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Abstract - Health and monitoring of aircraft vibrations are crucial to safety. To maintain safe flying, helicopter vibration levels 

should be kept at a minimum. Therefore, vibration signal analysis and systems that measure vibration levels are very important 

topics in the avionics industry.  

In the scope of this thesis, the Flight Test Instrument (FTI) system is designed for data acquisition purposes. The FTI system 

consists of a power module, controller module, analog input module and backplane module. The power module converts input 

power to desired levels according to system requirements. The controller module is responsible for calculations and 

communication because it has an FPGA on board. The analog input module is responsible for interfacing with the sensors, 

signal conditioning, and sampling the vibration signals. The backplane is designed to combine all the modules together. 

The study also contains vibration signal analysis. In order to determine the vibration level and phase , different approaches 

were made. First of all, to determine vibration magnitude, an FFT implementation was made, and for the phase calculation, 

several digital filters were designed and implemented into the system. Algorithms that are developed have been verified in 

laboratory environments with a constant vibration generator device; measurements from a helicopter were taken to measure the 

vibration level. A commercial off-the-shelf (COTS) device was used in helicopter experiments to compare the resul ts, and the 

results and comparisons have been shared. Afterwards, several machine learning algorithms (such as SVM, GPR, linear 

regression, etc.) are trained for vibration magnitude and phase prediction. Simulation results have been shared and evaluated 

for these algorithms. 

Keywords - Signal Processing, Machine Learning, Hardware Design, Flight Test Instrument, Vibration Signals.  

 

1. Introduction  
The mechanical phenomena known as vibration are 

defined by oscillatory motion around an equilibrium position 

or reference point. It is produced by repeatedly moving an 

object or system back and forth around a central axis or point. 

This motion can take many different shapes, such as rotational 

(circular), linear (straight-line), or a mix of the two. 

Depending on the type of system producing the vibration, it 

can manifest in a variety of frequencies, amplitudes, and 

directions. It may be brought on by intera ctions between 

system components, internal mechanical or structural 

characteristics, or external forces operating on a system.  

 

Because vibration has a significant impact on the 

performance, stability, and dependability of mechanical 

systems, it is a  topic of much research in both engineering and 

physics. Depending on the situation, it can have both positive 

and negative impacts. FTI (Flight Test Instruments) systems 

are basically measurement and data acquisition devices that 

are used in avionic vehicles.  

 

The main purpose of these systems is to monitor and 

record specific data in production, maintenance and repair 

processes. In order to do so, FTI systems contain many 

transducers, such as air pressure sensors, velocimeters, 

accelerometers, fuel pressure sensors, cameras, etc.  

 
In engineering and physics, vibration is studied 

extensively because the performance, stability, and reliability 

of mechanical systems are affected enormously by vibration. 

It can have both beneficial and detrimental effects depending 

on the context [1]:  

• Beneficial Effects: In some cases, controlled vibration is 

desirable and can serve useful purposes. For example, 

vibration is utilized in machinery such as engines, 

http://creativecommons.org/licenses/by-nc-nd/4.0/
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turbines, and pumps to facilitate proper functioning, 

enhance efficiency, and prevent stalling or resonance. 

• Detrimental Effects: Excessive or uncontrolled vibration 

can be problematic and lead to various issues, including 

mechanical wear, fatigue, instability, and structural 

damage. In aerospace, automotive, and manufacturing 

applications, minimizing unwanted vibration is crucial 

for equipment safety, performance, and longevity. 

 
Understanding the causes and characteristics of vibration, 

as well as techniques for its analysis, control, and mitigation, 

is essential for engineers and designers across numerous 

industries to ensure the reliability and efficiency of 

mechanical systems [2].  

 
The long-term negative impact of vibration on machines 

can be significant and can lead to several detrimental 

consequences, including;  

• Mechanical Wear and Fatigue: The wear and tear of 

machine components such as bearings, gears, shafts, and 

other moving parts can be accelerated by continuous 

vibration. This mechanical wear can lead to increased 

friction, surface damage, and ultimately, component 

failure due to fatigue. 

• Reduced Operational Life Span: The cumulative effects 

of vibration-induced wear and fatigue can significantly 

shorten the operational lifespan of machines. 

Components may fail prematurely, necessitating frequent 

repairs or replacements, which can increase maintenance 

costs and downtime. 

• Decreased Efficiency and Performance: Vibrations can 

impair the efficiency and performance of machines by 

causing misalignments, imbalances, and loss of precision 

in moving parts. This can lead to decreased productivity, 

energy inefficiency, and compromised output quality in 

manufacturing processes. 

• Structural Damage and Deterioration: Excessive 

vibration can cause structural damage to machine frames, 

housings, and support structures. Over time, this can lead 

to cracks, deformation, or other forms of deterioration, 

compromising the overall integrity a nd safety of the 

equipment.  

• Safety Hazards: Vibrations can create safety hazards for 

operators and nearby personnel, particularly in high-risk 

environments such as construction sites, industrial 

facilities, or transportation vehicles. Uncontrolled 

vibration can cause machinery to malfunction, leading to 

accidents, injuries, or even fatalities. 

• Environmental Impacts: Vibrations transmitted through 

the ground or surrounding structures can also have 

environmental impacts, such as noise pollution or 

structural vibrations that affect nearby buildings or 

infrastructure. 

• Increased Maintenance Costs: Dealing with the 

consequences of vibration-related damage requires 

regular maintenance, inspections, and repairs, all of 

which incur additional costs for equipment owners and 

operators. Addressing vibration issues proactively 

through preventive maintenance measures can help 

mitigate these costs in the long run. 

Overall, the long-term negative impact of vibration on 

machines underscores the importance of implementing 

effective vibration monitoring, control, and mitigation 

strategies to maintain equipment reliability, safety, and 

longevity.  

 

This includes measures such as proper machine design, 

maintenance of optimal operating conditions, periodic 

inspections, and the use of vibration isolation or damping 

techniques where applicable. 

 

The main compound of the FTI system is the data 

acquisition unit. This part of the system contains a lot of 

analog circuitry and ADC channels in order to sample and 

monitor the desired data. Therefore, in DAQ units, several 

types of signal conditioning and filtering circuitries exist for 

each type of sensor. After the desired data is conditioned and 

sampled by analog circuitry, it is fed through to the digital part 

of the system, which is the controller unit of the FTI system.  

 

The controller unit of the system mostly contains FPGA-

based designs, but when the older designs are analyzed, one 

can see that it was common to use MCU-based controller 

designs. The last but essential part of the FTI System is the 

Power modules. All the transducers, sensors, DAQ modules, 

and controller units require different power supplies to 

perform their duties. The avionic vehicle environment is very 

noisy due to the complex devices and mechanical structures.  

 

FTI power modules are obligated to supply clean power 

to the other compound of the FTI systems [3]. In the concept 

of study, an FTI system consisting of a  power module, analog 

input module, controller module and backplane module to 

bring them all together is designed. Afterwards, signal 

processing algorithms for vibration level and phase detection 

are developed and implemented in the designed system.  

