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Abstract - Avionics is an aviation industry platform that provides comprehensive solutions for flight planning, scheduling, and

management. Flight data acquisition (FDA) in Avionics refers to the process of collecting and gathering flight-related
information from various sources within the Avionics system. It involves integrating data from multiple sources, such as
aircraft sensors, air traffic control systems, weather information providers, and airline databases. These diverse sources
contribute different types of data, including flight parameters, environmental conditions, and operational details. Overall,

flight data acquisition in Avionics plays a crucial role in ensuring the availability of accurate and reliable flight-related

information. It enables efficient flight planning, improves operational decision-making, and enhances safety and efficiency in

the aviation industry.

1. Introduction

Flight data acquisition using Field-Programmable Gate

Arrays (FPGAs) and the Universal Verification Methodology

(UVM) is an advanced approach to collecting and verifying

flight-related data in the aviation industry. FPGAs offer

programmable hardware that can be customized to perform

specific tasks efficiently, while UVM provides a standardized

methodology for verifying digital designs. FPGASs can handle
high-speed data processing and offer flexibility in terms of
interfacing with various sensors, communication protocols,

and data storage units. By leveraging the capabilities of
FPGAs,
transmitted in real-time, enabling efficient monitoring and
analysis of critical flight parameters.

flight data can be acquired, processed, and

The UVM verification methodology is employed to

ensure the correctness and reliability of the FPGA-based
flight data acquisition system. UVM is a standardized
verification framework that provides a systematic and
scalable approach to verifying digital designs. It involves the
creation

of reusable verification components, the
development of test benches, and the application of
constrained-random stimulus generation techniques to test

the functionality of the design thoroughly. When applied to
flight data acquisition using FPGAs, UVM allows for

creation of comprehensive test environments that simulate

various flight scenarios and sensor inputs. The verification

components and testbenches are developed to mimic the real-

world flight data acquisition system's behaviour and

Keywords - Flight Data Acquisition (FDA), Avionics, FPGA, Universal Verification Methodology (UVM), Electronic Design
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associated interfaces. Subjecting the FPGA design to a wide
range of test scenarios can identify and rectify potential
issues or bugs, ensuring the system's robustness and
reliability.

2. Related Work

The verification process is typically iterative,
involving multiple rounds of simulation, formal
verification, emulation, and testing until the hardware
design is correct and ready for fabrication or development.
The complexity of the hardware design and the level of
verification required depends on the size, complexity, and
criticality of the system being developed.

UVM remains a widely wused and supported
methodology for hardware verification, providing a
standardized and interoperable framework for developing
reusable and scalable test benches. Its adoption has
significantly improved verification productivity and
efficiency, enabling more effective verification of complex
designs in the semiconductor industry.

Ning Jia, Hang Chen, and Jun Tian, in the year 2021,
proposed a model in "A Design of Configurable Multi-type
Flight Data Acquisition System" [1]. The objective of this
paper is to compute the acquisition task of multiple types of
flight data and store it in real time. The main drawback of
this paper is the complexity of the design framework, which
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requires a lot of time and effort by professional technicians
to operate.

G.V.Jayaramaiah and Chetan Umadi in the year 2020
have published papers on "FPGA implementation of
multiprotocol data acquisition system using VHDL" [6].
They have implemented parallel and serial data transfer
protocols and all protocols implanted on FPGA kit and
modelled using VHDL. Multichannel sensors and different
ADC protocols provide digital signals.

Harikrishnan. K, Vishwas. H.N., Vineetha Jain K.V.,
and Dr. Ramesh Chinthala, in the year 2020, published a
paper on "Sensor data acquisition and de-noising using
FPGA" [4]. They have designed and implemented an
FPGA-based DAQ (Data Acquisition) system. The design
shows how a single FPGA fabric can implement an entire
system.

