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Abstract - RISC-V, an open-source Instruction Set Architecture, originated from the collaborative efforts of researchers at the 

University of California, Berkeley, in 2010. It is a basic Load and Store type architecture based on traditional principles of 

RISC whilst providing flexibility in terms of extensions to the base Integer Set such as multiply, floating point and atomic 

instructions. This paper details the Design and Implementation of 5 stages pipelined RV32IM (base integer set with multiply 

extension). The design also incorporates a 2-bit branch predictor for increased throughput. Analysis and Verification have 

been performed for proper decoding, pipelined operation, branch prediction, stalling, memory access, and overall 

functionality. Verilog HDL on Intel QuestaSim has been used to design the core and simulation. DE 10 Lite board with Max 

10 family of FPGA has been used for hardware synthesis and analysis of the design.  
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1. Introduction  
A processor forms one of the major and important parts 

of any modern computer system. An Instruction Set 

Architecture (ISA) distinguishes one type of architecture 

from another. RISC V offers a viable alternative to 

proprietary ISAs such as ARM and x86. One of the key 

features of RISC-V is its modularity, which allows users to 

customize the ISA to fit their specific needs [1]. This 

flexibility is achieved using a small base ISA, which 

provides minimal instructions, and a series of standard 

extension modules that can be added to the base ISA as 

needed. Another advantage of RISC-V is its open-source 

nature, which allows for collaborative development and 

reduces the dependence on a single vendor or manufacturer. 

This has led to a growing ecosystem of RISC-V tools and 

platforms, including development boards, compilers, and 

operating systems. 

 

A five-stage pipeline is a fundamental concept in 

processor design, which aims to improve the efficiency and 

performance of instruction execution. It involves breaking 

down the instruction execution process into five distinct 

stages, each handling a specific operation. The five stages 

typically include instruction fetch, instruction decode, 

execution, memory access, and writeback [2]. 

 

Branch prediction is a crucial technique employed in 

modern processors to mitigate the performance impact of 

conditional branch instructions. Branches occur when the 

processor encounters instructions like conditional branches, 

loops, or function calls that can alter the sequential flow of 

instructions. The purpose of branch prediction is to anticipate 

the outcome of a branch instruction before it is resolved and 

to speculatively fetch and execute the predicted instructions. 

By doing so, the processor can avoid pipeline stalls and 

maintain a high instruction throughput. 

 

The DE10 Lite board with Max 10 FPGA combines the 

DE10 Lite hardware platform with the Intel Max 10 FPGA 

family. The Max 10 FPGA devices are low-power, non-

volatile programmable logic devices that offer a range of 

resources and capabilities suitable for various applications. 

 

The further sections detail the implementation process, 

results and review carried out. 

 

2. Reference Study  
A. Singh et al. [3] introduce a hardware design framework 

aimed at implementing the RV32I base integer instruction set 

in RISC-V for 32-bit address space. The implemented 

architecture discussed in this paper is a single-core, in-order, 

non-bus-based, single-cycle design that fully supports the 

RV32I base integer instruction set. This architecture finds 

application in various domains, including acoustic signal 

processing, real-time embedded systems, sensor technology 

and myriad other domains. A suite of tools and test 

frameworks around RISC-V was created targeted at 32-bit 

architectures. RV32I was specifically designed to serve as a 

comprehensive compiler target and provide support for 

modern operating systems. Additionally, its design aims to 

minimize the hardware resources needed for a basic 

implementation. 
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The fetch, decode and control logic block is responsible 

for fetching the instruction from the instruction memory, 

decoding the instruction, and generating the control signals. 

It is also responsible for resolving jump and branch target 

addresses. The RV32I architecture includes various 

components such as the program counter, target address 

selection logic, instruction memory controller, instruction 

decoder, and a control unit. Furthermore, it incorporates a 

dedicated adder responsible for incrementing the program 

counter in each cycle. The control unit is purely 

combinatorial, with all the control signals generated in the 

same cycle. 

 

A comparison of synthesis and implementation has been 

conducted on two Virtex family boards, considering 

utilization reports and power reports as the evaluation criteria 

[3]. 

 

3. Materials and Methods  
Once we have designed and optimized each sub-

component, we must integrate them in a way that enables 

them to collaborate effectively and deliver the expected 

output for each instruction. Achieving this often requires 

making specific modifications to the design of each sub-

component to ensure smooth integration with the others. 