 

Finally, machine learning algorithms are used in the 

MATLAB environment in order to compare with the signal 

processing algorithms. A comparison is made using 

evaluation metrics such as RMS, MSE, and MAE.  

 

2. Materials and Methods  
2.1. Power Module Design 

Before designing the power module of the FTI system, 

the power requirements of the entire system are listed. Then, 

the power design was conducted and implemented. Power 

requirement of the system can be summarized as follows; 
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Fig. 1 Data flow chart 

• 1500V isolation voltage 

• 1000 Mohm isolation resistance 

• -40/+85 oC working temperature 

• +15V +/- 100mVp-p ripple, 0.5A output 

• -15V +/- 100mVp-p ripple, 0.5A output 

• +12V +/- 100mVp-p ripple, 0.5A output 

• -12V +/- 100mVp-p ripple, 0.5A output 

• +5V +/- 75mVp-p ripple, 4A output 

• Overvoltage protection 

• Overcurrent protection 

• 18 – 40 VDC input voltage range 

In order to meet the criteria, Traco Power TEN20WIN 

series of DC/DC converters are used and implemented in the 

power module of the system. TEN20WIN has various output 

voltage levels and is appropriate for rugged military designs. 

A number of crucial features of the DC/DC converter are listed 

below [4]; 

 

• 18 – 75 VDC input voltage range 

• 3.3 VDC, 5VDC, 12VDC, 15VDC, -5VDC, -12VDC, -

15VDC output 

• Efficiency between 85-89%  

• 5VDC 4A output capacity 

• +15V 667mA capacity 

• -15V 667mA capacity 

• +12V 883mA capacity 

• -12V 883mA capacity 

• -40 to +85 oC operating temperature 

• MIL-STD 810F compliance 

• 27g weight 

2.2. Analog Input Module Design 

In order to design an anti-aliasing filter, we should know 

the frequency region in which we are interested. Due to the 

rpm of both main and tail rotors, the maximum frequency we 

would like to deal with is no more than 10kHz. (For this 

reason, in section 3.2.ADC Block, Nyquist Frequency and 

ADC selection are given in detail. Of course, in different 

applications, the frequency region of interest can vary due to 

the requirements of the system. 

 

Analog filters can be used for different applications such 

as pre-amplification, equalization, tone control, tuning and 

preventing the aliasing for out of the frequency region of  
interest for digital signal processing applications. For data 

acquisition systems, the general signal flow can be expressed 

in Figure 1. 
 

Butterworth filter is best suited for a  data acquisition 

system that is designed. Since the vibration magnitude 

detection is done using the velocimeter signal’s amplitude, a 

flat bandpass response of filters is chosen to simplify the 

design and calculations. An anti-aliasing filter can be designed 

after the bandpass region is determined to be 10 kHz. Before 

getting to the design stage, it is also known that helicopters 

and other aviation crafts are very noisy environments in terms 

of both electrical and mechanical aspects. That is why we 

would like to design an anti-aliasing filter roll with a very 

sharp roll-off. That is why the Butterworth lowpass filter with  

10kHz cutoff, stop band at 20kHz with a 60dB gain is 

designed.  

 

The reason for the selection of the Butterworth filter 

topology is the flat bandpass response. Since the magnitude 

estimation is crucial for the vibration magnitude of the system, 

a gain change in the bandpass region is not wanted. Therefore, 

a  0 dB gain with a flat bandpass response Butterworth filter is 

designed as follows. In order to achieve filter characteristics, 

a  10th-order 5-stage Butterworth lowpass filter ha s been used. 

The circuitry is given below in Figure 2. 

 

The magnitude response of the designed Butterworth 

filter is given below in Figure 3 [5];  

 

 
Fig. 2 Designed 10th Order 5 Stage Butterworth Low Pass Filter with 10kHz Cut off, stop band at 20kHz with a -60dB gain 

Analog Input Source Analog Filter A/D Conversion Digital Filter 



 Sinan Akbaş & Selda Güney / IJVSP, 12(2), 9-27, 2025 

 

12 

 
Fig. 3 Magnitude Response of Designed Butterworth Filter 

 
Fig. 4 Phase Response of Designed Butterworth Filter 

 
In our application, a  sigma-delta type ADC is preferred. 

Since the output of the velocimeter sensor is in the range of 

millivolts, the data acquisition system needs higher resolution, 

and, of course, one can know that aircrafts are very noisy 

environments both electronically and mechanically. Due to 

defining these design constraints and determining the desired  

region of frequency, ADC with a manufacturing part number 

ADS1278 is chosen.  

 

ADS1278 is an excellent choice for our design due to 

several reasons. Such as: It has simultaneous sampling 

capability up to 8 channels, 144kSPS data rate, which is more 

than enough for the Nyquist frequency, very high signal to 

noise ratio (111dB), SPI data interface, and differential analog 

input that is resilient to common mode noise. 

Due to the analog input ranges of the ADS1278, the input 

signal range of the system is -2.5V to +2.5V. Since the 

velocimeter output is single-ended and the inputs of ADS1278 

are differential-ended, a  single-ended to differential-ended 

converter op-amp is used. For this purpose, the OPA1632 

differential amplifier is used. The reason for the selection of 

OPA1632 is that it has a very wide supply range (+/- 15V), 

and it is recommended in the ADS1278 datasheet for a  

compatible input type. For the voltage reference (VREFP) of 

the ADS1278, the voltage reference IC REF5025 is used. 

Privileges of the voltage reference ICs can be summarized as 

follows; 

• Very low output noise 

• Very high precision output voltage accuracy 

• Very low drift 
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Since ADC’s performance depends upon its voltage 

reference, using low-noise and high-precision voltage 

reference ICs is wise.  

 

Due to its stable passband response, ADS1278 is 

configured for high-resolution mode in this design. The 

response is given below [6].  

 

 
Fig. 5 Passband Response of ADS1278 

 
In order to configure ADS1278 for high resolution mode, 

MODE[1:0] pins are set to ’01’, clock frequency is set to 

27MHz, and the sample rate of the ADS1278 is set to 52.734 

KSPS. For the digital output of the ADS1278, FORMAT[2:0] 

pins are set to ‘001’ for SPI interface and fixed TDM data 

output mode, meaning that, at the first DOUT1 pin of 

ADS1278, sampled data are fed through in channel order (i.e. 

CH1, CH2, CH3, etc.). The representative figure is shown 

below. 

 

 
Fig. 6 TDM Mode All Channels Enabled 

 
In this design, an FPGA of the Zynq 7015 family has been 

used to collect sampled data from the ADC. The selected 

Zynq-7015 is in the SoC (system on Chip) family, unlike the 

FPGAs. SoCs consist of PL (Programmable Logic) and PS 

(Processing System). The PL side is an FPGA part, and the 

working principle is identical to that of FPGAs. The PS side 

can be considered an ARM-based MCU (Micro Controller 

Unit), and the working principle is the same as that of  MCUs. 

In order to program the PS side, the C language can be used. 