3. Proposed Work
3.1. Flight Data Acquisition Design

FPGA
Real FIFO
world
data oy ADC SI=—
(Temp, Memory
speed) RAM

Fig 1. Flight data acquisition system

Flight data acquisition design aims to ensure accurate
and reliable data capture, considering factors such as sensor
accuracy, sampling rates, synchronization, data integrity,
and system redundancy, as shown in the figl. The collected
data is crucial for flight testing, aircraft certification,
performance analysis, accident investigations, and ongoing
aircraft health monitoring.

The design of a flight data acquisition system involves
selecting appropriate sensors to measure the desired
parameters, designing the wiring and data buses to transmit
the signals, determining the sampling rate and resolution of
the data, and specifying the storage capacity and data
retrieval methods. The system may utilize data recorders,
data acquisition units, signal conditioning modules, and
communication interfaces.

The system consists of ADC, interface signal module,
FPGA data acquisition module, and memory storage. This
system mainly comprises sensors, which collect data from
the external world. The configurable aircraft data
acquisition system mainly collects engine sensor

parameters, fuselage sensor parameters, atmosphere and
other flight data. Analogue to Digital Converter, or ADC, is
a data converter that allows digital circuits to interface with
the real world by converting an analogue signal into a
binary code. To process the analog signal onto digital
devices like FPGA, it should be first converted to digital
format. After the signal conversion, data is handled using
FPGA.

The Serial Peripheral Interface (SPI) is a full-duplex,
synchronous, serial data link that is standard across many
microprocessors and  microcontrollers. It  enables
communication between microprocessors and peripherals.
The SPI protocol is flexible enough to interface with
numerous peripherals. Therefore, the main function of the
FPGA data acquisition module is to collect many kinds of
signals. As the core of the flight data acquisition system,
FPGA collects and stores the data. This system is divided
into three steps: the signal processing module, the FPGA
data acquisition module, and the data storage module.

The signal processing module in a flight data
acquisition  system is  responsible for receiving,
conditioning, and processing various sensor signals and data
streams from different aircraft systems. It plays a crucial
role in converting analog signals into digital format,
applying necessary filters and transformations, and
preparing the data for storage or transmission.

The data acquisition module interfaces with a wide
range of sensors and data sources throughout the aircraft.
These may include airspeed sensors, altimeters, gyroscopes,
accelerometers, engine parameters, control surfaces,
avionics systems, and more. The signals from these sources
are acquired and converted into digital form for further
processing.

The FDR (Flight Data Recorder), commonly known as
the "black box," is a specialized device installed on aircraft
to record various parameters and flight information. It
captures data such as altitude, airspeed, vertical
acceleration, heading, control inputs, engine parameters,
and more. The FDR typically uses solid-state memory or
magnetic tape to store data, and it is designed to withstand
extreme conditions, including crashes and fires, to ensure
data survivability. Flight data acquisition systems are
crucial for flight safety and performance monitoring. The
collected data can be analyzed to identify trends, anomalies,
and potential issues, enabling proactive maintenance and
incident investigation.

3.2. Verification Plan

A verification plan is done before verifying any project
to ease the work of the verification engineer. Based on the
requirement, a verification plan is to be built, including a
list of test cases and coverage models. A verification
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plan defines what needs to be verified in a hardware design
and then drives the verification strategy.
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Fig. 2 Flow Chart

3.3. Universal Verification Methodology

Universal Verification Methodology (UVM) is a
standardized methodology for the functional verification of
digital designs or systems. It provides a framework and set
of guidelines for creating modular and reusable testbenches
and verification components. UVM is widely adopted in the
semiconductor industry and is supported by various
electronic design automation (EDA) tools.

In the Universal Verification Methodology (UVM),
several key components work together to create a modular
and reusable testbench environment. These components
include:

3.3.1. Testbench Top

This is the main component of the testbench hierarchy.
It coordinates the overall verification process and
instantiates other testbench components.

3.3.2. Testbench Configuration

The testbench configuration specifies the desired
configuration parameters for the testbench, such as clock
frequency, interface configurations, or specific feature
enablement.

