
SSRG International Journal of VLSI and Signal Processing Volume 10 Issue 2, 17-21, May-Aug 2023

ISSN: 2394–2584 / https://doi.org/10.14445/23942584/IJVSP-V10I2P103 © 2023 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Design and Implementation of RISC-V ISA (RV32IM)

on FPGA

Anmol Singh1, Arpit Kumar2, Abhishek Singh3, R. Anirudh Reddy4, K. N. Pushpalatha5

1,2,3,4,5Department of Electronics & Communication Engineering, Dayananda Sagar College of Engineering, Karnataka, India.

Received: 29 April 2023 Revised: 05 June 2023 Accepted: 20 June 2023 Published: 06 July 2023

Abstract - RISC-V, an open-source Instruction Set Architecture, originated from the collaborative efforts of researchers at the

University of California, Berkeley, in 2010. It is a basic Load and Store type architecture based on traditional principles of

RISC whilst providing flexibility in terms of extensions to the base Integer Set such as multiply, floating point and atomic

instructions. This paper details the Design and Implementation of 5 stages pipelined RV32IM (base integer set with multiply

extension). The design also incorporates a 2-bit branch predictor for increased throughput. Analysis and Verification have

been performed for proper decoding, pipelined operation, branch prediction, stalling, memory access, and overall

functionality. Verilog HDL on Intel QuestaSim has been used to design the core and simulation. DE 10 Lite board with Max

10 family of FPGA has been used for hardware synthesis and analysis of the design.

Keywords - RISC-V, Instruction Set Architecture, RV32IM, 5-stage pipeline, DE10 Lite FPGA.

1. Introduction
A processor forms one of the major and important parts

of any modern computer system. An Instruction Set

Architecture (ISA) distinguishes one type of architecture

from another. RISC V offers a viable alternative to

proprietary ISAs such as ARM and x86. One of the key

features of RISC-V is its modularity, which allows users to

customize the ISA to fit their specific needs [1]. This

flexibility is achieved using a small base ISA, which

provides minimal instructions, and a series of standard

extension modules that can be added to the base ISA as

needed. Another advantage of RISC-V is its open-source

nature, which allows for collaborative development and

reduces the dependence on a single vendor or manufacturer.

This has led to a growing ecosystem of RISC-V tools and

platforms, including development boards, compilers, and

operating systems.

A five-stage pipeline is a fundamental concept in

processor design, which aims to improve the efficiency and

performance of instruction execution. It involves breaking

down the instruction execution process into five distinct

stages, each handling a specific operation. The five stages

typically include instruction fetch, instruction decode,

execution, memory access, and writeback [2].

Branch prediction is a crucial technique employed in

modern processors to mitigate the performance impact of

conditional branch instructions. Branches occur when the

processor encounters instructions like conditional branches,

loops, or function calls that can alter the sequential flow of

instructions. The purpose of branch prediction is to anticipate

the outcome of a branch instruction before it is resolved and

to speculatively fetch and execute the predicted instructions.

By doing so, the processor can avoid pipeline stalls and

maintain a high instruction throughput.

The DE10 Lite board with Max 10 FPGA combines the

DE10 Lite hardware platform with the Intel Max 10 FPGA

family. The Max 10 FPGA devices are low-power, non-

volatile programmable logic devices that offer a range of

resources and capabilities suitable for various applications.

The further sections detail the implementation process,

results and review carried out.

2. Reference Study
A. Singh et al. [3] introduce a hardware design framework

aimed at implementing the RV32I base integer instruction set

in RISC-V for 32-bit address space. The implemented

architecture discussed in this paper is a single-core, in-order,

non-bus-based, single-cycle design that fully supports the

RV32I base integer instruction set. This architecture finds

application in various domains, including acoustic signal

processing, real-time embedded systems, sensor technology

and myriad other domains. A suite of tools and test

frameworks around RISC-V was created targeted at 32-bit

architectures. RV32I was specifically designed to serve as a

comprehensive compiler target and provide support for

modern operating systems. Additionally, its design aims to

minimize the hardware resources needed for a basic

implementation.

Anmol Singh et al./ IJVSP, 10(2), 17-21, 2023

18

The fetch, decode and control logic block is responsible

for fetching the instruction from the instruction memory,

decoding the instruction, and generating the control signals.