Since the ADS1278 has an SPI interface, an SPI 

communication module is designed in VHDL to configure the 

ADS1278 and also for data collection. In order to boot the 

FPGA and keep the relevant data for the algorithm , a QSPI  

and an EEPROM IC are included in the design. Also, for the 

communication between the Analog Input Module and 

Controller Module, AXI Quad SPI IP is used. 

 

  
 
 
 

 
 
 
 

 
 
 
 

 
 
 

 
 
 
 

 
 
 

 
 

 
 

 

Fig. 7 Analog Input Module Block Diagram
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The overall block diagram of the analog input module is 

given in Figure 7. The specifications of the designed Analog 

Input Module can be summarized as follows; 

• 8 simultaneous analog input channels 

• Up to 144 kSPS data rate 

• +/- 2.5V input range 

• Lowpass filter with a cutoff of 10 kHz 

• 0.298 uV resolution 

• 15.6 uIPS vibration measurement resolution 

2.3. Controller Design 

 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 8 Block Diagram of Communication Interfaces 

This design implements a Gigabit Ethernet 

communication interface to link the designed DAQ device to 

the user’s PC. As one knows, an Ethernet interface is very 

common and is available on many current computers. 

Moreover, since the gigabit Ethernet is backwards compatible, 

meaning that it can work as 100-base or 10-base, the gigabit 

Ethernet selection is efficient for this design. The Marvell 

88E1512 PHY with RGMII interface has been chosen for the 

physical layer. The RGMII interface has 4 data lanes and one 

control and clock lane for each transmit and receive side.  

 

88E1512 integrated circuit converts RGMII interface to 

Ethernet interface. In a gigabit Ethernet interface, there are 

four differential lanes (MDI[0], MDI[1], MDI[2], MDI[3]). 

These data lanes can be routed to an RJ45 Ethernet connector 

or different high-speed connectors to connect Ethernet data 

lines. During the design phase, the hardware designer should 

pay attention to matching the lengths of receiver and 

transceiver traces of RGMII signals individually. The MDI 

signals should also be matched. Length matching issue is 

crucial for high-speed interfaces because the travelling time or 

delay time for each data lane should be equal. If the mismatch 

occurs between the lanes, then the communication interface 

cannot be established due to a design failure. The overall block 

diagram of the Ethernet is given below; 

 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 

 
 
 
 

 
 
 
 

 
 
 

 

 
Fig. 9 Block Diagram of Ethernet Interface 
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After clarifying the hardware side of the Ethernet 

protocol, IPv4 is used for the embedded side. The IwIP is a  

TCP/IP Ethernet protocol implementation found in Vitis IDE 

(Integrated Development Environment), a  development tool 

AMD provides for PS side implementations. Usage efficiency 

and availability of the IWIP are considered; many embedded 

designers are using IWIP for Ethernet application 

implementations.  

 

 

This design used examples of lwIP echo server 

application codes to construct the system’s Ethernet 

communication. The controller module is getting data from 

analog modules, then processing with DSP operations and 

algorithms, sending the output of the processed sensor data to 

the host pc through an Ethernet interface. A colleague of mine 

conducted the embedded design of the system. The overall 

data flow representation is given below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10 Communication Data Flow Chart Between the Modules and Host PC 

2.4. Sigal Processing Algorithms 

In order to make it clearer, the sensor types that are used 

in the system and their functions should be mentioned. A 

magnetic pick-up sensor for tracking the rotation of the main 

rotor is used. A magnetic pick-up sensor produces a sine wave 

output whenever a change from a non-magnetic material to a 

magnetic material occurs. Since the vibration signals are 

periodic due to the rotation of the helicopter blades, it is 

essential to track the period start time of the rotation of the 

blade. Helicopters can have more than two blades. 

Independent of the number of blades, one blade is chosen as 

the target blade, and the target blade has a magnetic metal 

extension at the main rotor side of the target blade that can 

trigger the magnetic pick-up sensor mounted on the 

helicopter’s main rotor. Since the blades’ rotational motion is 

360, the front of the helicopter is accepted as 0. Whenever the 

target blade flies through the front of the helicopter, the 

magnetic pick-up sensor produces a sine wave-shaped signal. 

Therefore, the time period of vibration signals is determined. 

During these sinus peaks, vibration signals are sampled and 

processed. 

 

The main vibration source in helicopters is the main rotor 

due to the large and heavy rotating blades. The RPM value can 

change according to the helicopter type; however, in this 

study, the helicopter that is used rotates at 324 RPM. Large 

and heavy rotating blades create vibration on the aircraft 

vertically and horizontally. In order to sense vibrations, two 

velocimeter sensors are used for both the x-axis and y-axis. 

Velocimeters are mounted inside the helicopter horizontally 

and vertically, respectively. While a horizontally mounted 

velocimeter detects horizontal vibration, a  vertically mounted 

velocimeter detects vertical vibration. These velocimeters 

need +12V and 12V supplies and produce a very noisy 

sinusoidal vibration signal. While the amplitude of the output 

of the velocimeter sensor defines the vibration magnitude, the 

phase of the signal with respect to the magnetic pick-up sensor 

defines the vibration location. In light of this information, the 

sampling start of the velocimeter signals is triggered by a 

magnetic pick-up signal.  

 

IPS (inch per second) is a unit of measurement that is used 

to define the velocity of a vibration. Since the output of the 

velocimeter is sinusoidal, the conversion between the 

sinusoidal signal’s amplitude and IPS is defined in the 

velocimeter datasheet as 1 IPS = 19mV. Therefore, vibration 

magnitude is given in IPS.  

 

In this design, FFT is used to determine the magnitude of 

the vibration level. In order to test the algorithm, a device that 

can produce a constant vibration is used. This device produces 

a vibration at 0.4 IPS (+/- 0.04 IPS), 275 (+/- 15 °), and also a 

velocimeter and magnetic pick-up can be mounted on the 

device in order to get a  vibration signal, and the device rotates 

at 15 Hz, meaning that the vibration signal is expected at 15 

Hz. 

Analog Input 
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Analog Input 
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Analog Input 
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SPI 

SPI 
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Controller Module Ethernet Host PC 
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A size of 1024 (N=1024) time series samples is used for 

FFT calculations. Since the ADC’s sample rate is 52.734 kSPS 

and the used lab device is generating a vibration signal at 

15Hz, 52.734 kSPS is unnecessary. Therefore, the decimation 

technique is used to simplify the calculations. After the 

decimation, a  1024-point FFT is performed in MATLAB. The 

plotted raw data of the vibration signal of the test device is 

given below; 

 

 
Fig. 11 Raw Data of the Vibration Signal 

After taking the FFT of the raw data, the vibration signal 

in the frequency domain can be seen as follows; 

 

 
Fig. 12 Vibration Signal in Frequency Domain 

As mentioned before, after taking the FFT of the signal, a  

peak is detected at 15 Hz as expected, with a magnitude of 

7.26843 mV. Since 19 mV is equal to 1 IPS, then 7.26843 mV 

/ 19 mV = 0.3825 IPS. This also shows that both the 

measurement and the calculation of the vibration level are 

consistent because these studies are done due to a constant 

vibration-producing device.  