Top

Test
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Scoreboard
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Sequencer
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Fig. 3 UVM Architecture

3.3.3. DUT (Design Under Test) Agent

The DUT agent is responsible for interfacing with the
design and translating the testbench transactions to the
DUT's signals or interfaces. It contains the necessary
drivers, monitors, and sequences for communication with
the DUT.

3.3.4. Test

The test component defines a specific test scenario or
use case that needs to be verified. It encapsulates the test
sequence and may contain test-specific data and
configuration information. The test component typically
inherits from the uvm_test base class.

3.3.5. Environment

The environment component acts as the top-level
container for the testbench. It provides the infrastructure for
coordinating and controlling the verification process. The
environment instantiates and connects other components,
such as agents, monitors, drivers, and scoreboards. It
usually inherits from the uvm_env base class.

3.3.6. Agent

An agent represents a specific interface or protocol
within the design under test (DUT). It consists of multiple
sub-components, each with a specific role:

Sequencer

The sequencer generates sequences of transactions or
stimuli to be applied to the DUT. It controls the flow and
timing of the transactions and manages sequence
dependencies.

Driver

The driver receives the transactions from the sequencer
and drives the stimuli onto the DUT's interface signals. It
converts the transaction-level protocol into the signal-level
protocol.
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Monitor

The monitor component observes the DUT's interface
signals, captures transaction-level information and converts
it into transactions for analysis and checking in the
testbench.

Scoreboard

The scoreboard compares the expected results,
generated by the test or reference model, with the actual
results obtained from the DUT. It checks for functional
correctness and reports any discrepancies.

Sequences

Sequences represent a sequence of transactions or
stimuli that are applied to the DUT. Sequences are typically
generated by the sequencer and control the specific test
scenario.

Sequence ltems

Sequence items are the individual transactions or
stimuli that make up a sequence. They encapsulate the data
and control information to be applied to the DUT.

Configuration

The  configuration  component manages the
configuration settings for the testbench and DUT. It
provides a centralized location for storing and accessing
configuration information.

Coverage

The coverage component tracks which parts of the
design have been exercised by the testbench. It collects
coverage data and generates coverage analysis reports,
helping to ensure that the verification process is thorough.

Assertions

Assertions are used to define specific properties or
conditions that the DUT must satisfy. They help capture and
verify design properties and can be used for design and
testbench verification.

These components work together to create a
comprehensive UVM testbench environment for verifying
digital designs. They provide a modular and scalable
infrastructure that promotes reusability, maintainability, and
efficient verification of the design under test.

4. Results

Flight Data Acquisition System is designed in which
random inputs are given and stored in memory. The design
includes SPI protocol as Interface and FIFO to store data in
the memory. The design acts as DUT (Design under test),
verified using UVM (Universal Verification Methodology).
Each block of the UVM is designed, which includes: UVM

Interface, Sequence, Sequence Item, Sequencer, Driver,
Monitor, Agent, Scoreboard, Environment, and Test.

Here are the simulation results of the flight data
acquisition system, which is verified using UVM.

[ L

Fig. 4 SPI Interface

The data from the sensor is interfaced with FPGA using
SPI interface, and obtained results are shown in fig4.

Fig. 6 Verification using UVM

The flight data acquisition system is verified using
UVM testbench and observed waveform is shown above in
fig. 6.

B Memory Data - ftesthench_top/DUT/dut2/fifo_ram - Default

xxxx 0050 00fd 0118 0036 0120 0053 0153 01l3e 0033 00Sf

020 [MXXX XXXX XXXX XXXX XXKX XKXX XXXX XXXX XXXX XEXX XXXX

Fig. 7 Memory Block

XXEX NXXX XXXX XXXX EXXX XXXX XXXX XXXX XXXX XEXX XXXX
KEEX XXXX XXXX XXXX XXXX XXXX KXXX XXXX XXXX XXKXX XXXX |
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The data processed using FPGA is stored in a memory When the test case is not verified, it prints as the test
block; the above fig shows the data stored in memory during failed in the transcript window, which is shown in Fig 9.
simulation.

