
A b A b

m m  = {7, 9}, substituting 
b

N = 3 in 

the set 2 1, 2 1b bN N

  . This moduli set provides the 

dynamic range, [0, 263-1], enabling the comparison of 
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MRLNS design with the proposed single level RLNS 

scheme in terms of dynamic range. The second level 

of the moduli set chosen is  
1 2

,  
B b B b

m m  

=   2 ,  2 1b bN N

 , given 
b

N = 2 the values are {4, 5}, 

which is lesser than the previous moduli set values. 

The reverse conversion is carried out in the reversed 

order of moduli set values chosen i.e., first and the 

second level reverse conversion process use second 

and the first level moduli set values respectively. 

Therefore the first level moduli set values decides the 

dynamic range of the multiplier design. The 

multiplication process using MRLNS is shown in Fig. 

11. 

 The binary input operands 
b

X
 
and 

b
Y with 

b
N number of bits are initially converted into 

its logarithmic format with its characteristic part 

b
X c and 

b
Y c and its mantissa 1

b
m n and 2

b
m n  

respectively. The error value of the mantissa 1
b

m n and 

2
b

m n is corrected by the error correction circuit (B-

LEC), that gives the results 

1
b

cm n and 2
b

cm n respectively. The corrected mantissa 

values are added to give 
b

c m n which along with the 

residue values are taken for the antilogarithmic 

conversion process.  

Xb
Yb

Ycb , Ymnb

logarithmic conversion

YmnbXcb Ycb

<Xcb >7,9

a1b 

<a1b >4,5

<Ycb>7,9
B-LEC

Ycmnb

a2b

<a2b >4,5

b1b

<b1b >4,5

b2b

<b2b >4,5

Xcmn b Ycmnb

CRT B CRT B

CRT A

2Nb  bit logarithmic 

shifter

cmnb

Final 

multiplication 

result (Zb )

t1b
t2b

    Cb

c1b              c2b d1b             d2b e1b             e2b

Xcb , Xmnb

Xmnb

B-LEC

Xcmnb

v1b         v2bu1b         u2b

f1b               f2b

Tb

B-ALEC

mnb

LSBs '0'

logarithmic conversion

<w1b >7 <w2b >9

    Cb

 

Fig 11 :Multiplication process using Multi-level Residue 

Logarithmic Number System (MRLNS) technique 

  During the first level of 

MRLNS the characteristic part of the operands are 

converted into its corresponding residues with respect 

to the moduli set {7, 9}. This residue values obtained 

are denoted as 
ib

a and 
ib

b in Fig. 11, where „i‟ takes 

the value of 1 and 2, as the number of moduli chosen 

is 2. The variables
ib

c , 
ib

d , 
ib

e and 
ib

f  represent the 

second four set of residue values obtained for the 

moduli set {4, 5} from 
ib

a and 
ib

b respectively. As 

the number of second set moduli values are also 2, „i‟ 

takes the value of 1 and 2 in the second level also. As 

the required arithmetic process is multiplication, the 

logarithmic values are added using the equations 

below, to give final two set of residues. 

  
iB b

ib ib ib b m
u c e C  

                        
(48) 

  
iB b

ib ib ib b m
v d f C  

                       
(49) 

Cb is the carry value obtained from the addition of the 

mantissa values 1
b

cm n and 2
b

cm n
 
respectively. The 

set of residue values 
ib

u and 
ib

v  are given as input to 

the first level of reverse conversion. The reverse 

conversion process is done using CRT method, to 

differentiate for each level it is taken as CRT B in first 

level and CRT A for the second level, as shown in Fig. 

