
SSRG International Journal of VLSI and Signal Processing Volume 9 Issue 2, 1-4, May-Aug 2022

ISSN: 2394 – 2584 / https://doi.org/10.14445/23942584/IJVSP-V9I2P101 © 2022 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Randomized Verification of Ethernet

Dhyan V1, Venu S2, Syed Shabaz3, Shaik Muinuddin4, Madhura R5

1,2,3,4,5ECE, Dayananda Sagar College of Engineering, Karnataka, India.

Received: 11 June 2022 Revised: 22 July 2022 Accepted: 28 July 2022 Published: 06 August 2022

Abstract - CRC stands for cyclic redundancy check, a well-known error detection algorithm found in Ethernet, PCIe, etc.

The Cyclic redundancy check (CRC) code is a simple but effective method for detecting errors during digital data

transmission and storage. CRC implementation can use any hardware or software method. This application report

introduces different software algorithms, comparing themselves according to memory and speed utilized. Various standard

CRC codes will be used. Correction codes are a way of finding and correcting errors introduced by a transmission channel.

Block and convolution codes are two important parts of a code. Both eliminate unwanted or redundant data by adding to

message data the rating symbols. Even though correction techniques are not used here, they are post-response of CRC.

Cyclic redundancy check (CRC) codes come under cyclic codes, which in turn come under linear block codes. Hardware

and software program techniques can be used in CRC implementation; within the conventional hardware implementation,

an easy shift signs up circuit plays the computations by dealing with the facts one bit at a time. Managing records as bytes

or phrases in software program implementations becomes extra handy and faster. Verification of CRC is challenging;

hence, it's been done using the system Verilog based on a standard verification methodology.

Keywords - CRC, FPGA, PCIe, HWICAP.

1. Introduction
In the networking context, CRC plays a crucial

function in detecting errors. It is vital to raise the speed of

CRC creation to keep up with the challenges of data

transmission speed. A lot of engineers know about the

cyclic redundancy check (CRC). Many know it is used to

detect bit errors in communication protocols and is mainly

a reminder of the modulo-2 long division operation. The

linear feedback shift registers (LFSRs), which take care of

data serially, are commonly used in the hardware

implementation of CRC computations as a critical way of

dealing with data errors. The CRC codes' serial calculation

cannot achieve high throughput. The throughput of CRC

computations can be considerably increased by using

constant concurrent CRC calculations.

The Cyclic redundancy check (CRC) code provides an

easy but powerful way to find errors that erupted during

the transfer and storage of digital data. CRC

implementation can use any hardware or software method.

This application report introduces different software

algorithms, comparing themselves according to memory

and speed utilized. Various standard CRC codes will be

used. Correction codes are a way to find and correct errors

occurring because of the transmission channel. Two

important parts of code exist block codes and

convolutional codes. Both eliminate unwanted or

redundant data by adding rating symbols to message data.

Cyclic redundancy check (CRC) codes are a subset of

cyclic codes, which are also a subset of linear block codes.

CRC implementation can use hardware and software

program techniques; within the conventional hardware

implementation, an easy shift signs up circuit plays the

computations by dealing with the facts one bit at a time.

Managing records as bytes or phrases in software program

implementations becomes extra handy and faster.

2. Background Survey
Algorithms based on tables and matrices were

schematically displayed on paper [1]. The matrix-driven

technique was also studied using other implementations,

including single-byte, two-byte, and four-byte

implementations. The graphical results of a supercomputer

cluster experiment to gauge the implementation

performance of CRC32 software were presented. It is

shown that a high-speed four-byte matrix-driven algorithm

should be used in embedded systems and industrial data

transmission systems.

The findings of the first thorough analysis of the 32-

bit CRC design space are provided in the paper [2]. For

data word sizes of 12112 bits, the performance of the

entire set of 1,073,774,592 distinct polynomials has been

evaluated. An exhaustive search has led to a definitive list

of polynomial classes that can and cannot deliver HD

better than the 802.3 CRC for MTU-sized messages. This

list has discovered a class of polynomials that exhibits

excellent performance for MTU-sized messages and good

performance for longer messages.