After determining the vibration magnitude, the phase of 

the vibration signal should be determined. Since the output of 

the velocimeter signal is noisy, calculating the phase is 

challenging. In order to eliminate this problem, a digital filter 

should be applied to the signal to eliminate the noise from the 

vibration signal. The MATLAB tool Filter Designer is used to 

design a digital filter because it is very efficient for designing 

a filter with different parameters and simulating the filter in 

the MATLAB environment.  

 

With the Filter Designer tool, an FIR equiripple lowpass 

filter is designed with a cutoff frequency at 0.08 normalized 

frequency and a stopband normalized frequency at  0.12. Gain 

ripple in the passband region is set to 0.01 dB, and stopband 

attenuation gain is set to -100 dB for better performance. As a 

result of these parameters, a  236th-order lowpass FIR filter is 

implemented in the phase detection algorithm.  

 

The magnitude response of the FIR filter is shown below. 

As one can see from the figure, the filter has a very flat 

passband response, and the filter’s roll-off is very sharp due to 

adjusted filter parameters.  

 

 
Fig. 13 Magnitude Response of Digital Lowpass Filter 

Conversion between the frequency and the normalized 

frequency can be done through the following formula; 

 

Normalized Frequency (in rad/sample) = (f x 2π) / 

Sampling Frequency 

 

In this design, decimation is set to 30 for sampling the 

velocimeter output, resulting in a sampling frequency of 1757 

SPS (i.e. 52734/30 = 1757). After calculating the frequency 

using the new sampling frequency, the approximately filter 

has a cutoff frequency at 22 Hz and a stopband frequency at 

33 Hz. Since the interested signal is at 15 Hz, this filter works 

very efficiently for this application. The designed filter’s 

group delay (in samples) is shown below.
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Fig. 14 Group Delay of Digital Lowpass Filter 

 
After applying the lowpass filter to the raw velocimeter 

signal, the filtered signal is given below. As one can see, the 

filtered vibration signal is almost a  pure sinusoid after 

removing the noisy components of the signal.  

 

 
Fig. 15 Filtered Signal 

After getting the filtered data, the phase of the vibration 

signal can be calculated. Group delay of digital lowpass filter, 

group delay of ADC, because sigma-delta ADC also have an 

embedded digital filter in it and also phase response of anti-

aliasing analog filter is taken into account, the phase of the 

vibration signal with respect to the magnetic pick-up sensor 

can be calculated.  

 

When calculating the phase of the vibration signal, the 

time domain filtered signal sampled with respect to the peak 

value of the magnetic pick-up sensor is used. Due to this 

triggered sampling technique, converting the first peak of the 

vibration signal’s time value to phase in terms of degrees, one 

can get the phase of the vibration signal.  

After verifying the algorithm with a laboratory setup, 

measurements were made on a helicopter. Of course, the 

digital filter had gone through a few modifications with  

respect to the change of the vibration frequency. However, as 

can be seen from the figure below, raw velocimeter data on a 

helicopter is noisier than the laboratory setup, as expected due 

to the noisy nature of aircraft, both mechanically and 

electronically. 

 

 
Fig. 16 Velocimeter Raw Data Taken from Helicopter 

Since the subject aircraft for the study has a constant 324 

RPM main rotor blade rotation speed, meaning that a  5.4 Hz 

frequency, the filter characteristics have been changed 

according to the application. For the causation of the noisy 

environment, a  bandpass filter with a very sharp and narrow 

bandwidth had been designed with cutoff frequencies at 5.2 

Hz and 6 Hz. Moreover, band-stop frequencies of the filter had 

been set to 3 and 10, respectively. The magnitude response of 

the designed filter is shown below. 

 

 
Fig. 17 Designed Digital Bandpass Filter for Helicopter 

As the sharpness increases and the bandwidth decreases, 

the order of the filter increases as expected. Due to these 

specifications, the group delay increases. After applying the 
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new filter for the raw data of the velocimeter, which is taken 

from the aircraft, the filtered signal becomes as follows. 

 

 
Fig. 18 Filtered Vibration Signal of Helicopter 

 
The vibration magnitude of the aircraft is identical to the 

laboratory study; taking the FFT of the signal shows a peak at 

324 RPM or 5.4 Hz. The result of the FFT calculation of the 

aircraft velocimeter can be seen below. As a result, vibration 

magnitude is measured as approximately 0.2 IPS. 

 

 
Fig. 19 FFT Plot of Aircraft Measurement 

 
Of course, both in a laboratory environment and in 

aircraft, lots of measurements are taken. A comparison of 

these measurements and methods will be reviewed in the 

Discussion and Results section.  

 

2.5. Regression Methods 
This part of the paper describes another approach for 

estimating the vibration levels due to sampled vibration 

signals. As an alternative to signal processing algorithms, a  

regression model-based approach was implemented in 

MATLAB. In order to do so, lots of measurements are taken 

from both the constant vibration generator lab device and the 

helicopter. Afterwards, these measurements are used to train 

the regression models to estimate the vibration level and phase 

more accurately. The algorithms that predict the vibration 

magnitude and phase better are Support Vector Machine 

(SVM), Decision Trees, Gaussian Process Regression and 

Ensemble Learning. Then, these models were compared 

according to evaluation metrics. The evaluation metrics that 

are used in this study are Mean Squared Error (MSE), Root 

Mean Square Error (RMSE) and Mean Absolute Error (MAE).  

 
2.5.1. Support Vector Machine (SVM) 

Support Vector Machine is a machine learning algorithm 

defined as a  set of related supervised learning methods. This 

algorithm is usually used for regression and classification. The 

advantages of SVM can be considered as the training 

algorithm is convenient because it is not locally optimal. Also, 

SVM can be scaled for high-dimensional data. SVM 

algorithms require a good kernel function, which can be 

considered a  disadvantage [9].  

 
2.5.2. Decision Trees 

Decision tree learning is a machine learning algorithm 

that is a  type of supervised learning. In order to predict the 

outcome, regression decision trees can be used as predictive 

models. Decision trees are commonly used in machine 

learning applications to predict the target value by using a set 

of input data. The key feature of decision trees is a recursive 

segmentation of a target data field based on the values of 

related input fields or indicators to form divisions, along with  

related descendant data segments (referred to as leaves or 

nodes), that include progressively comparable intra -leaf 

objective values and gradually varying inter-leaf at specific 

level of the tree [10].  

 
2.5.3. Gaussian Process Regression 

A Gaussian process is known as a stochastic process in 

probability and statistics theory, meaning that variables 

collected or sampled randomly are indexed by time or space. 

In order to infer the best possible output from a given data set, 

a  Gaussian process regression model can be used as an 

efficient algorithm. Gaussian process regression can be 

defined as a non-parametric Bayesian approach, meaning that 

by using a theoretically limitless number of parameters and 

allowing the data to determine the amount of complexity 

through the use of Bayesian inference, it may capture a wide 

range of links between inputs and outputs [11].  