@ 335: uvm_test_top.env.sch [SCOREBOARD] ------ ::RESULT:: ------ 5. Conclusion

@ 335: uvm test t 7.8ch adc data:118 . P

@ 335: E;:t.::t::;, . H d;;_.:ut:fd __The Fllght E?at_a Acquisition System (FDAS) r_JIay_s a
@ 335: uvm_test_top.env.sch [SCOREBOARD] TEST PASSED critical role in aviation safety and performance monitoring.

Got Transaction adc_data=53

' _ It is an essential component of an aircraft's avionics system,
Fig. 8 Log report when the test is passed

responsible for collecting and recording various flight
parameters and operational data during the entire duration
of a flight. The FDAS captures information such as altitude,
airspeed, engine parameters, flight control inputs, and

When the test case is verified, it prints as a test passed in
the transcript window, which is shown in Fig 8.

3 175: u_m__:-,ai_:cp.—fnv.ac}; H‘::‘:-iaai;l:?l_j """ $3RESULT: numerous other variables that provide valuable insights into
g 17908 uvm €8 top.env.sc adc ataial - - - - .
@ 17%- u._m_—tést—:,zg nv.sch [] data out:0 aircraft operations. The FDAS is designed to meet stringent
@ 175: uvm _test_top.env.schb [SCOREBOARD] TEST FAILED safety and reliability standards, ensuring accurate and real-
Fig. 9 Log file output when the test is failed time data acquisition under various flight conditions.
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Pseudo Code
Design under Test
module
data_acq(adc_data,clk,reset,wr_en,rd_en,data_out);
input [15:0] adc_data;
input clk,reset,wr_en,rd_en;
output reg[15:0] data_out;
reg [15:0] data,fifo_data;
reg wr_en,rd_en;
spi
dutl(.adc_data(adc_data),.clk(clk),.reset(reset),.data(data));
fifo
dut2(.data(data),.wr_en(wr_en),.rd_en(rd_en),.clk(clk),.reset(
reset),.fifo_data(fifo_data));
ram
dut3(.fifo_data(fifo_data),.clk(clk),.reset(reset),.wr_en(wr_en
),.rd_en(rd_en),.data_out(data_out));
endmodule
module spi(adc_data,clk,reset,data);
input [15:0] adc_data;
input clk,reset;
output reg [15:0] data;
reg [4:0] count;
reg [15:0] mosi;
reg cs_l;
reg sclk;
reg [2:0] state;
always@(posedge clk)
if(reset)
begin
count<=5'd16;
cs_I<=1'bl;
sclk<=1'b0;
end
else
begin
case(state)
0:begin
sclk<=1'b0;
cs_l<=1'h0;
mosi<=adc_data;
count<=count-1;
state<=1;
end
1:begin
sclk<=1'h0;
if(count>0)

state<=0;
else
begin
count<=16;
state<=0;
end
end
default:state<=0;
endcase
end
assign data=mosi;
endmodule
module fifo(data,wr_en,rd_en,clk,reset,fifo_data);
input [15:0] data;
input wr_en,rd_en,reset,clk;
output reg [15:0] fifo_data;
reg [15:0] data;
reg [4:0] rd_ptr, wr_ptr;
reg [5:0]fifo_cnt;
reg [15:0] fifo_ram[128];

reg empty,full;
always@(data,wr_en,rd_en)
begin
if(wr_en==1'b1l) //write into RAM
begin
fifo_ram[wr_ptr]=data;
end
else if (rd_en==1'b1) // read from RAM
begin
fifo_data=fifo_ram[rd_ptr];
end
else
begin
fifo_data=fifo_data;
end
end