6. The corresponding dynamic range, moduli values 

and the variables N1, N2, M1 and M2 that are required 

according to the CRT method are calculated. At each 

level of reverse conversion the corresponding 

variables calculated are represented with suffix B and 

A respectively based on the moduli set values utilized 

at each level. The use of lower case suffix „b‟ denotes 

the binary logic. The operation to calculate the values 

1 b
w  and 

2 b
w  denoted as CRT B blocks in Fig. 11 is 

given below, 

1 1 1

1

1

2 2 2

2

(  )  

 (  )  

b B b B b

B b

b

b B b B b

B b

B b

u N M
m

w

u N M
m

M

  



 
               

(50) 

1 1 1

1

2

2 2 2

2

(  )   

(  )  

b B b B b

B b

b

b B b B b

B b

B b

v N M
m

w

v N M
m

M

  



 
             

(51) 

B b
M

 
value used in the equations (51 and 52) denote 

the dynamic range provided by the second level 

moduli set, {4, 5}. The value of 
B b

M , is calculated 

from the product of 4 and 5, 
B b

M  = 20. The values 

iB b
N and 

iB b
M are calculated from {4, 5} using 

equations (12 -14) and the calculated values are 

1
1

B b
N  , 

2
4

B b
N  , 

1
5

B b
M  and 

2
4

B b
M  . From 

the values of 
ib

w , the second set of residues, 
ib

t  is 
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calculated from the modulo operation done by the 

values {
1 2

,  
A b A b

m m } = {7, 9} using the equations 

(52) and (53).  

 
1 1

1

b b

A b

t w
m

                                (52) 
 

  
2 2

2

b b

A b

t w
m

                                (53)  

 The calculated values of t1b and t2b are 

given as input to the second level of reverse 

conversion (CRT A). The reverse conversion result, 

b
T is taken as output modulo of 

A b
M  = 63 in this level 

(CRT A block) as shown in Fig. 11. The 

corresponding reverse conversion operation is as 

follows,  

1 1 1

1

2 2 2

2

(  )   

(  )  

b A b A b

A b

b

b A b A b

A b

A b

t N M
m

T

t N M
m

M

  



 
               

(54) 

This „
b

T „ value along with the added 

mantissa part „
b

c m n „ is input for the antilogarithmic 

conversion process. The mantissa part „
b

c m n „ is 

corrected by the proposed Binary- Antilogarithmic 

Error Correction Circuits (B-ALEC) and is denoted as 

„
b

m n „ in Fig. 11. „mnb‟ is given as input to the 2
b

N bit 

logarithmic shifter.‟
b

T „ controls the shifting 

operation of the given mantissa input in the shifter 

providing 2
b

N bit final multiplication result  

represented as „
b

Z „. 

V. SIMULATION RESULTS OBTAINED FOR 

THE PROPOSED DESIGN AND ITS 

COMPARISON WITH THE EXISTING 

TECHNIQUES  

 

 Simulation of the circuits are made using 

Cadence tool, Virtuoso 6.1.5 with 45nm TSMC 

CMOS technology and supply voltage of 0.5 V. For 

logic states of „1‟ and „0‟, 0.5 V and 0 V are used  

respectively. The design of the proposed and existing 

research works are made for Nb = 8, 16 and 32 and the 

simulation results are compared. The area occupied, 

Total Power Dissipation (TDP) value, delay and PDP 

values of the proposed multiplication structure (RLNS 

and MRLNS) are compared with the existing work 

[40] in Table 1. To prove the efficiency of the 

proposed design for a RLNS based system, the 

existing work of modulo multiplier design using 

Radix-8 booth encoding technique for a RNS based 

system is designed with the same TSMC 45nm 

technology file using Cadence tool.  

 The simulation results including area, 

TPD, delay and PDP of the existing work are given in 

Table 1.

 

Table 1 Comparison of Area, Power and Delay values  

 

 

Multiplication structure 

 

Area (µm2) 

 

 

Total Power 

Dissipation 

(TPD) (µW) 

 

Delay 

(ns) 

 

 

Power Delay 

Product 

(PDP) 

(Joules) 

 

Technique used 

 

Number of 

bits, N 

 

RLNS 

 

8 41094 2.918 78 227.6 

16 49545 4.033 142 572.68 

32 60364 5.169 281 1452.48 

 

MRLNS 

8 47702 3.228 89 287.2 

16 52121 4.271 194 828.57 

32 66597 5.817 310 1803.27 

Radix-8 booth 

encoding technique  

[40] 

8 117676 15.97 130 2076.1 

16 164997 32.15 340 10931 

32 215781 53.25 567 30192.75 

 

 It is inferred from the values, the 

proposed multiplication design provide efficient 

results in terms of area, TPD, delay and PDP values. 