 

2.5.4. Ensemble Learning 

An ensemble learning method depends on using multiple 

learning algorithms in order to give better predictions. In the 

simulation, the bagged trees approach was revealed to have 
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better performance. Bagging method can be considered as the 

first ensemble learning method and is reviewed as one of the 

simplest ensemble learning methods. The technique employs 

bootstrapping or sampling with a replacement method to use 

several versions of a training set. A distinct model is trained 

using each of these data sets. The aim is to produce a single 

output; the model outputs are aggregated by voting (for 

classification) or averaging (for regression) [12].   

 

2.5.5. Mean Square Error (MSE) 

Mean square error can be described as the signal’s 

similarity or discrepancy/variations. Therefore, one signal is 

commonly assumed to be the original signal, and the other is 

assumed to be a distorted or noisy signal. Then the MSE of the 

signals can be defined as follows; 
 

𝑀𝑆𝐸(𝑥, 𝑦) =  
1

𝑁
∑ (𝑥 𝑖 − 𝑦𝑖 )2𝑁

𝑖=1                (1) 

 

Where x and y are two finite discrete signals with a 

sample size of N. 

  

Generally, ei is defined as the error signal and equals the 

subtraction of x and y signals.  

                                                     ei = xi – yi    (2) 

     

Then, the formula of the MSE becomes as follows [7]; 

 
          𝑀𝑆𝐸(𝑥, 𝑦) =  

1

𝑁
∑ (𝑒𝑖)

2𝑁
𝑖=1           (3)  

2.5.6. Root Mean Square Error (RMSE) 

The idea behind the root mean square error is that it is the 

quadratic mean of the error signal (i.e. ei). By this 

methodology, the accuracy of the model can be measured. The 

following formula expresses the RMSE, 

 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑥 𝑖 − 𝑦𝑖 )2𝑁

𝑖=1   = √
1

𝑁
∑ (𝑒𝑖)

2𝑁
𝑖=1               (4) 

Where x and y are two finite discrete signals with a  
sample size of N, and ei is the error signal, which equals the 

subtraction of the x and y signals [8].  
 

ei = xi – yi      (5) 

 
2.5.7. Mean Absolute Error (MAE) 

Similar to MSE and RMSE, mean absolute error can be 

described as the sum of absolute errors divided by sample size 

N. It is an alternative to MSE and RMSE, and the formula for 

MAE is given below; 

 
𝑀𝐴𝐸 (𝑥, 𝑦) = 

1

𝑁
∑ |𝑥 𝑖 − 𝑦𝑖 |𝑁

𝑖=1  = 
1

𝑁
∑ |𝑒𝑖|

𝑁
𝑖=1                 (6) 

 
Where x and y are two finite discrete signals with a 

sample size of N, and ei is defined as the error signal, equal to 

the subtraction of the x and y signals.  

 

ei = xi – yi          (7) 

 
These defined evaluation metrics are used to compare the 

machine learning algorithms. Successful algorithms observed 

in the “Regression Learner” MATLAB Module are: Support 

Vector Machine (SVM), Tree, Gaussian Process Regression , 

Ensemble and Kernel.  

2.6. Experimental Studies 

Within the scope of this study, an FTI system is designed 

for vibration signal measurement on helicopters. Then, a  

signal processing algorithm is developed and implemented in 

a designed FPGA-based FTI system. The developed algorithm 

is verified by using a constant vibration generator lab device. 

As mentioned before, the vibration generator lab device 

produced a constant 0,4 IPS (+/- 0.04 IPS) vibration at 275 

(+/- 15o) phase angle. The measurements taken for 

verification from the lab device are given below.

 
Table 1. Vibration Calculations of Measurements of Lab Device 

Measurement Number 

Vibration 

Magnitude (in 

IPS) 

Vibration 

Phase (in 

Degree) 

Measurement Number 

Vibration 

Magnitude (in 

IPS) 

Vibration 

Phase (in 

Degree) 

1 0.3896 278.0911 36 0.3888 278.5031 

2 0.4038 278.2232 37 0.3886 278.5757 

3 0.3825 270.1181 38 0.3884 278.911 

4 0.3827 270.3766 39 0.3892 279.652 

5 0.3827 270.4677 40 0.3906 279.1078 

6 0.383 273.3506 41 0.39 277.5953 

7 0.3827 270.4677 42 0.387 272.8437 

8 0.3838 270.197 43 0.3873 270.6128 

9 0.3837 270.8323 44 0.3847 273.4786 

10 0.3836 272.3532 45 0.3866 273.4095 
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11 0.3841 273.0519 46 0.3864 272.4733 

12 0.3836 277.266 47 0.3018 286.0034 

13 0.3846 268.862 48 0.3899 273.1134 

14 0.3843 269.9771 49 0.3893 271.7736 

15 0.3844 270.8421 50 0.3893 279.5294 

16 0.3852 271.4689 51 0.3872 270.2899 

17 0.3848 271.4759 52 0.3902 278.5775 

18 0.3847 273.4084 53 0.3851 272.7611 

19 0.3845 273.2377 54 0.3893 276.8596 

20 0.3855 277.7059 55 0.3867 270.5873 

21 0.3861 279.5153 56 0.3894 282.3975 

22 0.3869 271.7744 57 0.3853 276.6595 

23 0.3873 276.5397 58 0.3865 273.4824 

24 0.3866 277.1684 59 0.3859 272.0306 

25 0.3872 275.5763 60 0.3933 279.7182 

26 0.3875 276.8587 61 0.3858 272.5401 

27 0.3876 277.1159 62 0.3884 277.513 

28 0.3882 278.6281 63 0.3897 278.0817 

29 0.3881 278.9732 64 0.3899 278.5258 

30 0.3881 279.2532 65 0.3876 273.3083 

31 0.3879 279.2429 66 0.3906 278.3825 

32 0.3878 279.4517 67 0.3895 278.6654 

33 0.389 276.9816 68 0.3895 282.8705 

34 0.3883 277.0849 69 0.3849 270.2137 

35 0.3887 277.5389 70 0.3842 273.3562 

Measurement Number 

Vibration 

Magnitude (in 

IPS) 

Vibration 

Phase (in 

Degree) 

Measurement Number 

Vibration 

Magnitude (in 

IPS) 

Vibration 

Phase (in 

Degree) 

71 0.3891 276.9226 104 0.389 279.5511 

72 0.3884 278.0894 105 0.3821 269.127 

73 0.3891 278.7388 106 0.3815 269.2714 

74 0.3893 277.8472 107 0.3824 269.4738 

75 0.3895 279.2505 108 0.3825 270.4111 

76 0.3874 277.2794 109 0.3828 272.1517 

77 0.3878 277.6068 110 0.3842 269.757 

78 0.3406 294.7666 111 0.3836 270.3909 

79 0.3848 271.4057 112 0.3835 270.9227 

80 0.3856 270.5173 113 0.384 271.2152 

81 0.3883 276.8362 114 0.3836 271.9548 

82 0.385 272.6523 115 0.3832 272.5551 

83 0.3853 272.231 116 0.3841 272.5441 
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84 0.3851 273.3062 117 0.3833 273.2305 