The creation of a simulation model for the

performance study of configurable CRC-polynomials

across Binary Symmetric Channels (BSCs) is detailed in

the paper [3]. It presents a novel model for the analysis of

different CRC polynomials codes with n parity bits

ranging from 1 to 64. On Altera's FPGA Stratix II GX

Dhyan V / IJVSP, 9(2), 1-4, 2022

2

device, "EP2SGX90FF1508C3," which supports

10/100/1000 Mbps Ethernet over 1000Base-LX physical

media, it also discusses the hardware implementation for

CRC-32 "IEEE-802" and proposes an indirect

methodology of CRC-performance using the Packet Error

Rate (PER) parameter. It is suggested that top-notch CRC

codes of 32, 40, and 64 bits be discovered and that the

Ethernet protocol's performance for the maximum payload

is investigated.

The paper [4] aims to show that the 32-bit CRC used

in Ethernet (CRC-32) can be computed at a speed of 10

Gb/s using existing process technologies. We analyze two

potential designs and discuss their performance based on

our simulations. Because we lack access to cutting-edge

process technology, we base our results on the

extrapolation of device features.

3. Methodology
This proposed method reduces the zero-crossing

problems in the existing cyclic redundancy check and

introduces the shifting and XOR-based technique with the

polynomial security codes. It will increase security and

critical path delay in all distorted signal processing, thus

transmission application. Thus, the proposed cyclic

redundancy implementation proves the higher resource

utilization in multiple data widths of 8-bit, 32-bit, 64-bit,

and 128-bit data widths. Finally, this work was developed

in Verilog HDL and synthesized in Xilinx vertex-5 FPGA

and proved all the performance in area delay and power.

CRC Block Diagram

Consider a transmitter T, sends a sequence, S1 of k

bits, S1= {b0, b1…, bk-1} to a receiver R. At the same

time, T generates another sequence, of m bits, S2= {b0',

b1'…, bm-1'}, to permit the receiver to recognize possible

errors. The sequence S2 is commonly known as a Frame

Check Sequence (FCS). It is generated because the

complete sequence, S = S1 U S2 which is obtained by the

concatenation of sequences S1 and S2, has the property

that it is divisible (following arithmetic) by some

predetermined sequence, P = {p0, p1…, pm} of m +1 bits.

After T sends S to R, R divides S, the message, and the

FCS by P, using the same particular arithmetic after receiving

the message. If there is no remainder, R assumes there was

no error. A modulo 2 arithmetic is used in the digital

realization of the above concepts.

S is the sequence for error detecting, P is the divisor,

and Q is the quotient. S1 is the original sequence of k bits

to transmit. Finally, S2 is the FCS of m bits.

While bitwise XOR operators perform the sum and

the subtraction, the product operator is accomplished by a

bitwise AND. In this situation, a modulo - 2 division-

performing CRC circuit can be built as a unique shift

register known as an LFSR. Both the transmitter and the

receiver can use it. The dividend in the instance of the

transmitter is the sequence S1 joined to a series of m zeros

to the right. P is the divisor. The received sequence serves

as both the dividend and the divisor in the more

straightforward scenario of a receiver.

4. Test Plan Components

Transaction – Defines the agent-generated pin level

activity, which must either be noticed by the agent or

driven to the DUT via the driver (Placeholder for the

activity monitored by the monitor on DUT signals)

Generator – Generates the stimulus (create and

randomize the transaction class) and sends it to the driver

Driver – Receives the stimulus (transaction) from a

generator and transmits the transaction's packet-level data

to pin level (to DUT)

Dhyan V / IJVSP, 9(2), 1-4, 2022

3

Monitor – Interface signals show pin-level activity,

which is converted into packet-level activity and sent to

components like the scoreboard.

Agent – An agent is a class that serves as a container

for classes (such as generator, driver, and monitor) that are

particular to an interface or protocol.

5. Result

CRC-32 Output timing diagram

CRC-32 Output timing diagram

MATLAB App Interface

The proposed architecture is developed, and it is

important to validate whether the obtained Result is

correct or wrong; hence for the verification of the obtained

CRC, a MATLAB application is being developed, and the

App is designed to return the CRC output for a given

input, presently the application is designed and is working

for generating 16 bit CRC. Therefore the results are

validated using an online calculator for inputs greater than

16 bits.

Conclusion
The proposed work revolves around using Cyclic

Redundancy Check (CRC) theory and implementation. To

detect errors in a message, CRC is used. Two

implementations are shown, the implementation of the

Stride-by- 5 algorithms and the implementation of the

Pipeline-go-back algorithm using ethernet CRC-32

polynomial. CRC can be implemented in various formats,

including CRC-32, CRC-CCITT, and other polynomials.