always @( posedge clk )
begin: counter
if( reset)
fifo_cnt<=0;
else
begin
case ({wr_en,rd_en})
2'b00 : fifo_cnt <= fifo_cnt;
2'001 : fifo_cnt <= (fifo_cnt==0) ? 0: fifo_cnt-1;
2'010 : fifo_cnt <= (fifo_cnt==32) ? 32: fifo_cnt+1;
2'b11 : fifo_cnt <= fifo_cnt;
default: fifo_cnt <= fifo_cnt;
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endcase
end

end
endmodule
module ram(fifo_data,clk,reset,wr_en,rd_en,data_out);
input [15:0] fifo_data;
input clk,reset,wr_en,rd_en;
output reg [15:0] data_out;
reg [4:0] wr_ptr_m,rd_ptr_m;
reg [15:0] mem[(2**7):0];
always@(posedge clk )

begin
if(reset==1'b1)
begin
for(int unsigned i=0;i<2**8;i++)
begin
mem[i]<=0;
data_out<=0;
end
end
end
always@(fifo_data,wr_en,rd_en)
begin
if(wr_en==1'01) //write into RAM
begin
mem[wr_ptr_m]=fifo_data;
end
else if (rd_en==1'b1) // read from RAM
begin
data_out=mem[rd_ptr_m];
end
else
begin
data_out=data_out;
end
end
endmodule

UVM Verification:
import uvm_pkg::*;
“include "uvm_macros.svh"
I

I data_interface
I

interface data_if(input logic clk,reset);
I
/ldeclaring the signals
I
logic wr_en;
logic rd_en;
logic [15:0] adc_data;
logic [15:0] data_out;
I

/ldriver clocking block
I
clocking driver_ch @(posedge clk);
default input #1 output #1;
endclocking
I
/Imonitor clocking block
1
clocking monitor_ch @(posedge clk);
default input #1 output #1;
endclocking
1
//driver modport
I
modport DRIVER (clocking driver_ch,input clk,reset);
1
//monitor modport
modport  MONITOR  (clocking  monitor_ch,input

clk,reset);

endinterface

1
/I sequence item
I
class data_seq_item extends uvm_sequence_item;
1
//data and control fields

i
bit  wr_en;
bit  rd_en;

rand bit [15:0] adc_data;
bit [15:0] data_out;

1

//Utility and Field macros

I

“uvm_object_utils_begin(data_seq_item)
“uvm_field_int(adc_data, UVM_ALL_ON)

“uvm_object_utils_end

I -

/IConstructor

1

function new(string name = "data_seq_item");
super.new(name);

endfunction

endclass

I

/l data_sequence - random stimulus

1

class data_sequence extends

uvm_sequence#(data_seq_item);

“uvm_object_utils(data_sequence)
I
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/IConstructor
I
function new(string name = "data_sequence");
super.new(name);

endfunction

I
/I create, randomize and send the item to driver
Il

task body();
endtask
endclass
i
I sequencer
1
class data_sequencer extends

uvm_sequencer#(data_seq_item);

“uvm_component_utils(data_sequencer)

I

/lconstructor

I

function new(string name, uvm_component parent);
super.new(name,parent);

endfunction

function void build_phase(uvm_phase phase);
super.build_phase(phase);

endfunction

endclass
I driver
I

“define DRIV _IF vif. DRIVER.driver_cb
class data_driver extends uvm_driver #(data_seq_item);
1
I Virtual Interface
I
virtual data_if vif;
“uvm_component_utils(data_driver)
I
// Constructor
I
function new (string name, uvm_component parent);
super.new(name, parent);
endfunction: new
I
// build phase
I
function void build_phase(uvm_phase phase);
super.build_phase(phase);

if(luvm_config_db#(virtual data_if)::get(this, ", "vif",
vif))
begin
“uvm_error("build_phase","driver virtual interface failed");
end
endfunction: build_phase
I
/ run phase
1

virtual task run_phase(uvm_phase phase);
super.run_phase(phase);
forever begin
data_seq_item trans;
seq_item_port.get_next_item(trans);
uvm_report_info("DATA_DRIVER ", $psprintf("Got
Transaction %s" trans.convert2string()));
I
//Reading
1
@(posedge vif.DRIVER.cIK);
trans.data_out="DRIV_IF.data_out;
seq_item_port.item_done();
end
endtask: run_phase
1
/I drive - transaction level to signal level
/I drives the value's from seq_item to interface signals
I
endclass: data_driver