85 0.3844 273.5137 118 0.3835 273.366 

86 0.3891 277.153 119 0.3838 273.5273 

87 0.3855 272.8815 120 0.3845 273.5038 

88 0.3874 277.8682 121 0.3847 270.5502 

89 0.3908 273.3643 122 0.3856 278.7988 

90 0.3897 278.3583 123 0.3864 275.6509 

91 0.3862 273.3897 124 0.387 276.1907 

92 0.3887 277.9743 125 0.387 276.5358 

93 0.3837 270.4996 126 0.3871 277.3118 

94 0.3866 273.4917 127 0.3872 279.401 

95 0.388 276.8798 128 0.3881 276.338 

96 0.3861 270.6851 129 0.3875 278.163 

97 0.39 277.083 130 0.3875 279.0325 

98 0.3852 272.3461 131 0.3879 279.0475 

99 0.3849 269.7986 132 0.3879 279.0475 

100 0.4352 288.633 133 0.3879 279.0475 

101 0.385 273.1626    

102 0.3889 276.9804    

103 0.3856 270.6296    

As shown from the table, all measurement results are in 

the range of the lab device output, which is between 0,36 IPS 

– 0,44 IPS and 260o – 290o °. After the designed system is 

verified using this method, vibration signals on the helicopter 

will be obtained.  

 

Afterwards, the designed FTI system was mounted to the 

helicopter, and vibration signal measurements were taken 

from the helicopter. In order to verify the designed FTI 

system, another vibration analyzer device is used for control.  

 

The experiment was conducted as follows: firstly, the 

designed FTI system was mounted on a helicopter, then the 

helicopter was started to run on the ground at flight RPM. 

After the flight, RPM was reached by the helicopter engines, 

vibration measurements were taken through the velocimeter 

sensors, and vibration measurement results were logged for 

comparison.  

 

Afterwards, the FTI system is demounted from the 

helicopter, and the COTS vibration analyzer device is 

mounted on the helicopter to get the vibration measurement 

and compare the results. Measurements are taken for both 

horizontal and vertical vibrations. The result of the 

measurement and the comparison data of the COTS device is 

given below; 
 

Table 2. Horizontal Vibration Measurement Taken from Designed FTI 
System 

Measurement 

Number 

Vibration 

Magnitude (in 

IPS) 

Vibration 

Phase (in 

Degree) 

1 0.1603 217.51 

2 0.2 227.96 

3 0.1982 223.34 

4 0.1924 238.27 

5 0.1664 234.99 

6 0.2271 223.45 

7 0.1699 204.6 

8 0.1777 206.68 

9 0.1763 217.72 

10 0.1882 225.58 

11 0.1355 242.95 

12 0.1469 239.12 

13 0.1582 222.11 

14 0.1602 240.21 
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Table 3. Horizontal Vibration Measurement Taken from COTS Device 

Number IPS Phase 

1 0.202 260 

2 0.257 246 

 

As can be seen from the tables, both the IPS and phase 

values of the horizontal vibration measurements of both 

devices are very close. Measurement results of each device 

were not expected to be exactly the same because the vibration 

of the helicopter may vary depending on the condition. The 

following tables show the vertical vibration measurement 

results. As can be seen from the tables, both IPS and the Phase 

measurements of the vibration signal are very close to COTS 

device measurements.  
 

 
Table 4. Vertical Vibration Measurement Taken from Designed FTI System 

Number of measurements Vibration Magnitude (in IPS) Vibration Phase (in Degree) 

1 0.181 41.28 

2 0.172 25.48 

3 0.126 48.83 

4 0.16 29.58 

5 0.23 91.18 

6 0.152 64.16 

7 0.159 66.79 

8 0.117 74.72 

9 0.123 51.59 

10 0.103 85.98 

11 0.136 57.83 

12 0.12 64.5 

Table 5. Vertical Vibration Measurement Taken from COTS Device 

Number of 

measurements 

Vibration 

Magnitude (in 

IPS) 

Vibration 

Phase (in 

Degree) 

1 0.157 68.5 

2 0.166 82.5 

 

In order to compare the results, regression models are 

trained with raw data of the measurements. In order to train 

the models, 100 different measurements are sampled from a 

constant vibration generator lab device. After the training was 

completed, 33 different raw data samples were given to 

models to predict the vibration magnitude and phase. The 

result of the study is given below;

Table 6. Vibration magnitude results of the trained models 

Data 

Number 

Signal 

Processing 

Matern  

5/2 Gaussian 

 Process 

Regression 

Squared  

Exponential  

GPR 

Rational  

Quadratic 

 GPR 

Linear  

SVM 

Linear  

Regression 

Fine  

Gaussian  

SVM 

1 0.385 0.3845 0.3845 0.3845 0.3832 0.3846 0.3844 

2 0.3889 0.3887 0.3887 0.3887 0.3878 0.3876 0.3875 

3 0.3856 0.3853 0.3853 0.3853 0.3841 0.3865 0.3845 

4 0.389 0.3915 0.3915 0.3915 0.3917 0.3935 0.3874 

5 0.3821 0.3855 0.3855 0.3855 0.3844 0.3841 0.3862 

6 0.3815 0.3838 0.3838 0.3838 0.3829 0.3851 0.3867 

7 0.3824 0.3855 0.3855 0.3855 0.3846 0.3808 0.3869 

8 0.3825 0.3842 0.3842 0.3842 0.3833 0.3847 0.3868 

9 0.3828 0.3868 0.3868 0.3868 0.3859 0.3868 0.3867 

10 0.3842 0.3862 0.3862 0.3862 0.3847 0.3814 0.3868 

11 0.3836 0.387 0.387 0.387 0.387 0.3846 0.3871 

12 0.3835 0.3869 0.3869 0.3869 0.3861 0.3836 0.3865 

13 0.384 0.3862 0.3862 0.3862 0.3851 0.3873 0.3868 

14 0.3836 0.3868 0.3868 0.3868 0.386 0.3843 0.3864 
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15 0.3832 0.3859 0.3859 0.3859 0.3851 0.3847 0.3865 