The CRC algorithm frequently finds errors in transmitted

messages or stored data. The CRC is a very effective

method for obtaining data reliability that is also simple.

References

[1] Evgeniy Mytsko, Andrey Malchukov, Valeriy Kim, Alexander Osokin, Ivan Zoev, Svetlana Ryzova," Software Implementation

Research of Crc Computation Algorithms Compatible With Pkzip, Winrar, Ethernet.”

[2] Philip Koopman," 32-Bit Cyclic Redundancy Codes for Internet Applications"

[3] Vinaya R Gad, Rajendra S Gad, Gourish M Naik, "Configurable Crc Error Detection Model for Performance Analysis of

Polynomial: Case Study for the 32-Bits Ethernet Protocol."

[4] Tomas Henriksson, Henrik Eriksson, Ulf Nordqvist, Per Larsson-Edefors, Dake Liu,“ Vlsi Implementation of Crc-32 for 10

Gigabit Ethernet.”

[5] Huan Liu, Zhiliang Qiu, Weitao Pan, Jun Li, Ling Zheng and Ya Gao "Low- Cost and Programmable Crc Implementation Based

on Fpga" Ieee Transactions on Circuits and Systems—Ii: Express Briefs, vol. 68, no. 1, 2021.

[6] Cyclic Redundancy Check Computation By Patrick Geremia. (Online) Available: Https://Documents.Pub/Document/Cyclic-

Redundancy-Check- Computation-An-Implementation-Redundancy-Check-Computation.Html

[7] M. E. Kounavis and F. L. Berry, "Novel Table Lookup-Based Algorithms for High-Performance Crc Generation," Ieee Trans.

Comput., vol. 57, no. 11, pp. 1550–1560, 2008.

Dhyan V / IJVSP, 9(2), 1-4, 2022

4

[8] A. Akagic and H. Amano, "High-Speed Fully-Adaptable Crc Accelerators," Ieice Trans. Inf. Syst., vol. 96, no. 6, pp. 1299-1308,

2013.

[9] L. Kekely, J. Cabal, and J. Koˇrenek, "Effective Fpga Architecture for General Crc," in Proc. Int. Conf. Archit. Comput. Syst., pp.

211–223, 2019.

[10] C. Toal, K. Mclaughlin, S. Sezer, and X. Yang, "Design and Implementation of a Field-Programmable Crc Circuit Architecture,"

Ieee Trans. Very Large Scale Integr. (Vlsi) Syst., vol. 17, no. 8, pp. 1142–1147, 2009.

[11] the P4 Language Specification, Version 1.0.5, P4 Lang. the Consortium, Stanford, Ca, Usa, 2018.

[12] M. Grymel and S. B. Furber, "A Novel Programmable Parallel Crc Circuit," Ieee Trans. Very Large Scale Integr. (Vlsi) Syst., vol.

19, no. 10, pp. 1898– 1902, 2011.

[13] S. Gueron, "Speeding Up Crc32c Computations With Intel Crc32 Instruction," Inf. Process. Lett., vol. 112, no. 5, pp. 179–185,

2012.

[14] G. Campobello, G. Patane, and M. Russo, “Parallel Crc Realization,” Ieee Trans. Comput., vol. 52, no. 10, pp. 1312–1319, 2003.

[15] H. Liu, Z. Qiu, W. Pan, J. Li, L. Zheng, and Y. Gao, “Low-Cost and Programmable Crc Implementation Based on Fpga,” 2020.

[16] K. Vipin and S. A. Fahmy, "Fpga Dynamic and Partial Reconfiguration: A Survey of Architectures Methods and Applications,"

Acm Comput. Surveys, vol. 51, no. 4, pp. 1–39, 2018.

[17] P. Orosz, T. Tóthfalusi, and P. Varga, "Fpga-Assisted Dpi Systems: 100 Gbit/S and Beyond," Ieee Commun. Surveys Tuts., vol. 21,

no. 2, pp. 2015– 2040, 2019.

[18] M. Jubin and T. Nayak, "Reconfigurable Very High Throughput Low Latency Vlsi (Fpga) Design Architecture of Crc 32,"

Integration, vol. 56, pp. 1–14, 2017.