1 monitor

“define MON_IF vif. MONITOR.monitor_cb
class data_monitor extends uvm_monitor;
I
/l Virtual Interface
1
virtual data_if vif;
1
/I analysis port, to send the transaction to scoreboard
I
uvm_analysis_port
item_collected_port;
1
/I The following property holds
information currently
/I begin captured (by the collect_address phase and
data_phase methods).
1
“uvm_component_utils(data_monitor)
I
/I new - constructor

#(data_seq_item)

the transaction
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I
function new (string name, uvm_component parent);
super.new(name, parent);
item_collected_port = new("item_collected_port", this);
endfunction
i
I/ build_phase - getting the interface handle
I
function void build_phase(uvm_phase phase);
super.build_phase(phase);
if(luvm_config_db#(virtual data_if)::get(this, ", "vif",

vif))
‘uvm_error("build_phase", "No virtual interface

specified for this monitor instance™)

endfunction: build_phase

I

/I run_phase - convert the signal level activity to
transaction level.

Ili.e., sample the values on the interface signal ans assigns
to transaction class fields

I

endclass: data_monitor

class fun_cov extends uvm_subscriber#(data_seq_item);

“uvm_component_utils(fun_cov)

data_seq_item trans;

covergroup cg;

WDATA:coverpoint trans.wr_en { bins wd[16] =
{[0:2*16-1]}; }

RDATA:coverpoint trans.rd_en { bins rd[16] = {[0:2*16-
1%}

endgroup

function new(string name, uvm_component parent);

super.new(name, parent);

cg = new();

endfunction //new()

function void build_phase(uvm_phase phase);

trans = data_seq_item::type_id::create("'trans");
endfunction

function void write(data_seq_item t);

this.trans = t;

cg.sample();

endfunction

endclass

1 agent
I
class data_agent extends uvm_agent;
I
[/l component instances
I

data_driver driver;

data_sequencer sequencer;

data_monitor monitor;

virtual data_if vif;

“uvm_component_utils_begin(data_agent)

“uvm_field_object(sequencer, UVM_ALL_ON)

“uvm_field object(driver, UVM_ALL_ON)

“uvm_field_object(monitor, UVM_ALL_ON)

‘uvm_component_utils_end

I

/[ constructor

1

function new (string name, uvm_component parent);
super.new(name, parent);

endfunction: new

1

// build_phase

I

virtual function void build_phase(uvm_phase phase);
super.build_phase(phase)

monitor = data_monitor::type_id::create("monitor",

this);

/lcreating driver and sequencer only for ACTIVE agent
driver = data_driver::type_id::create("driver", this);
sequencer =

data_sequencer::type_id::create("'sequencer”, this);
uvm_config_db#(virtual data_if)::set(this, "seq", "vif",
vif);

uvm_config_db#(virtual data_if)::set(this, "driv", "vif"
vif);

uvm_config_db#(virtual data_if)::set(this, "mon", "vif",
vif);

if('uvm_config_db#(virtual
data_if)::get(this,"","vif" vif))

begin
“uvm_error("build_phase","agent virtual interface
failed"™);
end
endfunction: build_phase
I
/I connect_phase - connecting the driver and sequencer
port
I

function void connect_phase(uvm_phase phase);
super.connect_phase(phase);

driver.seq_item_port.connect(sequencer.seq_item_export);
uvm_report_info("DATA_AGENT",  "connect_phase,
Connected driver to sequencer");
endfunction: connect_phase
endclass: data_agent