16 0.3841 0.3865 0.3865 0.3865 0.3854 0.3859 0.3868 

17 0.3833 0.3875 0.3875 0.3875 0.3872 0.383 0.3869 

18 0.3835 0.3861 0.3861 0.3861 0.385 0.3825 0.3869 

19 0.3838 0.3867 0.3867 0.3867 0.3868 0.3816 0.3871 

20 0.3845 0.3871 0.3871 0.3871 0.3858 0.3844 0.3868 

21 0.3847 0.3854 0.3854 0.3854 0.3847 0.3836 0.3868 

22 0.3856 0.3888 0.3888 0.3888 0.3876 0.3878 0.3874 

23 0.3864 0.3898 0.3898 0.3898 0.3891 0.3878 0.3873 

24 0.387 0.3887 0.3887 0.3887 0.3865 0.3888 0.3874 

25 0.387 0.3892 0.3892 0.3892 0.3888 0.3872 0.3872 

26 0.3871 0.3899 0.3899 0.3899 0.3908 0.3916 0.3878 

27 0.3872 0.3889 0.3889 0.3889 0.3888 0.3869 0.3872 

28 0.3881 0.3889 0.3889 0.3889 0.3875 0.3862 0.3873 

29 0.3875 0.3885 0.3885 0.3885 0.3865 0.3867 0.3872 

30 0.3875 0.3898 0.3898 0.3898 0.3882 0.3893 0.3877 

31 0.3879 0.3901 0.3901 0.3901 0.3906 0.3897 0.3871 

32 0.3879 0.3892 0.3892 0.3892 0.3875 0.3886 0.3872 

33 0.3879 0.3898 0.3898 0.3898 0.3885 0.3864 0.3876 

Table 7. Vibration Phase Results of the Trained Model 

Data Number 
Signal  

Processing 

Exponential  

GPR 

Squared  

Exponential  

GPR 

Rational  

Quadratic 

 GPR 

Matern 5/2  

GPR 

Medium  

Gaussian 

 SVM 

Ensemble 

Bagged 

 Trees 

1 273.1626 272.0677 271.852 271.852 271.8612 271.764 272.1001 

2 276.9804 277.5151 278.3383 278.3383 278.2952 277.8863 278.8763 

3 270.6296 271.7011 272.1645 272.1645 272.1169 271.6672 271.8512 

4 279.5511 278.2309 278.0468 278.0468 277.9674 277.3906 277.5973 

5 269.127 272.3796 272.1127 272.1127 272.065 272.1133 272.437 

6 269.2714 271.6013 271.5404 271.5404 271.4342 271.0748 272.1513 

7 269.4738 272.1517 271.9159 271.9159 271.8817 272.6021 274.5612 

8 270.4111 272.3632 272.1138 272.1138 272.0535 271.4984 272.3901 

9 272.1517 271.542 271.5396 271.5396 271.3897 271.4003 272.733 

10 269.757 271.58 271.2489 271.2489 271.1412 271.8384 275.1639 

11 270.3909 273.965 272.9339 272.9339 273.1164 274.2403 273.1702 

12 270.9227 272.3794 272.1907 272.1907 272.1342 272.4082 273.7117 

13 271.2152 271.4306 271.5516 271.5516 271.4234 271.2122 272.3331 

14 271.9548 272.0812 272.0657 272.0657 271.966 271.8728 273.1894 

15 272.5551 272.5851 272.4425 272.4425 272.3676 271.8668 272.4999 

16 272.5441 271.5523 271.6167 271.6167 271.4895 271.6144 275.6128 

17 273.2305 273.0869 272.694 272.694 272.7381 273.3504 273.2266 

18 273.366 271.5446 271.5873 271.5873 271.4499 271.3047 274.5405 

19 273.5273 274.1208 273.3208 273.3208 273.509 274.1132 273.7253 
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20 273.5038 271.6582 271.9291 271.9291 271.7778 271.3329 272.9602 

21 270.5502 272.1372 272.1967 272.1967 272.0716 271.5683 272.8956 

22 278.7988 276.3216 276.8981 276.8981 276.76 276.8022 278.1854 

23 275.6509 276.5094 276.7086 276.7086 276.5841 276.519 277.7963 

24 276.1907 276.9878 277.2623 277.2623 277.2004 276.8702 277.544 

25 276.5358 276.6504 276.4354 276.4354 276.3338 276.7422 277.7938 

26 277.3118 277.3081 277.4066 277.4066 277.4863 277.1829 276.9551 

27 279.401 278.6897 278.2429 278.2429 278.2821 277.7171 278.6084 

28 276.338 277.1326 277.5101 277.5101 277.4423 276.8235 277.6751 

29 278.163 277.4387 277.9638 277.9638 277.866 277.1947 277.5127 

30 279.0325 277.3911 277.2941 277.2941 277.2402 277.2633 277.9593 

31 279.0475 278.4451 277.6802 277.6802 277.7391 277.7758 278.6596 

32 279.0475 277.3233 278.3911 278.3911 278.2703 276.9664 278.0281 

33 279.0475 277.1234 276.9896 276.9896 276.9224 277.0225 277.8487 

Results show that in both methods, both magnitude and 

the phase of the vibration signal can be detected very precisely 

when predicting the lab device vibration output with the 

trained lab device raw data.  The following study was done to 

predict helicopter vibration data using trained lab device data. 

As can be seen from the tables, training with constant 

vibration generator data is insufficient for predicting the 

helicopter vibration values. This is because the lab device 

generates only 0,4 IPS (+/- %10) and 275o (+/- 15o) vibration 

signal, and the model is trained in that range.  
 

Table 8. Helicopter Measurement Vibration Magnitude Results Due to  

 

Data 

Number 

Signal 

 Processing 

Matern  

5/2 Gaussian 

 Process 

Regression 

Squared  

Exponential  

GPR 

Rational  

Quadratic 

 GPR 

Linear  

SVM 

Linear  

Regression 

Fine  

Gaussian  

SVM 

1 0.1603 0.335 0.3353 0.3353 0.352 0.2552 0.3871 

2 0.2 0.3356 0.336 0.336 0.349 0.2121 0.3871 

3 0.1982 0.331 0.3314 0.3314 0.342 0.2089 0.3871 

4 0.1924 0.3395 0.3398 0.3398 0.351 0.2379 0.3871 

5 0.1664 0.3463 0.3465 0.3465 0.362 0.2562 0.3871 

6 0.2271 0.3332 0.3335 0.3335 0.347 0.1644 0.3871 

7 0.1699 0.3287 0.3291 0.3291 0.344 0.288 0.3871 

8 0.1777 0.3321 0.3325 0.3325 0.344 0.2225 0.3871 

9 0.1763 0.3403 0.3406 0.3406 0.356 0.2126 0.3871 

10 0.1882 0.3364 0.3368 0.3368 0.348 0.249 0.3871 

11 0.1355 0.336 0.3363 0.3363 0.352 0.216 0.3871 

12 0.1469 0.3397 0.34 0.34 0.354 0.268 0.3871 

13 0.1582 0.3362 0.3365 0.3365 0.349 0.2841 0.3871 

14 0.1602 0.3321 0.3325 0.3325 0.35 0.2422 0.3871 
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2.6.1. Lab Device Data Training 
 

Table 9. Helicopter Measurement Vibration Phase Results Due to Lab Device Data Training  

Data 

Number 

Signal  

Processing 

Exponential  

GPR 

Squared  

Exponential  

GPR 

Rational  

Quadratic 

 GPR 

Matern 5/2  

GPR 

Medium  

Gaussian 

 SVM 

Ensemble 

Bagged 

 Trees 

1 217.51 281.5835 281.6043 281.6043 278.3061 279.0538 276.2309 

2 227.96 281.7053 282.7767 282.7767 279.4892 279.0538 277.384 

3 223.34 281.3627 282.1509 282.1509 278.862 279.0538 276.272 

4 238.27 281.6442 283.5714 283.5714 280.6742 279.0538 277.7772 

5 234.99 281.8797 283.7744 283.7744 280.9139 279.0538 276.8457 

6 223.45 281.7704 283.6886 283.6886 280.4007 279.0538 277.7414 

7 204.6 281.3327 281.8019 281.8019 277.9771 279.0538 276.0335 

8 206.68 281.5704 282.9903 282.9903 279.9599 279.0538 277.2747 

9 217.72 281.3713 282.4934 282.4934 278.7991 279.0538 276.9685 

10 225.58 281.4698 283.5887 283.5887 279.9693 279.0538 277.5802 

11 242.95 281.7613 282.5895 282.5895 279.4875 279.0538 276.876 

12 239.12 281.8797 283.1841 283.1842 280.188 279.0538 277.1606 

13 222.11 281.8278 283.2737 283.2737 280.3337 279.0538 276.2135 

14 240.21 281.7427 283.0528 283.0528 279.5378 279.0538 275.5625 

In order to improve the trained model, the dataset for the 

lab device is reduced to 50, and 19 helicopter measurements 

are included in the training dataset. Therefore, the training 

model is updated to the 69 69-dataset, including helicopter 

measurement data. Afterwards, newly trained models are tried 

for predicting helicopter data. The following table shows the 

results of the study.