The area occupied, TPD and delay values of 

multiplication structure using MRLNS technique is 

15% more compared to that of RLNS technique due to 

the additional forward and reverse conversion 

operations carried out in two levels. The percentage of 
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parameter values saved by the proposed techniques 

compared to the existing work is given in Table 2.  

From the percentage values it is inferred that 67.3% of 

area and 45% delay are saved whereas TPD and PDP 

are 86% and 92% less compared to that of existing 

work. 

Table 2 Percentage of TPD, area, delay and PDP 

saved by the proposed techniques over existing method 

Multiplication 

structure 

using 

Number 

of bits, 

Nb 

Percentage of parameter 

values saved over existing 

technique (%) 

TPD Area Delay PDP 

 

RLNS 

8 82 65 40 89.03 

16 87.4 70 58.2 95 

32 90.2 72 50.4 95 

 

MRLNS 

8 80 59 31.5 86 

16 87 68 43 92 

32 89.07 69 45.3 94 

   

 The advantage of using LNS eliminates 

the partial product generation and its accumulation 

process of the existing modulo multiplier designs, 

thereby reducing the TPD, area and delay values. As 

LNS involves only the addition of input operands the 

error reduction of logarithmic and antilogarithmic 

values, is done by the proposed B-LEC and B-ALEC 

circuits. The EP values are calculated for the random 

selection 250 set of input values for each Nb category 

chosen. The formula for calculating the EP includes 

the True Value (TV) of the multiplication result and 

the Experimental Value (EV) obtained from the 

proposed technique as given below, 

 1 0 0 %
T V E V

E P
T V


   (49) 

The Average Error Percent (AEP) of the final 

multiplication values obtained with the existing works 

[29, 34] and proposed (B-LEC and B-ALEC) error 

correction circuits respectively for Nb = 8, 16 and 32 

are given in Table 3. The AEP value is calculated 

using the formula given below, 

 

1

N

n

E P

A E P
N





       (50) 

N denotes the number of input set of operands 

considered and its value is 250. The AEP value 

obtained with the proposed B-LEC and B-ALEC 

circuits is 0.36 and for existing error correction circuit, 

it is 0.77. The Error Percentage (EP) calculated for the 

input operands includes both positive and negative 

error value. The value of EP is as obtained without 

considering the positive and negative range of the 

error value produced.  

Table 3 Comparison of Average Error Percent (AEP) 

(%) obtained for the proposed multiplication design with 

existing error correction circuits 

Average Error Percentage (AEP) of the 

results obtained with the proposed designs 

(RLNS and MRLNS) 

Number 

of bits 

(Nb) 

With 

proposed  

B-LEC 

and B-

ALEC 

With existing error 

correction circuits 

[29, 34] 

8 0.39 0.54 

16 0.40 0.69 

32 0.30 1.08 

  

 From the multiplication results it is 

observed that the proposed error correction circuits 

(B-LEC and B-ALEC) reduces the AEP to 48% when 

compared with the existing work [29, 34] for the 

proposed multiplier design for RLNS based system. 

The AEP values obtained for each 
b

N category is 

same for the proposed RLNS and MRLNS based 

multiplication designs as the correction is done in the 

mantissa part in the logarithmic and antilogarithmic 

conversion process. The difference in the RLNS and 

MRLNS structures is in processing the corresponding 

characteristic values to get two stages of residues. The 

residues transmitted with two levels of encryption 

prevents the misuse of data, as the two levels of 

moduli set values are known only to user [37, 39]. 

Thus MRLNS based design may be considered for 

secured applications.  

VI.  CONCLUSION  

 

     The multiplier design for RLNS based system is 

proposed in this research reducing the area, TPD and 

delay values when compared with the existing 

research. Using LNS in the design of multipliers 

simplifies the operation by avoiding the partial 

product reduction and accumulation as only addition 

of the input operands is performed. In order to reduce 

the error produced due to the approximation process 

using LNS, error correction circuits are proposed in 

this research to produce the final multiplication result 

with AEP = 0.36. MRLNS technique is proposed to 

include the secured features of MRNS that includes 

multilevel forward and reverse conversion processes.  
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Thus for the RLNS based Digital Signal Processing 

(DSP) application where the minimum error value 

produced is acceptable the proposed multiplier design 

may be considered. 
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