It is also responsible for resolving jump and branch target

addresses. The RV32I architecture includes various

components such as the program counter, target address

selection logic, instruction memory controller, instruction

decoder, and a control unit. Furthermore, it incorporates a

dedicated adder responsible for incrementing the program

counter in each cycle. The control unit is purely

combinatorial, with all the control signals generated in the

same cycle.

A comparison of synthesis and implementation has been

conducted on two Virtex family boards, considering

utilization reports and power reports as the evaluation criteria

[3].

3. Materials and Methods
Once we have designed and optimized each sub-

component, we must integrate them in a way that enables

them to collaborate effectively and deliver the expected

output for each instruction. Achieving this often requires

making specific modifications to the design of each sub-

component to ensure smooth integration with the others.

Pipeline stages are made by adding registers to store the

result from each stage so that another instruction can be

processed after the first instruction. SDC file is added to

provide constraints for the design so that we can find the

maximum operating frequency.

Before uploading the design to the FPGA, we convert

the desired C code that we want to execute on the RISC-V

core we covert into a hex file. This is because our digital

design cannot understand high-level code. Therefore, we

need to convert these instructions to hex values that can be

read by our design. The path of this hex file is then provided

to the design via Platform Designer (formerly known as

Qsys). The design is then compiled and uploaded to the

FPGA. While it's possible to use our own design for the

register file during simulations, when implementing it on the

FPGA, we'll need to rely on the internal memory blocks of

the FPGA instead.

The different functions of the pipeline stages are

mentioned below [11]:

3.1. Instruction Fetch

The instructions reside in memory that takes one cycle to

read. This memory can be dedicated to SRAM or an

Instruction Cache. During the Instruction Fetch stage, a 32-

bit instruction is fetched from the instruction memory.

3.2. Instruction Decode

During the instruction decodes stage, the core receives

the instruction from the previous fetch stage. The instruction

is then processed and broken down into its constituent parts

to determine the operation to be performed, the operands

involved, and any additional information needed for

execution.

3.3. Execute Stage

The Execute stage is responsible for carrying out the

actual computations in a processor. Usually, this stage

incorporates an Arithmetic Logic Unit (ALU). In addition to

the ALU, it may also include a multiple-cycle multiplier and

divider for more complex mathematical operations. The ALU

is responsible for performing Boolean operations (and, or,

not, nand, nor, xor, xnor) and also for performing integer

addition and subtraction. The bit shifter is responsible for

shifts and rotations.

3.4. Memory Stage

If data memory needs to be accessed, it is done in this

stage. It is responsible for performing memory-related

operations, such as loading data from memory or storing data

in memory.

3.5. Writeback

During this stage, both single-cycle and two-cycle

instructions store their results in the register file. It is

important to note that two different stages access the register

file simultaneously. The decode stage reads two source

registers, while the writeback stage writes the destination

register of a previous instruction. This situation can lead to a

hazard on actual silicon (more on hazards below). A hazard

arises when there is a conflict between the source registers

being read in the decode stage and the destination register

being written in the writeback stage. In such cases, the same

memory cells in the register file are read and written

simultaneously. The block diagram of the design is shown

below.

3.6. Block Diagram

Fig. 1 Block Diagram

4. Results
The following results are from the simulation of the

RV32IM core on Intel QuestaSim. The results shown are for

basic operations taking place within the core.

Decoder PC

 Instr.

Memory
Staller

ALU

Register

 File

 RS1

Register

 RS2

Register

Multiplier

Divider

 Ext.
Memory

 Ext.
Memory

Register
 File

Decoder

Anmol Singh et al./ IJVSP, 10(2), 17-21, 2023

19

4.1. Add Instruction

Fig. 2 Add instruction

4.2. Multiplication Instruction

Fig. 3 Multiplication instruction

4.3. Subtraction Instruction

Fig. 4 Subtraction instruction

4.4. XOR Instruction

Fig. 5 XOR instruction

Anmol Singh et al./ IJVSP, 10(2), 17-21, 2023

20

4.5. Quartus Synthesis Summary

Fig. 6 Hardware utilization

4.6. Synthesized RTL

Fig. 7 Synthesized RTL

Anmol Singh et al./ IJVSP, 10(2), 17-21, 2023

21

5. Conclusion
In this paper, we have presented our work, Design and

Implementation of RISC V ISA on FPGA and have

illustrated and experienced the findings and the specific

features of our design.