  
Table 10. Helicopter Measurement Vibration Magnitude Results Due  to New Trained Model Including Helicopter Data 

Data 

Number 

Signal  

Processing 

Rational  

Quadratic 

 GPR 

Squared  

Exponential  

GPR 

Exponential 

 GPR 

Matern 5/2  

GPR 

Linear 

 SVM 

Ensemble 

Bagged 

 Trees 

1 0.152 0.1538 0.1538 0.1764 0.1499 0.1373 0.1747 

2 0.159 0.168 0.168 0.1781 0.1666 0.1635 0.1769 

3 0.117 0.1543 0.1543 0.1713 0.1531 0.1538 0.1746 

4 0.123 0.155 0.155 0.1697 0.1519 0.1491 0.1897 

5 0.103 0.1684 0.1684 0.1776 0.1649 0.1557 0.1838 

6 0.143 0.1269 0.1269 0.1581 0.125 0.1323 0.2023 

7 0.136 0.1744 0.1744 0.1902 0.1717 0.1686 0.2017 

8 0.12 0.1398 0.1398 0.1697 0.1368 0.1427 0.1861 

Table 11. Helicopter Measurement Vibration Phase Results Due to the New Trained Model Including Helicopter Data 

Data 

Number 

Signal  

Processing 

Matern 5/2  

GPR 

 

Quadratic 

 SVM 

Squared  

Exponential  

GPR 

Rational Quadratic 

 GPR 

Linear 

 SVM 
Exponential GPR 

1 64.16 96.0429 124.8237 111.7863 102.8103 130.571 83.7206 

2 66.79 61.3822 77.4088 66.83 64.3869 57.4755 67.8963 

3 74.72 52.1545 75.4194 53.5759 53.0118 65.2587 66.6897 

4 51.59 81.443 112.0097 93.351 86.5453 120.824 81.9588 

5 85.98 85.6498 124.7238 98.9884 91.4014 134.6506 84.3849 

6 -2 65.4232 67.1214 68.0141 67.1388 78.8146 78.5903 

7 57.83 120.4378 136.1189 135.2336 126.118 157.1943 97.8218 

8 64.5 81.8943 120.9024 90.5852 85.7738 120.1917 84.845 
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3. Results and Discussion  
One may say that the results are improved when 

helicopter data is included in the training dataset . However, 

the precision of the prediction is still not sufficient. In order to 

improve the model’s precision, the dataset should be expanded 

with more helicopter vibration measurements.  

 

The whole idea for detecting the vibration level of the 

system is to compensate for it. In other words, eliminates the 

vibration from the system. In rotating systems, vibration is 

caused by the tilt of the rotating system axis. This tilted axis 

occurs in helicopter blades when the reciprocal blade weights 

are mismatched. In order to get matched blade weights, 

balance charts are used for helicopters. This chart’s data 

depends upon helicopter types and is given by the helicopter 

manufacturers. Simply, charts guide technicians to decrease 

the vibration levels by telling them to add or remove weights 

to the blades, after vibration signal measurements are done. 

The measured vibration data are placed into balance chart 

graphs according to the IPS and the phase value. After the 

placement is done, the chart axis guides the technician in 

modifying the weight of the blade. A representative figure of 

a  helicopter balance chart is given below; 

 

 
Fig. 20 Balance Chart of a Helicopter 

Finally, the comparison of several specifications between 

the designed FTI system and the COTS device that is used in 

the experimental setup is given below.  

Table 12. Specification Comparison Between COTS Device and 
Designed FTI System 

 Designed FTI 

System 
COTS Device  

Dimensions 25 x 10.5 x 11 cm 
27.4 x 19.1 x 10.2 

cm 

Weight 2.275 kg 3.22 kg 

Frequency 

Range 
2 Hz - 10 kHz 3.33 Hz - 10 kHz 

Memory 
8GB internal, 512 

GB on User PC 

2 MB SRAM, 1 MB 

Flash EPROM 

Channel 
24 Channels and 

Extensible 
36 Channels 

Power 

Range 

18-40 VDC (28 

VDC Nominal) 

12-28 VDC (28 

VDC Nominal) 

Temperatu

re Range 
(-40°C to +85°C) (-40°C to +55°C) 

 

4. Conclusion  
The Conclusions section should clearly explain the main 

findings and implications of the work, highlighting its 

importance and relevance.  

Within the scope of this thesis, an FTI system is designed, 

vibration signals are analyzed, and the vibration level of 

helicopters is measured. The studies that are conducted in this 

context can be summarized as follows: 

• In order to design an FTI system, requirements are issued. 

In light of derived requirements, an FTI system is 

designed that consists of modules: a  power module, 

controller module, analog input module and backplane 

module that combines all modules.   

• A system architecture is designed for a  data acquisition 

system in order to communicate analog input modules 

with the controller module through the SPI interface. 

Also, a  gigabit Ethernet interface is implemented to 

communicate with the user’s PC. Finally, another SPI 

interface for the ADC and configuration modules for 

analog input module is implemented in VHDL. 

• A signal processing algorithm was developed and 

implemented to designed the FTI system. In order to 

extract the vibration magnitude from the velocimeter 

measurements, an FFT module is implemented in the 

algorithm. Digital filters are designed and implemented 

for noisy data for phase extraction. A constant vibration 

generator device is used to verify the algorithm. After 

that, the algorithm and the designed device are verified on 

a helicopter using another COTS vibration analyzer.  

• Regression models are trained to predict vibration 

magnitude and phase values by using constant vibration 

generator device measurements. Afterwards, the trained 

model is used to predict helicopter vibration data. 

However, the range of the trained data was limited due to 

constant vibration, so the trained model was insufficient 

for predicting helicopter vibration values. In order to 
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improve the model, helicopter measurements are included 

in the training dataset. Simulation results show that 

predictions are improved but still not very effective.  

 

As a result, the vibration magnitude and phase of the 

helicopters were determined using signal processing 

algorithms, and the results of this study are promising. For the 

machine learning algorithms, conducted experiments show 

that the training datasets should be expanded with more 

velocimeter data sampled from a helicopter to use the trained 

models in helicopter studies.
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