1 scoreboard
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I
class data_scoreboard extends uvm_scoreboard;
i
IIport to receive packets from the monitor
I
uvm_analysis_imp#(data_seq_item,
item_collected_export;
“uvm_component_utils(data_scoreboard)
data_seq_item trans;
I
I/ new - constructor
i
function new (string name, uvm_component parent);
super.new(name, parent);
item_collected_export=new("item_collected_export™ this);
endfunction
I
I/ build_phase - create port and initialize local memory
I
function void build_phase(uvm_phase phase);
super.build_phase(phase);
endfunction: build_phase
I

data_scoreboard)

I/ write task - recives the pkt from the monitor and pushes

into the queue
I
endclass: data_scoreboard

I environment

class data_env extends uvm_env;
1
/l agent and scoreboard instance
I
data_agent  agnt;
data_scoreboard scb;
virtual data_if vif;
“uvm_component_utils(data_env)
i
/I constructor
I
function new(string name, uvm_component parent);
super.new(name, parent);
endfunction: new
I
[/ build_phase - crate the components
I
function void build_phase(uvm_phase phase);
super.build_phase(phase);
agnt = data_agent::type_id::create("agnt", this);
sch = data_scoreboard::type_id::create(*'sch", this);

uvm_config_db#(virtual data_if)::set(this, "agt", "vif",

vif);
uvm_config_db#(virtual data_if)::set(this, "scb", "vif",
vif);
if(! uvm_config_db#(virtual data_if)::get(this, ", "vif",
vif))
begin
“uvm_error("build_phase","Environment virtual
interface failed")
end
endfunction: build_phase
1
/I connect_phase - connecting monitor and scoreboard
port
I

function void connect_phase(uvm_phase phase);
super.connect_phase(phase);

agnt.monitor.item_collected_port.connect(sch.item_collected
_export);
uvm_report_info("data_ ENVIRONMENT",
"connect_phase, Connected monitor to scoreboard");
endfunction: connect_phase
endclass: data_env

1 test

class data_test extends uvm_test;
“uvm_component_utils(data_test)
I
/I env instance
1
data_env env;
virtual data_if vif;
I
/I constructor
1
function new(string name ,uvm_component parent);
super.new(name,parent);
endfunction: new
I
// build_phase
1
function void build_phase(uvm_phase phase);
super.build_phase(phase);
/I Create the env
env = data_env::type_id::create("env", this);

uvm_config_db#(virtual data_if)::set(this, "env", "vif",
vif);

if(! uvm_config_db#(virtual data_if)::get(this, ", "vif",
vif))

begin

10
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‘uvm_error("build_phase","Test  virtual interface
failed")
end
endfunction: build_phase
task run_phase(uvm_phase phase);
data_sequence seq;
seq = data_sequence::type_id::create("seq" this);
phase.raise_objection(this,"starting main phase");
Sdisplay("%t Starting sequence spi_seq run_phase",$time);
seq.start(env.agnt.sequencer);
#500ns;
phase.drop_objection(this,"finished main phase™);
endtask: run_phase

endclass

I testbench.sv

module testbench_top;
always #5 clk = ~clk;
Il
/Ireset Generation
I
initial begin
reset = 1;
#15 reset =0;
end
I
/linterface instance

I
data_if intf(clk,reset);
I
//DUT instance
1
data_acq DUT (
.clk(intf.clk),
reset(intf.reset),
wr_en(intf.wr_en),
.rd_en(intf.rd_en),
.adc_data(intf.adc_data),
.data_out(intf.data_out)
)i
I
/Ipassing the interface handle to lower heirarchy using set
method
/land enabling the wave dump
initial begin
uvm_config_db#(virtual
data_if)::set(uvm_root::get(),"*","vif",intf);
$dumpfile("dump.vcd");
$dumpvars;
end
I
/lcalling test
1
initial begin
run_test("data_test");
end

endmodule
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