The paper also demonstrates the design's 5-stage

pipeline and branch prediction capabilities whilst illustrating

its functionality through simulation and hardware results.

Further, the paper also aims to showcase the development of

the architecture core on the DE10 Lite board.

In conclusion, the objective of this paper is to provide

hardware designers and developers with an overview of the

RISC-V architecture, enabling them to gain a deeper

understanding of its prominent implementations and

versions.

Additionally, the paper aims to explore advanced

features and their integration within the RISC-V framework,

like the 5-stage pipeline and branch prediction, all combined,

forming a large hardware and software ecosystem.

References
[1] Akshay Birari et al., “A RISC-V ISA Compatible Processor IP,” 24th International Symposium on VLSI Design and Test, pp. 1-6, 2020.

[CrossRef] [Google Scholar] [Publisher Link]

[2] Aneesh Raveendran et al., “A RISC-V Instruction Set Processor Microarchitecture Design and Analysis,” International Conference on

VLSI Systems, Architectures, Technology and Applications, pp. 1-7, 2016. [CrossRef] [Google Scholar] [Publisher Link]

[3] Aslesa Singh et al., “Design and Implementation of a 32-bit ISA RISC-V Processor Core using Virtex-7 and Virtex-UltraScale,” IEEE,

5th International Conference on Computing Communication and Automation, pp. 126-130, 2020. [CrossRef] [Google Scholar]

[Publisher Link]

[4] Sudhir Dagar, and Geeta Nijhawan, “Area Efficient Moving Object Detection using Spatial and Temporal Method in

FPGA,” International Journal of Engineering Trends and Technology, vol. 70, no. 9, pp. 138-147, 2022. [CrossRef] [Publisher Link]

[5] I. Kuroda et al., “A 16-bit Parallel MAC Architecture for a Multimedia RISC Processor,” IEEE, Workshop on Signal Processing

Systems, SIPS 98, Design and Implementation, pp. 103-112, 1998. [CrossRef] [Google Scholar] [Publisher Link]

[6] Shofiqul Islam et al., “Design of High-Speed-Pipelined Execution Unit of 32-bit RISC Processor,” Annual IEEE India Conference, pp.

1-5, 2006. [CrossRef] [Google Scholar] [Publisher Link]

[7] Adrian Oleksiak et al., “Design and Verification Environment for RISC-V Processor Cores,” MIXDES - 26th International Conference

‘Mixed Design of Integrated Circuits and Systems’, pp. 206-209, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[8] Don Kurian Dennis et al., “Single Cycle RISC-V Micro Architecture Processor and its FPGA Prototype,” 7th International Symposium

on Embedded Computing and System Design, pp. 1-5, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[9] Yang Jing et al., “Electrical Diagnosis of Temperature-Dependent Global Clock Failures Using Probeless Isolation and Pattern

Commonality Analysis,” 19th IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits, pp. 1-6, 2012.

[CrossRef] [Google Scholar] [Publisher Link]

[10] Ludovico Poli et al., “Design and Implementation of a RISC V Processor on FPGA,” 17th International Conference on Mobility,

Sensing and Networking, pp. 161-166, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[11] David A. Patterson, and John L. Hennessy, Computer Organization and Design RISC-V Edition: The Hardware Software Interface,

Morgan Kaufmann Publisher, Elsevier, 2017. [Google Scholar] [Publisher Link]

[12] Andrew Waterman et al., The RISC-V Instruction Set Manual, EECS Department, University of California, 2016. [Google Scholar]

[Publisher Link]

[13] Reinhold P. Weicker, “Dhrystone: a Synthetic Systems Programming Benchmark,” Communications of the ACM, vol. 27, no. 10, pp.

1013-1030, 1984. [CrossRef] [Google Scholar] [Publisher Link]

[14] Jan Andersson, “Development of a NOEL-V RISC-V SoC Targeting Space Applications,” 50th Annual IEEE/IFIP International

Conference on Dependable Systems and Networks Workshops, pp. 66-67, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[15] Jaewon Lee et al., “RISC-V FPGA Platform toward ROS-Based Robotics Application,” 30th International Conference on Field-

Programmable Logic and Applications, pp. 370-370, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[16] RISC-V Specifications, 2021. [Online]. Available: https://riscv.org/technical/specifications