Pipeline stages are made by adding registers to store the 

result from each stage so that another instruction can be 

processed after the first instruction. SDC file is added to 

provide constraints for the design so that we can find the 

maximum operating frequency. 

 

Before uploading the design to the FPGA, we convert 

the desired C code that we want to execute on the RISC-V 

core we covert into a hex file. This is because our digital 

design cannot understand high-level code. Therefore, we 

need to convert these instructions to hex values that can be 

read by our design. The path of this hex file is then provided 

to the design via Platform Designer (formerly known as 

Qsys). The design is then compiled and uploaded to the 

FPGA. While it's possible to use our own design for the 

register file during simulations, when implementing it on the 

FPGA, we'll need to rely on the internal memory blocks of 

the FPGA instead. 

 

The different functions of the pipeline stages are 

mentioned below [11]: 

 

3.1. Instruction Fetch 

The instructions reside in memory that takes one cycle to 

read. This memory can be dedicated to SRAM or an 

Instruction Cache. During the Instruction Fetch stage, a 32-

bit instruction is fetched from the instruction memory.  

 

3.2. Instruction Decode 

During the instruction decodes stage, the core receives 

the instruction from the previous fetch stage. The instruction 

is then processed and broken down into its constituent parts 

to determine the operation to be performed, the operands 

involved, and any additional information needed for 

execution.  

 

3.3. Execute Stage 

The Execute stage is responsible for carrying out the 

actual computations in a processor. Usually, this stage 

incorporates an Arithmetic Logic Unit (ALU). In addition to 

the ALU, it may also include a multiple-cycle multiplier and 

divider for more complex mathematical operations. The ALU 

is responsible for performing Boolean operations (and, or, 

not, nand, nor, xor, xnor) and also for performing integer 

addition and subtraction. The bit shifter is responsible for 

shifts and rotations. 

 

3.4. Memory Stage 

If data memory needs to be accessed, it is done in this 

stage. It is responsible for performing memory-related 

operations, such as loading data from memory or storing data 

in memory. 

 

3.5. Writeback 

During this stage, both single-cycle and two-cycle 

instructions store their results in the register file. It is 

important to note that two different stages access the register 

file simultaneously. The decode stage reads two source 

registers, while the writeback stage writes the destination 

register of a previous instruction. This situation can lead to a 

hazard on actual silicon (more on hazards below). A hazard 

arises when there is a conflict between the source registers 

being read in the decode stage and the destination register 

being written in the writeback stage. In such cases, the same 

memory cells in the register file are read and written 

simultaneously. The block diagram of the design is shown 

below. 

3.6. Block Diagram 

 

 

 

 

 

 

Fig. 1 Block Diagram 

 

4. Results  
The following results are from the simulation of the 

RV32IM core on Intel QuestaSim. The results shown are for 

basic operations taking place within the core.  
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4.1. Add Instruction 

 
Fig. 2 Add instruction 

 

 

4.2. Multiplication Instruction 

 
Fig. 3 Multiplication instruction 

 

 

4.3. Subtraction Instruction 

 
Fig. 4 Subtraction instruction 

 

 

4.4. XOR Instruction 

 
Fig. 5 XOR instruction 
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4.5. Quartus Synthesis Summary 

 
Fig. 6 Hardware utilization 

4.6. Synthesized RTL 

 
Fig. 7 Synthesized RTL
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5. Conclusion 
In this paper, we have presented our work, Design and 

Implementation of RISC V ISA on FPGA and have 

illustrated and experienced the findings and the specific 

features of our design.  

 

The paper also demonstrates the design's 5-stage 

pipeline and branch prediction capabilities whilst illustrating 

its functionality through simulation and hardware results. 

Further, the paper also aims to showcase the development of 

the architecture core on the DE10 Lite board. 

 

In conclusion, the objective of this paper is to provide 

hardware designers and developers with an overview of the 

RISC-V architecture, enabling them to gain a deeper 

understanding of its prominent implementations and 

versions.  

 

Additionally, the paper aims to explore advanced 

features and their integration within the RISC-V framework, 

like the 5-stage pipeline and branch prediction, all combined, 

forming a large hardware and software ecosystem. 
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