[17] Pierre Maillard et al., “Test Methodology & Neutron Characterization of Xilinx 16nm Zynq® UltraScale+™ Multi-Processor System-

on-Chip (MPSoC),” IEEE Radiation Effects Data Workshop (REDW), pp. 1-4, 2018. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1109/VDAT50263.2020.9190558
https://scholar.google.com/scholar?q=%22A+RISC-V+ISA+Compatible+Processor+IP,%22+&hl=en&as_sdt=0,5
https://ieeexplore.ieee.org/abstract/document/9190558
https://doi.org/10.1109/VLSI-SATA.2016.7593047
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+RISC-V+Instruction+Set+Processor+Microarchitecture+Design+and+Analysis&btnG=
https://ieeexplore.ieee.org/abstract/document/7593047
https://doi.org/10.1109/ICCCA49541.2020.9250850
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Design+and+Implementation+of+a+32-bit+ISA+RISC-V+Processor+Core+using+Virtex-7+and+Virtex-+UltraScale%2C%22+&btnG=
https://ieeexplore.ieee.org/abstract/document/9250850
https://doi.org/10.14445/22315381/IJETT-V70I9P214
https://ijettjournal.org/archive/ijett-v70i9p214
https://doi.org/10.1109/SIPS.1998.715773
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+16-bit+parallel+MAC+architecture+for+a+multimedia+RISC+processor%2C%22&btnG=
https://ieeexplore.ieee.org/abstract/document/715773
https://doi.org/10.1109/INDCON.2006.302780
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Design+of+High-Speed-Pipelined+Execution+Unit+of+32-bit+RISC+Processor%2C%22&btnG=
https://ieeexplore.ieee.org/abstract/document/4086251
https://doi.org/10.23919/MIXDES.2019.8787108
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Design+and+Verification+Environment+for+RISC-V+Processor+Cores%2C%22&btnG=
https://ieeexplore.ieee.org/abstract/document/8787108
https://doi.org/10.1109/ISED.2017.8303926
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%22Single+cycle+RISC-V+micro+architecture+processor+and+its+FPGA+prototype%2C%22+&btnG=
https://ieeexplore.ieee.org/abstract/document/8303926
https://doi.org/10.1109/IPFA.2012.6306322
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%22Electrical+diagnosis+of+temperature-dependent+global+clock+failures+using+probe+less+isolation+and+pattern+commonality+analysis%2C%22+&btnG=
https://ieeexplore.ieee.org/abstract/document/6306322
https://doi.org/10.1109/MSN53354.2021.00037
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=+%22Design+and+Implementation+of+a+RISC+V+Processor+on+FPGA%2C%22+&btnG=
https://ieeexplore.ieee.org/abstract/document/9751566
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Computer+Organization+and+Design+RISC-V+Edition&btnG=
http://home.ustc.edu.cn/~louwenqi/reference_books_tools/Computer%20Organization%20and%20Design%20RISC-V%20edition.pdf
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+RISC-V+Instruction+Set+Manual%22&btnG=
https://isrc.iscas.ac.cn/gitlab/mirrors/github.com/riscv_riscv-isa-manual/-/raw/b8bb0553a59da2f884605736d6a249af0e45ae1f/release/riscv-privileged-v1.9.pdf
https://doi.org/10.1145/358274.358283
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Dhrystone%3A+a+synthetic+systems+programming+benchmark&btnG=
https://dl.acm.org/doi/abs/10.1145/358274.358283
https://doi.ieeecomputersociety.org/10.1109/DSN-W50199.2020.00020
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Development+of+a+NOEL-V+RISC-V+SoC+Targeting+Space+Applications%2C%22+&btnG=
https://www.computer.org/csdl/proceedings-article/dsn-w/2020/09151721/1lRm2qRgtz2
https://doi.org/10.1109/FPL50879.2020.00075
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=RISC-V+FPGA+Platform+Toward+ROS-Based+Robotics+Application%2C%22+&btnG=
https://ieeexplore.ieee.org/abstract/document/9221616
https://riscv.org/technical/specifications
https://doi.org/10.1109/NSREC.2018.8584299
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Test+Methodology+%26+Neutron+Characterization+of+Xilinx+16nm+Zynq%C2%AE+UltraScale%2B%E2%84%A2+Multi-Processor+System-on-Chip+%28MPSoC%29%2C%22+&btnG=
https://ieeexplore.ieee.org/abstract/document/8584299

